首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Membrane-bound ectonucleoside triphosphate diphosphohydrolases (E-NTPDases) in the inner ear regulate complex extracellular purinergic type-2 (P2) receptor signalling pathways through hydrolysis of extracellular nucleoside 5′-triphosphates and diphosphates. This study investigated the distribution of NTPDase5 and NTPDase6, two intracellular members of the E-NTPDase family, and linked this to regulation of P2 receptor signalling in the adult rat cochlea. These extracellular ectonucleotidases preferentially hydrolyse nucleoside 5′-diphosphates such as UDP and GDP. Expression of both enzymes at mRNA and protein level was detected in cochlear tissues and there was in vivo release of soluble NTPDase5 and 6 into cochlear fluids. Strong NTPDase5 immunostaining was found in the spiral ganglion neurones and supporting Deiters’ cells of the organ of Corti, while NTPDase6 was confined to the inner hair cells. Upregulation of NTPDase5 after exposure to loud sound indicates a dynamic role for NTPDase5 in cochlear response to stress, whereas NTPDase6 may have more limited extracellular roles. Noise-induced upregulation of co-localised UDP-preferring P2Y6 receptors in the spiral ganglion neurons further supports the involvement of NTPDase5 in regulation of P2Y receptor signalling. Noise stress also induced P2Y14 (UDP- and UDP-glucose preferring) receptor expression in the root processes of the outer sulcus cells, but this was not associated with localization of the E-NTPDases.  相似文献   

2.
3.
4.
Purinergic signaling has broad physiological significance to the hearing organ, involving signal transduction via ionotropic P2X receptors and metabotropic G-protein-coupled P2Y and P1 (adenosine), alongside conversion of nucleotides and nucleosides by ecto-nucleotidases and ecto-nucleoside diphosphokinase. In addition, ATP release is modulated by acoustic overstimulation or stress and involves feedback regulation. Many of these principal elements of the purinergic signaling complex have been well characterized in the cochlea, while the characterization of P2Y receptor expression is emerging. The present study used immunohistochemistry to evaluate the expression of five P2Y receptors, P2Y1, P2Y2, P2Y4, P2Y6, and P2Y12, during development of the rat cochlea. Commencing in the late embryonic period, the P2Y receptors studied were found in the cells lining the cochlear partition, associated with establishment of the electrochemical environment which provides the driving force for sound transduction. In addition, early postnatal P2Y2 and P2Y4 protein expression in the greater epithelial ridge, part of the developing hearing organ, supports the view that initiation and regulation of spontaneous activity in the hair cells prior to hearing onset is mediated by purinergic signaling. Sub-cellular compartmentalization of P2Y receptor expression in sensory hair cells, and diversity of receptor expression in the spiral ganglion neurons and their satellite cells, indicates roles for P2Y receptor-mediated Ca2+-signaling in sound transduction and auditory neuron excitability. Overall, the dynamics of P2Y receptor expression during development of the cochlea complement the other elements of the purinergic signaling complex and reinforce the significance of extracellular nucleotide and nucleoside signaling to hearing.  相似文献   

5.
Summary Gelsolin was localized by immunocytochemistry in the developing cochlea of the rat. In normal animals, the protein appeared at 18 th day in utero in cells of the Kölliker's organ, which are involved in the secretion of the tectorial membrane. The Kölliker's organ cells were not immunoreactive after the first postnatal week, which is when they cease their secretory activity. Gelsolin immunoreactivity was similar in thyroid-deficient rats until the second postnatal week but, at this age, Kölliker's organ did not transform and its gelsolin immunoreactivity persisted, together with its secretory activity. As a result, the tectorial membrane was greatly distorted and out of contact with the hair cells, which dramatically impaired the mechanical properties of the organ of Corti. The developing cochlea thus provides an example of the involvement of gelsolin in a secretory process that is of importance in the development of hearing.  相似文献   

6.
Summary The distribution of the activity of alkaline phosphatase and Mg-dependent adenosine triphosphatase was studied in the encephalic dura mater-arachnoid borderline (interface) zone of albino Wistar rats. Intense clustering of electron-dense granules that indicated alkaline phosphatase activity was observed in the inner dural cells, the neurothelial cells, the outermost row of the outer arachnoidal cells and in the intercellular cleft between the latter two (the so-called electron-dense band). The remainder of the outer arachnoidal cells contained almost no reaction product. Mg-adenosine triphosphatase activity was distributed differently; a lack of reaction product was observed not only in the outer arachnoidal cells, but also in the zone occupied by the electron-dense band. The data confirm histochemically the barrier properties of the dura mater-arachnoid interface zone.  相似文献   

7.
Summary In testes of rats from 2 to 60 days of age, we examined the number of Sertoli cells (SC) and Leydig cells (LC) as well as the binding of radioiodinated gonadotropins to frozen sections and homogenates. The number of SC per testis increased only during the first 2 postnatal weeks, whereas that of LC was stable up to days 7–10 and increased thereafter. The uptake of 125I-labelled human follicle-stimulating hormone (125I-FSH) to frozen sections was confined to sex cords or seminiferous tubules, while that of 125I-labelled human choriogonadotropin (125I-hCG) matched the distribution of LC in the interstitium. High affinity receptors for FSH and hCG were found in homogenates at all stages studied. The number of FSH receptors per testis increased steadily, whereas that of hCG receptors was low until days 7–10 and rose afterwards. Thus, SC in rat testis appear to proliferate in the presence of fetal LC during the first 2 postnatal weeks and to differentiate concomitantly with the emergence of the adult LC generation after day 10. The complement of FSH receptors in SC remains constant as they proliferate and increases after day 21 as they differentiate. The hCG receptor number is relatively fixed in each LC generation, being higher in adult compared to fetal LC.  相似文献   

8.
Atherosclerosis is the main pathological basis of cardiovascular disease and involves damage to vascular endothelial cells (ECs) that results in endothelial dysfunction (ED). The vascular endothelium is the key to maintaining blood vessel health and homeostasis. ED is a complex pathological process involving inflammation, shear stress, vascular tone, adhesion of leukocytes to ECs, and platelet aggregation. The activation of P2X4, P2X7, and P2Y2 receptors regulates vascular tone in response to shear stress, while activation of the A2A, P2X4, P2X7, P2Y1, P2Y2, P2Y6, and P2Y12 receptors promotes the secretion of inflammatory cytokines. Finally, P2X1, P2Y1, and P2Y12 receptor activation regulates platelet activity. These purinergic receptors mediate ED and participate in atherosclerosis. In short, P2X4, P2X7, P2Y1, and P2Y12 receptors are potential therapeutic targets for atherosclerosis.  相似文献   

9.
10.
Adrenomedullin (ADM) is a hypotensive peptide, highly expressed in the mammalian adrenal medulla, which belongs to a peptide superfamily including calcitonin gene-related peptide (CGRP) and amylin. Quantitative autoradiography demonstrated the presence of abundant [125I]ADM binding sites in both zona glomerulosa (ZG) and adrenal medulla. ADM binding was selectively displaced by ADM(22–52), a putative ADM-receptor antagonist, and CGRP(8–37), a ligand that preferentially antagonizes the CGRP1-receptor subtype. ADM concentration-dependently inhibited K+-induced aldosterone secretion of dispersed rat ZG cells, without affecting basal hormone production. Both ADM(22–52) and CGRP(8–37) reversed the ADM effect in a concentration-dependent manner. ADM counteracted the aldosterone secretagogue action of the voltage-gated Ca2+-channel activator BAYK-8644, and blocked K+- and BAYK-8644-evoked rise in the intracellular Ca2+ concentration of dispersed ZG cells. ADM concentration-dependently raised basal catecholamine (epinephrine and norepinephrine) release by rat adrenomedullary fragments, and again the response was blocked by both ADM(22–52) and CGRP(8–37). ADM increased cyclic-AMP release by adrenal-medulla fragments, but not capsule-ZG preparations, and the catecholamine response to ADM was abolished by the PKA inhibitor H-89. Collectively, the present findings allow us to draw the following conclusions: (1) ADM modulates rat adrenal secretion, acting through ADM(22–52)-sensitive CGRP1 receptors, which are coupled with different signaling mechanisms in the cortex and medulla; (2) ADM selectively inhibits agonist-stimulated aldosterone secretion, through a mechanism probably involving the blockade of the Ca2+ channel-mediated Ca2+ influx; (3) ADM raises catecholamine secretion, through the activation of the adenylate cyclase/PKA signaling pathway.  相似文献   

11.
In the inner ear, there is considerable evidence that extracellular adenosine 5′-triphosphate (ATP) plays an important role in auditory neurotransmission as a neurotransmitter or a neuromodulator, although the potential role of adenosine signalling in the modulation of auditory neurotransmission has also been reported. The activation of ligand-gated ionotropic P2X receptors and G protein-coupled metabotropic P2Y receptors has been reported to induce an increase of intracellular Ca2+ concentration ([Ca2+]i) in inner hair cells (IHCs), outer hair cells (OHCs), spiral ganglion neurons (SGNs), and supporting cells in the cochlea. ATP may participate in auditory neurotransmission by modulating [Ca2+]i in the cochlear cells. Recent studies showed that extracellular ATP induced nitric oxide (NO) production in IHCs, OHCs, and SGNs, which affects the ATP-induced Ca2+ response via the NO-cGMP-PKG pathway in those cells by a feedback mechanism. A cross-talk between NO and ATP may therefore exist in the auditory signal transduction. In the present article, I review the role of NO on the ATP-induced Ca2+ signalling in IHCs and OHCs. I also consider the possible role of NO in the ATP-induced Ca2+ signalling in SGNs and supporting cells.  相似文献   

12.
Summary Immunocytochemical application of the antimuscarinic acetylcholine receptor antibody M35 to pancreas tissue revealed the target areas for the parasympathetic nervous system. Immunoreactivity in the endocrine pancreas was much higher than that in the exocrine part. Moreover, the endocrine cells at the periphery of the islets of Langerhans displayed the highest level of immunoreactivity. Based on these findings in the mantle of the islets, two types of islets have been distinguished: type-I islets with intensely stained mantle cells, and type-II islets with a much lower concentration of these cells. On average, type-I islets were larger (244.8 m±6.1 SEM) than type-II islets (121.5 m±3.8 SEM). M35-immunoreactivity was present on the majority of D cells, which were characterized by their immunoreactivity to somatostatin [of 446 D cells 356 (79.8%) were M35-immunopositive]. However, only a small proportion of the intensely stained mantle cells belonged to the D cell population. Therefore, it is concluded that the majority of the intensely stained mantle cells represent glucagon-secreting A and/or pancreatic polypeptide-secreting F cells. The intensity of M35-immunoreactivity at the periphery and central core of the islets paralleled the density of cholinergic innervation, suggesting a positive correlation between the intensity of cholinergic transmission and the number of muscarinic acetylcholine receptors at the target structures. The present study further revealed some striking parallels for the muscarinic acetylcholine receptor characteristics between the (endocrine) pancreas and the central nervous system.  相似文献   

13.
To elucidate the roles of proteoglycans (PGs), bone sialoprotein (BSP), and osteopontin (OPN) in cementogenesis, their distribution was investigated in developing and established acellular cementum of rat molars by an immunoperoxidase method. To characterize PGs, antibodies against five species of glycosaminoglycans (GAGs), chondroitin-4-sulfate (C4S), chondroitin-6-sulfate (C6S), unsulfated chondroitin (C0S), dermatan sulfate (DS), and keratan sulfate (KS) were used. Routine histological staining was also applied. With onset of dentin mineralization, the initial cementum appeared on the dentin surface as a hematoxylin-stained fibril-poor layer. Subsequently, primitive principal fibers attached to the initial cementum. As the acellular cementum containing extrinsic fibers covered the initial cementum, the initial cementum formed the cemento-dentinal junction. Following immunohistochemistry at the earliest time of cementogenesis, the initial cementum was intensely immunoreactive for C4S, C6S, C0S, BSP, and OPN. After the initial cementum was embedded, neither the cemento-dentinal junction nor the cementum was immunoreactive for any GAG species. However, the cementum and cemento-dentinal junction were consistently immunoreactive for BSP. Although the cemento-dentinal junction was consistently immunoreactive for OPN, the remaining cementum showed no significant immunoreactivity. Thus, initial acellular cementogenesis requires a dense accumulation of PGs, BSP, and OPN, which may be associated with the mineralization process independently of collagen fibrils and initial principal fiber attachment.  相似文献   

14.
Adenosine receptor antagonists are generally based on heterocyclic core structures presenting substituents of various volumes and chemical-physical profiles. Adenine and purine-based adenosine receptor antagonists have been reported in literature. In this work we combined various substituents in the 2, 6, and 8-positions of 9-ethylpurine to depict a structure-affinity relationship analysis at the human adenosine receptors. Compounds were rationally designed trough molecular modeling analysis and then synthesized and evaluated at radioligand binding studies at human adenosine receptors. The new compounds showed affinity for the human adenosine receptors, with some derivatives endowed with low nanomolar Ki data, in particular at the A2AAR subtype. The purine core proves to be a versatile core structure for the development of novel adenosine receptor antagonists with nanomolar affinity for these membrane proteins.  相似文献   

15.
A mechanical or chemical stimulus applied to the intestinal mucosa induces motility reflexes in the rat colon. Enteric neurons containing calcitonin gene-related peptide (CGRP) have been suggested as intrinsic primary afferent neurons responsible for mediating such reflexes. In the present study, immunohistochemistry was performed on whole-mount stretch preparations to investigate chemical profiles, morphological characteristics and projections of CGRP-containing neurons in the myenteric plexus of the rat colon. CGRP-positive neuronal cell bodies were detected in preparations incubated with colchicine-containing medium, whereas CGRP-positive nerve fibres were found in colchicine-untreated preparations. These neurons had large oval or round cell bodies that were also immunoreactive for the calcium-binding protein calretinin and neurofilament 200. Myenteric neurons positive for both calretinin and neurofilament 200 had several long processes that emerged from the cell body, consistent with Dogiel type II morphology. Application of the neural tracer DiI to the intestinal mucosa revealed that DiI-labelled myenteric neurons each had an oval or round cell body immunoreactive for calretinin. Thus, CGRP-containing myenteric neurons are Dogiel type II neurons and are immunoreactive for calretinin and neurofilament 200 in the rat colon. These neurons probably project to the intestinal mucosa. This study was supported by a Waseda University Grant for Special Research Projects (2008A-889).  相似文献   

16.
To identify neurochemical phenotypes of esophageal myenteric neurons synaptically activated by vagal preganglionic efferents, we immunohistochemically detected the expression of Fos, an immediate early gene product, in whole-mount preparations of the entire esophagus of rats following electrical stimulation of the vagus nerves. When electrical stimulation was applied to either the cervical left (LVN) or right vagus nerve (RVN), neurons with nuclei showing Fos immunoreactivity (IR) were found to comprise approximately 10% of the total myenteric neurons in the entire esophagus. These neurons increased from the oral toward the gastric end of the esophagus, with the highest frequency in the abdominal portion of the esophagus. A significant difference was not found in the number of Fos neurons between the LVN-stimulated and RVN-stimulated esophagus. Double-immunolabeling showed that nitric oxide synthase (NOS)-IR occurred in most (86% and 84% in the LVN-stimulated and RVN-stimulated esophagus, respectively) of the Fos neurons in the entire esophagus. Furthermore, the stimulation of either of the vagus nerves resulted in high proportions (71%-90%) of Fos neurons with NOS-IR, with respect to the total Fos neurons in each segment, in the entire esophagus. However, a small proportion (8% and 7% in the LVN-stimulated and RVN-stimulated esophagus, respectively) of the Fos neurons in the esophagus exhibited choline acetyltransferase (ChAT)-IR. The occurrence-frequency of Fos neurons with ChAT-IR was less than 4% of the total Fos neurons in any segment of the LVN-stimulated and RVN-stimulated esophagus. Some of the Fos neurons with ChAT-IR appeared to be innervated by numerous varicose ChAT-positive nerve terminals. The present results showing that electrical stimulation of the vagus nerves induces a high proportion of Fos neurons with NOS-IR suggests the preferential activation of NOS neurons in the esophagus by vagal preganglionic efferents. This connectivity between the vagal efferents and intrinsic nitrergic neurons might be involved in inhibitory actions on esophageal motility.This study was supported by Grant-in Aids for Scientific Research from Ministry of Education, Sports, and Culture of Japan to H.K. (no. 15500236) and to M.K. (no. 14570065).  相似文献   

17.
We have investigated the expression of receptors for insulin and insulin-like growth factor 1 (IGF-1) in rat pituitary cells in vitro and examined the morphological and proliferative changes induced in adenohypophyseal cells by insulin and IGF-1. The proliferation of lactotrophs was determined by double-immunostaining for bromodeoxyuridine and prolactin. Incubation with insulin (10, 100 or 1000 ng/ml) or IGF-1 (5, 30 or 100 ng/ml) for 48 or 72 h significantly increased the number of lactotrophs undergoing mitosis. Co-incubation of insulin or IGF-1 with genistein (25 μM), an inhibitor of the tyrosine kinase receptor, reduced the proliferation of lactotrophs elicited by the hormone and the growth factor. The receptors for insulin and IGF-1 were localized in intact pituitary cells by ultrastructural immunocytochemistry with the colloidal gold-protein A technique. Gonadotrophs expressed both receptors, specific labelling being restricted to this cell type. Electron-microscopical observations of pituitary cell cultures incubated with insulin or IGF-1 revealed gonadotroph cells exhibiting the fine-structural features of enhanced protein synthetic activity. These findings suggest that both insulin and IGF-1 are able to induce the proliferation of lactotrophs through an indirect mechanism mediated by a factor synthesized by gonadotroph cells, in addition to stimulating the biosynthetic activity of the gonadotroph in a direct manner.This work was supported by grants from the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and the Secretaría de Ciencia y Tecnología de la Universidad Nacional de Córdoba (SECyT).  相似文献   

18.
19.
The possible structure of human blood-group antigens, as found in cochlear hair cells of 3-day-old rats, is suggested. Data were obtained from immunocytochemical studies using 77 antibodies against the major human blood group antigens of the ABO, H, I and Lewis genetic systems. Neither the anti-A-related nor the anti-Lewis-related antibodies showed any positive immunoreaction on hair cells. In contrast, anti-B, anti-AB and anti-H antibodies displayed specific positive immunoreactive patterns on the hair cells. The results suggest that, in immature hair cells, two main glycoconjugate structures of the lactoseries are present: H type 2 antigen, which is the precursor of the B type 2 antigen, and the B type 2 antigen itself. Similar H and B carbohydrate structures have been reported in rat olfactory receptors. The type 2 glycoconjugates carrying these H and B antigens of auditive and olfactory receptors are resistant to fixation and paraffin embedding, suggesting that they might be glycoproteins. These auditive and olfactory H and B antigens must be different from the B-related antigens that are expressed by pseudo-unipolar neurons of rat posterior root ganglia, that are built from type 4 core chains, and that are destroyed by routine paraffin embedding procedures.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号