共查询到20条相似文献,搜索用时 15 毫秒
1.
Stable sulphur isotopes in plants: a review 总被引:2,自引:0,他引:2
The determination of the natural abundances of stable isotopes has become a useful method by which to study the transformations of elements in biological and ecological studies as well as to investigate the mechanisms of chemical reactions. Unlike carbon and nitrogen isotopes, however, stable sulphur isotopes are used infrequently, and their potential as tracers in biochemical and physiological studies are only beginning to be realized. This review provides an overview of research involving stable sulphur isotopes in studies of plant metabolism and pollution. Topics discussed include the mechanisms and accompanying isotopic fractionations involved during the uptake and assimilation of inorganic sulphur compounds by plants, the utility of plants as bioindicators of environmental sulphur pollution, and the emission of isotopically light H2S by plants in response to high concentations of sulphur. Future advances in the field are proposed. 相似文献
2.
3.
One-carbon (C1) compounds, such as methanol, have recently gained attention as alternative low-cost and non-food feedstocks for microbial bioprocesses. Considerable research efforts are thus currently focused on the generation of synthetic methylotrophs by transferring methanol assimilation pathways into established bacterial production hosts. In this study, we used an iterative combination of dry and wet approaches to design, implement and optimize this metabolic trait in the most common chassis, E. coli. Through in silico modelling, we designed a new route that “mixed and matched” two methylotrophic enzymes: a bacterial methanol dehydrogenase (Mdh) and a dihydroxyacetone synthase (Das) from yeast. To identify the best combination of enzymes to introduce into E. coli, we built a library of 266 pathway variants containing different combinations of Mdh and Das homologues and screened it using high-throughput 13C-labeling experiments. The highest level of incorporation of methanol into central metabolism intermediates (e.g. 22% into the PEP), was obtained using a variant composed of a Mdh from A. gerneri and a codon-optimized version of P. angusta Das. Finally, the activity of this new synthetic pathway was further improved by engineering strategic metabolic targets identified using omics and modelling approaches. The final synthetic strain had 1.5 to 5.9 times higher methanol assimilation in intracellular metabolites and proteinogenic amino acids than the starting strain did. Broadening the repertoire of methanol assimilation pathways is one step further toward synthetic methylotrophy in E. coli. 相似文献
4.
5.
Pollution by inorganic and organic sulphur compounds is increasing and, because of the many environmental hazards associated with these compounds (e.g. toxicity, acidification of rain and freshwater, increase of COD, the greenhouse effect), must be taken seriously. There is a wide variety of sulphur oxidizing bacteria available in nature, and these can be used for the effective control of such pollution. The best way to break the sulphur cycle is to stop it at sulphur which, being insoluble, can be easily recovered (e.g.SO4
2- S2- S0). (Eco)physiological knowledge about the sulphur oxidizing bacteria has proved very useful in the prediction of the performance of sulphur oxidizing communities in actual wastewater treatment systems. Appropriate reactor design, based on this type of study, is essential if such bacterial communities are to function efficiently, especially when toxic sulphides must be treated. This paper reviews the natural and anthropogenic sources of sulphur pollution, its consequences and possible solutions. 相似文献
6.
When soybean plants are pulsed with [35 S]sulphate, label is subsequently redistributed from the roots to the leaves. This confounds studies to measure the redistribution of label from leaves. Accordingly, soybean plants ( Glycine max [L.] Merr. cv. Stephens) were grown in 20 μ M sulphate and a small portion of the root system (donor root) was pulsed with [35 S]sulphate for 24 h. After removing the donor root, the plants were transferred into unlabelled solution, either without sulphate (S20→SO) or with 20 μ M sulphate (S20→20) (intact plants). Also at this time, the expanding leaf (L3) was excised from half of the plants in each treatment (excised plants). Immediately after the pulse, only ca 15% of the label occurred in the roots and ca 40% in the expanding leaf, L3, mostly in the soluble fraction. In intact S20→20 plants, 35 S-label was exported from the soluble fraction of L3, mostly as sulphate, whilst L4 and L5 imported label. Similar responses occurred in S20→SO plants except that export of label from L3 was more rapid. Excision of L3 from S20→S20 plants inhibited labelling of leaves L4-L6 but not total sulphur, whereas in S20→SO plants, excision of L3 inhibited the import of both total sulphur and 35 S-label in leaves L4, L5 and L6. The data suggest that the soluble fraction of almost fully expanded leaves is an important reserve of sulphur for redistribution to growing leaves. The 35 S-label in the root system exhibited fluctuations consistent with its proposed role in the recycling of soluble sulphur from the leaves. 相似文献
7.
A pot experiment was conducted to compare the availability and efficiency of three sulphur (S) fertilisers to wheat in the
first year and oilseed rape in the second year, using six agricultural soils. Four treatments were applied in the initial
year: control (no S), two forms of elemental S (either micronised S° particles or a bentonite + S° mixture) and a sulphate
fertiliser (ammonium sulphate). In the first year, the micronised S° was as effective as the sulphate fertiliser, both producing
similar increases of wheat grain yield (on average 36%) and S uptake (on average 164%) over the control. In contrast, responses
to the bentonite + S° form were minimal, indicating a limited S supply. In the second year the control treatment failed to
produce seeds in most soils, whereas the micronised S° and sulphate treatments increased seed yields of oilseed rape to an
average of 13.4 and 12.9 g pot-1, respectively. The performance of the bentonite + S° varied between soils: two soils produced yields similar to those of
the other S fertilisers, while the remaining soils had low yields. To test whether the poor performance of the bentonite clay
+ S° fertiliser was due to the lack of exposure of the prills to physical weathering in the glasshouse, the effect of freeze-thaw
action on the fertilisers performance was assessed in a separate pot experiment. The responses in wheat yield and S uptake
showed that freeze-thaw did not enhance the physical disruption of the prills or fertiliser effectiveness. These results suggest
that the release of available S from the bentonite + S° mixture was too slow to meet the requirement of wheat and oilseed
rape.
This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
8.
Ming-Chun Lee Hsin-Hung Chou Christopher J. Marx 《Evolution; international journal of organic evolution》2009,63(11):2816-2830
Trade-offs between selected and nonselected environments are often assumed to exist during adaptation. This phenomenon is prevalent in microbial metabolism, where many organisms have come to specialize on a narrow breadth of substrates. One well-studied example is methylotrophic bacteria that can use single-carbon (C1 ) compounds as their sole source of carbon and energy, but generally use few, if any, multi-C compounds. Here, we use adaptation of experimental populations of the model methylotroph, Methylobacterium extorquens AM1, to C1 (methanol) or multi-C (succinate) compounds to investigate specialization and trade-offs between these two metabolic lifestyles. We found a general trend toward trade-offs during adaptation to succinate, but this was neither universal nor showed a quantitative relationship with the extent of adaptation. After 1500 generations, succinate-evolved strains had a remarkably bimodal distribution of fitness values on methanol: either an improvement comparable to the strains adapted on methanol or the complete loss of the ability to grow on C1 compounds. In contrast, adaptation to methanol resulted in no such trade-offs. Based on the substantial, asymmetric loss of C1 growth during growth on succinate, we suggest that the long-term maintenance of C1 metabolism across the genus Methylobacterium requires relatively frequent use of C1 compounds to prevent rapid loss. 相似文献
9.
Agrobacterium sp. M3C, previously isolated from canal-water for its ability to grow on monomethyl sulphate, degraded this ester with stoichiometric liberation of inorganic sulphate. In contrast with the biodegradation of monomethyl sulphate in Hyphomicrobium sp., and of other longer-chain alkyl sulphates in Pseudomonas spp., the pathway in Agrobacterium appeared not to involve a sulphatase enzyme capable of catalysing ester-bond hydrolysis. No such sulphatase was detectable under a range of conditions of bacterial culture, or using various methods for preparing cell-extracts, or different assay conditions. There was no incorporation of 18O-label from H218O into the liberated inorganic sulphate. No methanol was detectable during biodegradation, and the organism was incapable of growth on methanol, and did not produce methanol dehydrogenase activity when grown on monomethyl sulphate. Tracer studies using mono[14C]-methyl sulphate indicated that formate serine and glycine were produced during the biodegradation. The presence of these amino acids, together with high activity of hydroxypyruvate reductase, indicated the operation of the serine pathway common in methylotrophs. Use of an oxygen electrode in conjunction with monomethyl[35S]sulphate showed that release of 35SO42- was dependent on availability of O2, and that there was equimolar stoichiometry among monomethyl sulphate degraded, O2 consumed and 35SO42- released. A proposed pathway for the degradation involved an initial mono-oxygenation to methanediol monosulphate with subsequent elimination of SO42- and concomitant formation of formaldehyde. The pathway was compared with degradation mechanisms for other C1 compounds and for other sulphate esters. 相似文献
10.
11.
Growth and iron oxidation by acidophilic moderate thermophiles 总被引:4,自引:0,他引:4
Abstract Most of the moderately thermophilic, acidophilic iron-oxidizing bacteria which have been isolated required a source of reduced sulphur for growth on iron. One isolate (strain ALV) utilized sulphate as the sole source of sulphur. All of the isolates were capable of chemolitho-heterotrophin growth on iron in the presence of yeast extract. Autotrophic growth has been confirmed in all strains except one previously described, but now re-isolated, moderate thermophile (TH3). 相似文献
12.
Alkaliphilic sulphur-oxidizing bacteria were isolated from samples from alkaline environments including soda soil and soda lakes. Two isolates, currently known as strains AL 2 and AL 3, were characterized. They grew over a pH range 8.0–10.4 with an optimum at 9.5–9.8. Both strains could oxidize thiosulphate, sulphide, polysulphide, elemental sulphur and tetrathionate. Strain AL 3 more actively oxidized thiosulphate and sulphide, while isolate AL 2 had higher activity with elemental sulphur and tetrathionate. Isolate AL 2 was also able to oxidize trithionate. The pH optimum for thiosulphate and sulphide oxidation was between 9–10. Some activity remained at pH 11, but was negligible at pH 7. Metabolism of tetrathionate by isolate AL 2 involved initial anaerobic hydrolysis to form sulphur, thiosulphate and sulphate in a sequence similar to that in other colourless sulphur-oxidizing bacteria. Sulphate was produced by both strains. During batch growth on thiosulphate, elemental sulphur and sulphite transiently accumulated in cultures of isolates AL 2 and AL 3, respectively. At lower pH values, both strains accumulated sulphur during sulphide and thiosulphate oxidation. Both strains contained ribulose bisphosphate carboxylase. Thiosulphate oxidation in isolate AL 3 appeared to be sodium ion-dependent. Isolate AL 2 differed from AL 3 by its high GC mol % value (65.5 and 49.5, respectively), sulphur deposition in its periplasm, the absence of carboxysomes, lower sulphur-oxidizing capacity, growth kinetics (lower growth rate and higher growth yield) and cytochrome composition. 相似文献
13.
Sebastian Wenk Karin Schann Hai He Vittorio Rainaldi Seohyoung Kim Steffen N. Lindner Arren Bar-Even 《Biotechnology and bioengineering》2020,117(11):3422-3434
An efficient in vivo regeneration of the primary cellular resources NADH and ATP is vital for optimizing the production of value-added chemicals and enabling the activity of synthetic pathways. Currently, such regeneration routes are tested and characterized mainly in vitro before being introduced into the cell. However, in vitro measurements could be misleading as they do not reflect enzyme activity under physiological conditions. Here, we construct an in vivo platform to test and compare NADH regeneration systems. By deleting dihydrolipoyl dehydrogenase in Escherichia coli, we abolish the activity of pyruvate dehydrogenase and 2-ketoglutarate dehydrogenase. When cultivated on acetate, the resulting strain is auxotrophic to NADH and ATP: acetate can be assimilated via the glyoxylate shunt but cannot be oxidized to provide the cell with reducing power and energy. This strain can, therefore, serve to select for and test different NADH regeneration routes. We exemplify this by comparing several NAD-dependent formate dehydrogenases and methanol dehydrogenases. We identify the most efficient enzyme variants under in vivo conditions and pinpoint optimal feedstock concentrations that maximize NADH biosynthesis while avoiding cellular toxicity. Our strain thus provides a useful platform for comparing and optimizing enzymatic systems for cofactor regeneration under physiological conditions. 相似文献
14.
Klaus?Kaiser "author-information "> "author-information__contact u-icon-before "> "mailto:klaus.kaiser@landw.uni-halle.de " title= "klaus.kaiser@landw.uni-halle.de " itemprop= "email " data-track= "click " data-track-action= "Email author " data-track-label= " ">Email author Georg?Guggenberger 《Biogeochemistry》2005,72(3):337-364
Organically bound species have been identified as prominent and mobile forms of nitrogen and phosphorus in soils. Since a large portion of sulphur (S) in soil is bonded to carbon (C) also dissolved organic S likely is a significant constituent in soil water. To investigate the role of dissolved organic forms in leaching and cycling of S in forest soils, we examined concentrations, fluxes, and chemical composition of organic S in forest floor leachates and in soil solutions of Rendzic Leptosols under 90-year-old European beech (Fagus sylvatica L.) and Haplic Arenosols under 160-year-old Scots pine (Pinus sylvestris L.) for 27 months. These soils are low in adsorbed SO42- and receive little atmospheric S depositions at present. The chemical composition of organic S was estimated by fractionation with XAD-8 and wet-chemical characterisation (HI reduction) of binding forms. Although not as prominent as the organic forms of other nutrient elements, organic S proved to be an important contributor to S dissolved in forest floor leachates and in mineral soil solutions. Dissolved organic matter contained on average 29% of total S in forest floor leachates at the pine site and 34% at the beech site. The largest portion of organic S occurred in the subsoil solutions under beech in summer and autumn (up to 53%). Mean concentrations of organic S peaked (up to 1.1 mg l-1) in summer after rainstorms that followed dry periods. Fluxes with forest floor leachates and at 90 cm soil depth were largest in autumn because of huge amounts of rainfall. Organic S contributed significantly to the fluxes of S in the subsoils under beech comprising on average 39% of total dissolved S at 90 cm depth. Organic S produced in the forest floor layers was mainly in the hydrophilic fraction of dissolved organic matter (62 ± 6% at the pine site, 85 ± 4% at the beech site). The major binding form of organic S in the hydrophobic fraction was C-bonded S while in the hydrophilic fraction ester sulphate S, possibly associated with carbohydrates, was more prominent. Since the hydrophobic fraction increased in summer and autumn, C-bonded S was of greater importance during that time of the year than in winter and spring. With depth, concentrations and composition of organic S (and also of C) hardly changed at the pine site because of little retention of dissolved organic matter, presumably because of the small sorption capability of that soil. At the beech where organic C showed a marked decrease with depth, only a slight decrease in organic S, exclusively from the hydrophobic fraction, was found indicating that organic S was mobile compared with organic C. This was probably due to the concentration of S in the hydrophilic fraction of dissolved organic matter. Because of being concentrated in the mobile hydrophilic fraction, ester sulphate S was more mobile in the soil under beech than C-bonded S. 相似文献
15.
Ten soils collected from the major arable areas in Britain were used to assess the availability of soil sulphur (S) to spring
wheat in a pot experiment. Soils were extracted with various reagents and the extractable inorganic SO4-S and total soluble S(SO4-S plus a fraction of organic S) were determined using ion chromatography (IC) or inductively-coupled plasma atomic emission
spectrometry (ICP-AES), respectively. Water, 0.016 M KH2PO4, 0.01 M CaCl2 and 0.01 M Ca(H2PO4)2 extracted similar amounts of SO4-S, as measured by IC, which were consistently smaller than the total extractable S as measured by ICP-AES. The amounts of
organic S extracted varied widely between different extractants, with 0.5 M NaHCO3 (pH 8.5) giving the largest amounts and 0.01 M CaCl2 the least. Organic S accounted for approximately 30–60% of total S extracted with 0.016 M KH2PO4 and the organic C:S ratios in this extract varied typically between 50 and 70. The concentrations of this S fraction decreased
in all soils without added S after two months growth of spring wheat, indicating a release of organic S through mineralisation.
All methods tested except 0.5 M NaHCO3-ICP-AES produced satisfactory results in the regression with plant dry matter response and S uptake in the pot experiment.
In general, 0.016 M KH2PO4 appeared to be the best extractant and this extraction followed by ICP-AES determination was considered to be a good method
to standardise on. 相似文献
16.
K V Shooter 《Chemico-biological interactions》1976,13(2):151-163
The degradation in alkali of normal DNA and DNA alkylated with dimethyl sulphate (DMS), N-methyl-N-nitrosourea (MNUA) and N-ethyl-N-nitrosourea (ENUA) has been investigated using analytical ultracentrifugation techniques. For control T7-DNA (w.st. denatured form 12.5 - 10(6) daltons) the rate of degradation at 37 degrees varies from 0.14 breaks/molecule/h in 0.1 M NaOH to 1.2 breaks/molecule/h in 0.4 M NaOH. When DNA is alkylated with reagents known to produce phosphotriesters addition of alkali leads to an initial rapid degradation not observed with control DNA. Ethyl phosphotriesters are hydrolysed at about half the rate of methyl phosphotriesters. Approximately one third of the methyl or ethyl phosphotriesters present hydrolyse to give breaks in the DNA chain. 相似文献
17.
The effect of ionising radiation and chemical methylation upon the activity and accuracy of E. COLI DNA polymerase I 总被引:1,自引:0,他引:1
R Saffhill 《Biochemical and biophysical research communications》1974,61(2):802-808
The activity of DNA polymerase I decreases on treatment with γ-rays, methylnitrosourea or dimethyl sulphate. In the case of the first two agents the decrease in activity is accompanied by a decrease in the accuracy of the enzyme in an assay. There is no detectable change in the ratio of DNA polymerase activity to 3′→5′ exonuclease activity on treatment. 相似文献
18.
MARLIES E. W. VAN DER WELLE ALFONS J.P. SMOLDERS† HUUB J.M. OP DEN CAMP JAN G.M. ROELOFS LEON P.M. LAMERS 《Freshwater Biology》2007,52(3):434-447
1. Wetlands are threatened by desiccation, eutrophication and changing water quality, generally leading to greatly altered biogeochemical processes. Sulphate pollution can lead to severe eutrophication and sulphide toxicity, but may also interact with the availability of iron and other metals. 2. In the present study, we examined the biogeochemical interactions between sulphate and iron availability, and their effects on aquatic macrophytes, in a field experiment with enclosures. The natural iron supply by groundwater was mimicked by adding iron to the sediment, and the effect of increased sulphate concentrations in the surface water was also studied. The enclosure experiment was performed in a mesotrophic, anaerobic ditch in a peat meadow reserve in the Netherlands. In all enclosures, three Stratiotes aloides plants were introduced to serve as indicator species. 3. Addition of sulphate led to the mobilisation of phosphate, whereas addition of iron or both iron and sulphate did not affect P mobilisation. Growth of S. aloides was decreased by both iron addition and sulphate addition (sulphide toxicity). Addition of iron under sulphidic conditions, however, led to mutual detoxification of both toxicants (iron and sulphide) and did not decrease S. aloides growth. The uptake of metals was highest in the treatment involving sulphate addition, probably as a result of increased mineralisation of the peat soil. 4. Growth of Elodea nuttallii, which grew naturally in the enclosures, was stimulated by iron or iron plus sulphate addition. It did not, however, grow in the enclosures with sulphate addition, as a result of sulphide toxicity or sulphide‐induced iron deficiency. Under iron‐rich conditions, E. nuttallii appeared to be a better competitor than S. aloides and depressed the growth of the latter species. 5. We propose that the growth of S. aloides is directly regulated by interactions between sulphide and iron and indirectly by the effects of both compounds on the competitive strength of E. nuttallii. In general, we conclude that biogeochemical interactions between sulphate and iron can have a strong influence on plant species composition in freshwater wetlands, because of direct effects or changes in the competitive strength of plant species related to differential sensitivity to either iron or sulphide. 相似文献
19.
The applicability of dolomite particlesto control acidificationin a Hyphomicrobium MS3inoculated biofilter removingdimethyl sulphide (Me2S) wasstudied. While direct inoculationof the dolomite particles with theliquid microbial culture was notsuccessful, start-up ofMe2S-degradation in thebiofilter was observed when thedolomite particles were mixed with33% (wt/wt) of Hyphomicrobium MS3-inoculatedcompost or wood bark material.Under optimal conditions, anelimination capacity (EC) of 1680~g Me2S m-3 d-1 wasobtained for the compost/dolomitebiofilter. Contrary to a wood barkor compost biofilter, no reductionin activity due to acidificationwas observed in these biofiltersover a 235 day period because ofthe micro environmentneutralisation of the microbialmetabolite H2SO4 with thecarbonate in the dolomite material.However, performance of thebiofilter decreased when themoisture content of the mixedcompost/dolomite material droppedbelow 15%. Next to this, nutrientlimitation resulted in a gradualdecrease of the EC andsupplementation of a nitrogensource was a prerequisite to obtaina long-term high EC (> 250 gMe2S m-3 d-1) forMe2S. In relation to thisnitrogen supplementation, it wasobserved that stable ECs forMe2S were obtained when thisnutrient was dosed to the biofilterat a Me2S-C/NH4Cl-Nratio of about 10.Abbreviations:DW – dry weight,EC – elimination capacity,Me2S – dimethyl sulphide,OL – organic loading rate,VS - volatile solids 相似文献