共查询到20条相似文献,搜索用时 0 毫秒
1.
In the rhizosphere and their interaction with plants rhizobia encounter many different plant compounds, including phytohormones like auxins. Moreover, some rhizobial strains are capable of producing the auxin, indole-3-acetic acid (IAA). However, the role of IAA for the bacterial partner in the legume– Rhizobium symbiosis is not known. To identify the effect of IAA on rhizobial gene expression, a transposon (mTn 5gusA - oriV ) mutant library of Rhizobium etli , enriched for mutants that show differential gene expression under microaerobiosis and/or addition of nodule extracts as compared with control conditions, was screened for altered gene expression upon IAA addition. Four genes were found to be regulated by IAA. These genes appear to be involved in plant signal processing, motility or attachment to plant roots, clearly demonstrating a distinct role for IAA in legume– Rhizobium interactions. 相似文献
2.
3.
Pseudomonas fluorescens CHA0 produces enantio-pyochelin, the optical antipode of the Pseudomonas aeruginosa siderophore pyochelin 总被引:1,自引:0,他引:1
Youard ZA Mislin GL Majcherczyk PA Schalk IJ Reimmann C 《The Journal of biological chemistry》2007,282(49):35546-35553
The siderophore pyochelin is made by a thiotemplate mechanism from salicylate and two molecules of cysteine. In Pseudomonas aeruginosa, the first cysteine residue is converted to its D-isoform during thiazoline ring formation whereas the second cysteine remains in its L-configuration, thus determining the stereochemistry of the two interconvertible pyochelin diastereoisomers as 4'R, 2'R, 4'R (pyochelin I) and 4'R, 2'S, 4'R (pyochelin II). Pseudomonas fluorescens CHA0 was found to make a different stereoisomeric mixture, which promoted growth under iron limitation in strain CHA0 and induced the expression of its biosynthetic genes, but was not recognized as a siderophore and signaling molecule by P. aeruginosa. Reciprocally, pyochelin promoted growth and induced pyochelin gene expression in P. aeruginosa, but was not functional in P. fluorescens. The structure of the CHA0 siderophore was determined by mass spectrometry, thin-layer chromatography, NMR, polarimetry, and chiral HPLC as enantio-pyochelin, the optical antipode of the P. aeruginosa siderophore pyochelin. Enantio-pyochelin was chemically synthesized and confirmed to be active in CHA0. Its potential biosynthetic pathway in CHA0 is discussed. 相似文献
4.
F. Alavi Nejad P. Khodaygan R. Ranjbar-karimi 《Archives Of Phytopathology And Plant Protection》2013,46(14):1752-1763
Plant diseases are among the main constraints affecting the production and productivity of crops both in terms of quality and quantity. Use of chemicals continues to be the major tactic to mitigate the menace of crop diseases. However, because of the environmental concerns, health conscious attitude of human beings and other hazards associated with the use of chemicals, use of bio agents to suppress the disease-causing activity of plant pathogens is gaining importance. With the emergence and increase of microbial organisms resistant to multiple antibiotics, and the continuing emphasis on health-care costs, many researchers have tried to develop new and effective antimicrobial reagents that do not stimulate resistance and are less expensive. Nanoscale materials have emerged as novel antimicrobial agents owing to their high surface area to volume ratio and the unique chemical and physical properties, which increases their contact with microbes and their ability to permeate cells. Since silver displays multiple modes of inhibitory action to micro-organisms, it may be used for controlling various plant pathogens in a relatively safer way compared to synthetic fungicides. Development of reliable and eco-friendly processes for synthesis of metallic nanoparticles is an important step in the field of application of nanotechnology. One of the options to achieve this objective is to use synthesis of nanoparticles of silver by reduction of aqueous Ag+ ions with the culture supernatant of Pseudomonas fluorescens CHA0. In this study, P. fluorescens CHA0 that has a medium impact on Gaeumannomyces graminis var. tritici was selected. Then, P. fluorescens CHA0 was used for the synthesis of silver nanoparticles. The morphology of the nanoparticles was characterised by Transmission Electron Microscopy and UV–vis spectroscopy. The silver nanoparticles of approximate size 50 nm were observed. The process of reduction is extracellular which makes it an easier method for the synthesis of silver nanoparticles. 相似文献
5.
Pseudomonas fluorescens strain CHA0 is an effective biocontrol agent against soil-borne fungal plant pathogens. In this study, indole-3-acetic acid (IAA) biosynthesis in strain CHA0 was investigated. Two key enzyme activities were found to be involved: tryptophan side chain oxidase (TSO) and tryptophan transaminase. TSO was induced in the stationary growth phase. By fractionation of a cell extract of strain CHA0 on DEAE-Sepharose, two distinct peaks of constitutive tryptophan transaminase activity were detected. A pathway leading from tryptophan to IAA via indole-3-acetamide, which occurs in Pseudomonas syringae subsp. savastanoi, was not present in strain CHA0. IAA synthesis accounted for less than or equal to 1.5% of exogenous tryptophan consumed by resting cells of strain CHA0, indicating that the bulk of tryptophan was catabolized via yet another pathway involving anthranilic acid as an intermediate. Strain CHA750, a mutant lacking TSO activity, was obtained after Tn5 mutagenesis of strain CHA0. In liquid cultures (pH 6.8) supplemented with 10 mM-L-tryptophan, growing cells of strains CHA0 and CHA750 synthesized the same amount of IAA, presumably using the tryptophan transaminase pathway. In contrast, resting cells of strain CHA750 produced five times less IAA in a buffer (pH 6.0) containing 1 mM-L-tryptophan than did resting cells of the wild-type, illustrating the major contribution of TSO to IAA synthesis under these conditions. In artificial soils at pH approximately 7 or pH approximately 6, both strains had similar abilities to suppress take-all disease of wheat or black root rot of tobacco. This suggests that TSO-dependent IAA synthesis is not essential for disease suppression. 相似文献
6.
Yasuhiro Katou Naoya Endo Toshiyuki Suzuki Jiang Yu Haruhisa Kikuchi Yoshiteru Oshima Yoshimi Homma 《Life sciences》2014
Aims
Metarhizin A was originally isolated from Metarhizium flavoviride as a potent inhibitor of the growth of insect and mammalian cells. In this study, we aimed to understand the molecular targets of metarhizin A involved in its anti-proliferative activity against human cells.Main methods
Cell cycle regulators and signaling molecules were examined by immunoblotting using specific antibodies. A mitochondria-enriched fraction was prepared from mouse liver, and mitochondrial activity was monitored using an oxygen electrode. Enzyme activity was measured using purified cytochrome c oxidase and permeabilized cells.Key findings
Metarhizin A inhibits the growth of MCF-7 cells with an IC50 value of ~ 0.2 μM and other cells in a similar manner; a cell cycle-dependent kinase inhibitor, p21, is selectively induced. Significant amounts of reactive oxygen species (ROS) are generated and ERK1/2 is activated in cells treated with metarhizin A. Metarhizin A completely suppresses oxygen consumption by mitochondria, and potently inhibits the activity of cytochrome c oxidase. It induces cell death when MCF-7 cells are cultured under limiting conditions.Significance
Metarhizin A is a potent inhibitor of cytochrome c oxidase and activates the MAPK pathway through the generation of ROS, which induces growth arrest of cells, and, under some conditions, enhances cell death. The cytochrome c oxidase system is a possible molecular target of metarhizin A. 相似文献7.
Ugalde C Coenen MJ Farhoud MH Gilinsky S Koopman WJ van den Heuvel LP Smeitink JA Nijtmans LG 《Mitochondrion》2002,2(1-2):117-128
The assembly of cytochrome c oxidase (COX) is a complicated process and requires a number of assembly factors to put all the necessary subunits in the correct position. Defects in COX assembly lead in particular to serious neuromuscular disorders. We demonstrated that COX-deficient patients can be associated with different assembly patterns. To obtain more insight in the biogenesis of COX in a living cell, we used yeast as a model organism to design a way to pulse label holo-COX with green fluorescent protein (GFP). Using blue native electrophoresis, we showed that the GFP-tagged subunit is incorporated into fully assembled COX and this GFP tagged complex still has enzymatic activity. This allows us to correlate the GFP fluorescence signal detected in vivo by microscopy with the synthesis, turnover and assembly of COX. 相似文献
8.
AIMS: To improve the efficacy of Pseudomonas fluorescens CHA0 and its genetically modified (GM) derivatives by adding ammonium molybdate to control Meloidogyne javanica, the root-knot nematode in mungbean. METHODS AND RESULTS: Culture filtrate of P. fluorescens CHA0 and its GM derivative (antibiotic overproducing strain CHA0/pME3424 and antibiotic-deficient CHA89) obtained from nutrient broth yeast extract medium amended with 1, 2 or 4 mm of ammonium molybdate (NH4-Mo) caused substantial mortality of M. javanica juveniles in vitro. Pseudomonas fluorescens CHA0 or CHA0/pME3424 applied in conjunction with NH4-Mo caused greater reduction of nematode penetration in mungbean roots compared with the bacterial application alone. Ammonium molybdate at 4 mg kg-1 of soil along with CHA0 also enhanced plant height while shoot weight remained unaffected. Either used alone or in conjunction with NH4-Mo, strain CHA89 did not reduce nematode invasion compared with the controls. Bacterial strains did not differ significantly in their colonization potential in the mungbean rhizosphere. Efficacy of the biocontrol bacteria to control root-knot nematode was accentuated when soil was treated with NH4-Mo and zinc (both at 1 mg kg-1 of soil). CONCLUSION: The addition of ammonium molybdate enhances the production of nematicidal compounds by P. fluorescensin vitro and improves bacterial efficacy against root-knot nematode under glasshouse conditions. SIGNIFICANCE AND IMPACT OF THE STUDY: Application of minerals such as ammonium molybdate is appealing because they are cheap and can easily be applied under field conditions to improve biocontrol potential of the bacterial inoculants. They also significantly reduce the amount of biocontrol inoculant biomass required to achieve root-knot disease control, with a consequent reduction in cost. 相似文献
9.
AIMS: The aim was to determine the influence of some Aspergillus species on the production of nematicidal agent(s) in vitro and biocontrol of Meloidogyne javanica in tomato by Pseudomonas fluorescens strains CHA0 and CHA0/pME3424. METHODS AND RESULTS: Six species of Aspergillus, isolated from the rhizosphere of certain crops, produced a variety of secondary metabolites in vitro. Culture filtrate (CF) obtained from Ps. fluorescens strain CHA0 and its2,4-diacetylphloroglucinol overproducing mutant CHA0/pME3424 grown in King's B liquid medium caused significant mortality of M. javanica juveniles in vitro. Bacterial growth medium amended with CF of A. niger enhanced nematicidal and beta-galactosidase activities of fluorescent pseudomonads while A. quadrilineatus repressed such activities. Methanol or ethyl acetate extracts of the CF of A. niger markedly optimized bacterial efficacy to cause nematode deaths while hexane extract of the fungus had no influence on the nematicidal activity of the bacterial strains. A. niger applied alone or in conjunction with the bacterial inoculants inhibited root-knot nematode galling in tomato. On the other hand, A. quadrilineatus used alone or together with CHA0 did not inhibit nematode galling but when used in combination with strain CHA0/pME3424 did reduce galling intensity. CONCLUSIONS: Aspergillus niger enhances the production of nematicidal compounds by Ps. fluorescensin vitro and improves biocontrol potential of the bacterial inoculants in tomato while A. quadrilineatus reduces bacterial performance to suppress root-knot nematodes. SIGNIFICANCE AND IMPACT OF THE STUDY: Rhizosphere harbours a variety of micro-organisms including bacteria, fungi and viruses. Aspergillus species are ubiquitous in most agricultural soils and generally produce a variety of secondary metabolites. Such metabolites synthesized by Aspergillus species may influence the production of nematicidal agents and subsequent biocontrol performance of the bacterial inoculants against plant-parasitic nematodes. This fact needs to be taken into consideration when using biocontrol strains in an agriculture system. 相似文献
10.
11.
The major gut microflora colonizing the hind gut of a higher termite,Odontotermes obesus, included morphologically diverse bacteria, both coccoid and rod-shaped, along with spirochaetes, pseudomonads and actinomycetes. Flagellated protozoa were totally absent. When the gut extract was inoculated on plates containing carboxymethyl cellulose or cellobiose, higher numbers of bacteria grew than on plates without cellulosic sources. The gut homogenate exhibited strong hydrolytic activity when carboxymethyl cellulose,p-nitrophenyl--d-glucoside or xylan were used as substrate, indicating the role of gut microbiota in the process of cellulose and hemicellulose digestion. Activities were highest in the hind gut, and the paunch was probably the major site of polysaccharide digestion in this higher termite.In vitro cultivation of some of the isolates revealed both cellulase and xylanase activities. To our knowledge, this is the first report on ultrastructural studies of the higher termiteOdontotermes obesus. 相似文献
12.
Insa Barelmann Diana Uría Fernández Herbert Budzikiewicz Jean-Marie Meyer 《Biometals》2003,16(2):263-270
From Pseudomonas chlororaphis D-TR133 a pyoverdine was isolated and its primary structure were elucidated by spectroscopic methods and degradation reactions. Despite some structural differences, its Fe(III) complex and that of the pyoverdine from Pseudomonas fluorescens CHA0 were taken up by either strain with a high rate. This is explained by a structural similarity between the two pyoverdines which were shown to differ in their structures only by the replacement of Lys by Ala in the C-terminal part of the molecules. An unexpected feature is that the main pyoverdine of P. chlororaphis D-TR133 is accompanied by a minor one where specifically one Ala is replaced by Gly. So far amino acid variations in the peptide chain of pyoverdines produced by a given strain had not been observed amongst the producers of the about fifty pyoverdines reported in the literature. 相似文献
13.
Patrice de Werra Maria Péchy-Tarr Christoph Keel Monika Maurhofer 《Applied and environmental microbiology》2009,75(12):4162-4174
The rhizobacterium Pseudomonas fluorescens CHA0 promotes the growth of various crop plants and protects them against root diseases caused by pathogenic fungi. The main mechanism of disease suppression by this strain is the production of the antifungal compounds 2,4-diacetylphloroglucinol (DAPG) and pyoluteorin (PLT). Direct plant growth promotion can be achieved through solubilization of inorganic phosphates by the production of organic acids, mainly gluconic acid, which is one of the principal acids produced by Pseudomonas spp. The aim of this study was to elucidate the role of gluconic acid production in CHA0. Therefore, mutants were created with deletions in the genes encoding glucose dehydrogenase (gcd) and gluconate dehydrogenase (gad), required for the conversion of glucose to gluconic acid and gluconic acid to 2-ketogluconate, respectively. These enzymes should be of predominant importance for rhizosphere-colonizing biocontrol bacteria, as major carbon sources provided by plant root exudates are made up of glucose. Our results show that the ability of strain CHA0 to acidify its environment and to solubilize mineral phosphate is strongly dependent on its ability to produce gluconic acid. Moreover, we provide evidence that the formation of gluconic acid by CHA0 completely inhibits the production of PLT and partially inhibits that of DAPG. In the Δgcd mutant, which does not produce gluconic acid, the enhanced production of antifungal compounds was associated with improved biocontrol activity against take-all disease of wheat, caused by Gaeumannomyces graminis var. tritici. This study provides new evidence for a close association of gluconic acid metabolism with antifungal compound production and biocontrol activity in P. fluorescens CHA0.Plant growth-promoting rhizobacteria (PGPR) (36) are root-colonizing bacteria that enhance the performance of crop plants by several mechanisms. First, they antagonize plant-pathogenic fungi, mainly by the production of antimicrobial metabolites, but also by competition for iron or rhizosphere niches (9, 23, 24, 59). The biocontrol activity of many disease-suppressive microorganisms is also attributed to stimulation of host defense (induced systemic resistance). Other mechanisms by which these rhizobacteria directly promote plant growth are the production of phytohormones and the increase of nutrient, in particular phosphate, availability to plants (18, 37). Certain rhizobacteria are able to solubilize insoluble or poorly soluble mineral phosphates by producing acid phosphatases and organic acids, mainly gluconic acid (2, 34, 60). Some PGPR combine these different plant-beneficial activities and are able to suppress soilborne plant diseases, as well as to increase phosphate availability for plants (72).In fluorescent pseudomonads, gluconic acid production is catalyzed by periplasmic oxidation of glucose by membrane-bound glucose dehydrogenase (Gcd) (Fig. (Fig.1A)1A) (16, 43). In many gram-negative bacteria, the synthesis of gluconic acid has been shown to be dependent on pyrroloquinoline quinone (PQQ) as an enzymatic cofactor of the Gcd (1, 14). A consecutive oxidation reaction is mediated by gluconate dehydrogenase (Gad), which converts gluconic acid to 2-ketogluconate (Fig. (Fig.1A)1A) (11, 12, 44, 50). These enzymes should be of predominant importance for biocontrol soil pseudomonads, as major carbon sources provided by plant root exudates in the rhizosphere are made up of glucose (29, 69, 70). The two enzymes involved in glucose metabolism may have a substantial influence on general nutrient availability in the rhizosphere. First, Gcd and Gad affect glucose levels, and second, they may modulate the availability of soluble phosphates by controlling the amount of gluconic acid released into the rhizosphere. Furthermore, the production of gluconic acid might substantially change the rhizosphere pH. Therefore, Gcd and Gad enzymes produced by fluorescent pseudomonads are likely to be important for soil fertility and to impact the activities of other organisms living in the rhizosphere, e.g., fungal pathogens attacking the roots. Indeed, gluconic acid metabolism has already been linked to antifungal activity. Recently, Kaur et al. (30) proposed that gluconic acid produced by a nonfluorescent Pseudomonas isolate may be important for the biological control of take-all disease.Open in a separate windowFIG. 1.(A) Periplasmic and intracellular glucose catabolism in pseudomonads based on studies with P. aeruginosa (10), P. putida (11, 12), and P. fluorescens (17, 28). Shown are membrane-bound enzymes involved in periplasmic glucose metabolism, Gcd (glucose dehydrogenase) and Gad (gluconate dehydrogenase), and enzymes involved in cytoplasmic glucose metabolism, Glk (glucokinase), Zwf (glucose-6-phosphate 1-dehydrogenase), GnuK (gluconokinase), KguK (2-ketogluconate kinase), and KguD (2-ketogluconate 6-phosphate reductase) (the names of the enzymes are derived from the nomenclature for P. putida KT2440 [12, 54]). (B and C) Physical locations of the gcd (B) and gad (C) genes in the genome of P. fluorescens strain CHA0. The shaded arrows show the sequenced or partly sequenced genes. The representation is based on the sequence data for strain CHA0 obtained by sequencing the chromosomal fragments inserted in the indicated vectors. The designations of the ORFs flanking the gcd and gad genes are based on the corresponding locus tags in the complete annotated sequence of the closely related P. fluorescens strain Pf-5 (56). Δ, region deleted in strains CHA1196 and CHA1197 and in plasmids pME3087::F34 and pME3087::F12. The bars designate the fragments cloned into the vector pME3087 to give pME3087::F34 and pME3087::F12 and into pColdI to give pColdI::gcd and pColdI::gad. Artificial restriction sites on the cloned fragments are marked with asterisks.Pseudomonas fluorescens CHA0 is a bacterial strain known to be able to suppress various soilborne plant diseases (24). Its biocontrol ability has been linked to the production of the antifungal compounds 2,4-diacetylphloroglucinol (DAPG) (31, 33) and pyoluteorin (PLT) (46, 47). The strain is also able to solubilize mineral phosphate and to improve plant growth under phosphate-limiting conditions (A. von Felten, personal communication). Gluconic acid is supposed to play a predominant role in the phosphate solubilization activity of P. fluorescens CHA0, and we hypothesize that the metabolite also has an impact on the biocontrol activity of this PGPR strain.The aim of this study was to elucidate the role of gluconic acid production in P. fluorescens CHA0 with respect to its phosphate-solubilizing ability, antifungal metabolite production, and ability to suppress fungal root diseases. To this end, mutants of strain CHA0 carrying deletions in the gcd gene, encoding Gcd, and the gad gene, encoding Gad (Fig. (Fig.1),1), were created. The three in-frame deletion mutants, CHA1196 (Δgcd), CHA1197 (Δgad), and CHA1198 (Δgcd Δgad), were compared with their parental strain for the ability to produce organic acids, to solubilize inorganic phosphate, to produce the antifungal metabolites DAPG and PLT, to inhibit the growth of fungal pathogens, and to suppress different soilborne diseases. We provide evidence that in fact, gluconic acid production by P. fluorescens CHA0 is involved not only in the solubilization of phosphate, but also in the regulation of antifungal compound production and, as a consequence, can influence the level of plant protection provided by the strain. 相似文献
14.
The gene of tryptophan-7-halogenase from the Pseudomonas fluorescens strain CHA0, a producer of the halogenated antibiotic pyrrolnitrin, has been cloned and sequenced. 相似文献
15.
In Pseudomonas fluorescens strain CHA0, the response regulator gene gacA controls expression of extracellular enzymes and antifungal secondary metabolites, which are important for this strain's biocontrol activity in the plant rhizosphere. Two Tn5 insertion mutants of strain CHA0 that had the same pleiotropic phenotype as gacA mutants were complemented by the gacS sensor kinase gene of P. syringae pv. syringae as well as that of P. fluorescens strain Pf-5, indicating that both transposon insertions had occurred in the gacS gene of strain CHA0. This conclusion was supported by Southern hybridisation using a gacS probe from strain Pf-5. Overexpression of the wild-type gacA gene partially compensated for the gacS mutation, however, the overexpressed gacA gene was not stably maintained, suggesting that this is deleterious to the bacterium. Strain CHA0 grown to stationary phase in nutrient-rich liquid media for several days accumulated spontaneous pleiotropic mutants to levels representing 1.25% of the population; all mutants lacked key antifungal metabolites and extracellular protease. Half of 44 spontaneous mutants tested were complemented by gacS, the other half were restored by gacA. Independent point and deletion mutations arose at different sites in the gacA gene. In competition experiments with mixtures of the wild type and a gacA mutant incubated in nutrient-rich broth, the mutant population temporarily increased as the wild type decreased. In conclusion, loss of gacA function can confer a selective advantage on strain CHA0 under laboratory conditions. 相似文献
16.
Detection of Plant-Modulated Alterations in Antifungal Gene Expression in Pseudomonas fluorescens CHA0 on Roots by Flow Cytometry
下载免费PDF全文

Patrice de Werra Eric Baehler Aurlie Huser Christoph Keel Monika Maurhofer 《Applied microbiology》2008,74(5):1339-1349
The biocontrol activity of the root-colonizing Pseudomonas fluorescens strain CHA0 is largely determined by the production of antifungal metabolites, especially 2,4-diacetylphloroglucinol. The expression of these metabolites depends on abiotic and biotic environmental factors, in particular, elements present in the rhizosphere. In this study, we have developed a new method for the in situ analysis of antifungal gene expression using flow cytometry combined with green fluorescent protein (GFP)-based reporter fusions to the phlA and prnA genes essential for the production of the antifungal compounds 2,4-diacetylphloroglucinol and pyrrolnitrin, respectively, in strain CHA0. Expression of phlA-gfp and prnA-gfp in CHA0 cells harvested from the rhizosphere of a set of plant species as well as from the roots of healthy, leaf pathogen-attacked, and physically stressed plants were analyzed using a FACSCalibur. After subtraction of background fluorescence emitted by plant-derived particles and CHA0 cells not carrying the gfp reporters, the average gene expression per bacterial cell could be calculated. Levels of phlA and prnA expression varied significantly in the rhizospheres of different plant species. Physical stress and leaf pathogen infection lowered phlA expression levels in the rhizosphere of cucumber. Our results demonstrate that the newly developed approach is suitable to monitor differences in levels of antifungal gene expression in response to various plant-derived factors. An advantage of the method is that it allows quantification of bacterial gene expression in rhizosphere populations at a single-cell level. To our best knowledge, this is the first study using flow cytometry for the in situ analysis of biocontrol gene expression in a plant-beneficial bacterium in the rhizosphere. 相似文献
17.
18.
Dubuis C Rolli J Lutz M Défago G Haas D 《Applied and environmental microbiology》2006,72(4):2606-2613
In the biocontrol strain Pseudomonas fluorescens CHA0, the Gac/Rsm signal transduction pathway positively controls the synthesis of antifungal secondary metabolites and exoenzymes. In this way, the GacS/GacA two-component system determines the expression of three small regulatory RNAs (RsmX, RsmY, and RsmZ) in a process activated by the strain's own signal molecules, which are not related to N-acyl-homoserine lactones. Transposon Tn5 was used to isolate P. fluorescens CHA0 insertion mutants that expressed an rsmZ-gfp fusion at reduced levels. Five of these mutants were gacS negative, and in them the gacS mutation could be complemented for exoproduct and signal synthesis by the gacS wild-type allele. Furthermore, two thiamine-auxotrophic (thiC) mutants that exhibited decreased signal synthesis in the presence of 5 x 10(-8) M thiamine were found. Under these conditions, a thiC mutant grew normally but showed reduced expression of the three small RNAs, the exoprotease AprA, and the antibiotic 2,4-diacetylphloroglucinol. In a gnotobiotic system, a thiC mutant was impaired for biological control of Pythium ultimum on cress. Addition of excess exogenous thiamine restored all deficiencies of the mutant. Thus, thiamine appears to be an important factor in the expression of biological control by P. fluorescens. 相似文献
19.
Thiamine-Auxotrophic Mutants of Pseudomonas fluorescens CHA0 Are Defective in Cell-Cell Signaling and Biocontrol Factor Expression
下载免费PDF全文

Christophe Dubuis Joëlle Rolli Matthias Lutz Genevive Dfago Dieter Haas 《Applied microbiology》2006,72(4):2606-2613
In the biocontrol strain Pseudomonas fluorescens CHA0, the Gac/Rsm signal transduction pathway positively controls the synthesis of antifungal secondary metabolites and exoenzymes. In this way, the GacS/GacA two-component system determines the expression of three small regulatory RNAs (RsmX, RsmY, and RsmZ) in a process activated by the strain's own signal molecules, which are not related to N-acyl-homoserine lactones. Transposon Tn5 was used to isolate P. fluorescens CHA0 insertion mutants that expressed an rsmZ-gfp fusion at reduced levels. Five of these mutants were gacS negative, and in them the gacS mutation could be complemented for exoproduct and signal synthesis by the gacS wild-type allele. Furthermore, two thiamine-auxotrophic (thiC) mutants that exhibited decreased signal synthesis in the presence of 5 × 10−8 M thiamine were found. Under these conditions, a thiC mutant grew normally but showed reduced expression of the three small RNAs, the exoprotease AprA, and the antibiotic 2,4-diacetylphloroglucinol. In a gnotobiotic system, a thiC mutant was impaired for biological control of Pythium ultimum on cress. Addition of excess exogenous thiamine restored all deficiencies of the mutant. Thus, thiamine appears to be an important factor in the expression of biological control by P. fluorescens. 相似文献
20.
Imran A. Siddiqui S. Shahid Shaukat Imtiaz Hussain Sheikh Aly Khan 《World journal of microbiology & biotechnology》2006,22(6):641-650
Summary
Pseudomonas fluorescens strain CHA0 produces hydrogen cyanide (HCN), a secondary metabolite that accounts largely for the biocontrol ability of this
strain. In this study, we examined the role of HCN production by CHA0 as an antagonistic factor that contributes to biocontrol
of Meloidogyne javanica, the root-knot nematode, in situ. Culture filtrate of CHA0, resulting from 1/10-strength nutrient broth yeast extract medium amended with glycine, inhibited
egg hatch and caused mortality of M. javanica juveniles in vitro. The bacterium cultured under high oxygen-tension conditions exhibited better inhibitory effects towards nematodes, compared
to its cultivation under excess oxygen situation. Growth medium amended with 0.50 or 1.0 mM FeEDDHA further improved hatch
inhibition and nematicidal activity of the strain CHA0. Strain CHA77, an HCN-negative mutant, failed to exert such toxic effects,
and in this strain, antinematode activity was not influenced by culture conditions. Exogenous cyanide also inhibited egg hatch
and caused mortality of M. javanica juveniles in vitro. Strains CHA0 or CHA77 applied in unsterilized sandy-loam soil as drench, caused marked suppression of root-knot disease
development incited by M. javanica in tomato seedlings. However, efficacy of CHA77 was noticeably lower compared to its wild type counterpart CHA0. An increased
bioavailability of iron following EDTA application in soil substantially improved nematode biocontrol potential of CHA0 but
not that of CHA77. Soil infestation with M. javanica eggs resulted in significantly lower nematode population densities and root-knot disease compared to the juveniles used as
root-knot disease-inducing agents. Strain CHA0 significantly suppressed nematode populations and inhibited galling in tomato
roots grown in soil inoculated with eggs or juveniles and treated with or without EDTA. Strain CHA0 exhibited greater biocontrol
potential in soil inoculated with eggs and treated with EDTA. To demonstrate that HCN synthesis by the strain CHA0 acts as
the inducing agent of systemic resistance in tomato, efficacy of the strain CHA0 was compared with CHA77 in a split root trial.
The split-root experiment, guaranteeing a spatial separation of the inducing agent and the challenging pathogen, showed that
HCN production by CHA0 is not crucial in the induction of systemic resistance in tomato against M. javanica, because the HCN-negative-mutant CHA77 induced the same level of resistance as the wild type but exogenous cyanide in the
form of KCN failed to trigger the resistance reaction. In the root section where both nematode and the bacterium were present,
strain CHA0 reduced nematode penetration to a greater extent than CHA77, suggesting that for effective control of M. javanica, a direct contact between HCN-producing CHA0 and the nematode is essential. 相似文献