首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Three members of a collection of pBR322-yeast DNA recombinant plasmids containing yeast tRNA genes have been analyzed and sequenced. Each plasmid carries a single tRNA gene: pY44, tRNASer2; pY41, tRNAArg2; pY7, tRNAVal1. All three genes are intronless and terminate in a cluster of Ts in the non-coding strand. The sequence information here and previously determined sequences allow an extensive comparison of the regions flanking several yeast tRNA genes. This analysis has revealed novel features in tRNA gene arrangement. Blocks of homology in the flanking regions were found between the tRNA genes of an isoacceptor family but, more interestingly, also between genes coding for tRNAs of different amino-acid specificities. Particularly, three examples are discussed in which sequence elements in the neighborhood of different tRNA genes have been conserved to a high degree and over long distances.  相似文献   

4.
Ribosomes translate genetic information encoded by messenger RNAs (mRNAs) into proteins. Accurate decoding by the ribosome depends on the proper interaction between the mRNA codon and the anticodon of transfer RNA (tRNA). tRNAs from all kingdoms of life are enzymatically modified at distinct sites, particularly in and near the anticodon. Yet, the role of these naturally occurring tRNA modifications in translation is not fully understood. Here we show that modified nucleosides at the first, or wobble, position of the anticodon and 3'-adjacent to the anticodon are important for translocation of tRNA from the ribosome's aminoacyl site (A site) to the peptidyl site (P site). Thus, naturally occurring modifications in tRNA contribute functional groups and conformational dynamics that are critical for accurate decoding of mRNA and for translocation to the P site during protein synthesis.  相似文献   

5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
Serine tRNA gene derivatives with altered anticodons were introduced to the temperature-sensitive serT42 mutant, whose tRNA(1Ser) shows a base substitution of A10 for wild type G10. When a low copy number vector-system was used, the growth and beta-galactosidase synthetic activity of the serT42 mutant were restored by complementation with the tRNA(5Ser) (T34) gene or the tRNA(1Ser) (G34) gene as well as the tRNA(1Ser) (wt) gene, but not with tRNA(5Ser) (wt), tRNA(1Ser) (A34) or tRNA(1Ser) (C34) genes at 42 degrees C. When multicopy vectors were used, the transformation even with tRNA(1Ser) (A10) gene restored the growth and beta-galactosidase synthetic activity at 42 degrees C. The tRNA(1Ser) (A10) showed no thermosensitivity in serine acceptor activity by in vitro assay. At 42 degrees C, the amount of tRNA(1Ser) (A10) in the serT42 mutant was almost the same as those in the wild type. The nucleotides in the tRNA(1Ser) (A10) were found to be fully modified like those in the wild type tRNA(1Ser). Both of the tRNAs transcribed from tRNA(5Ser) (T34) and tRNA(1Ser) (G34) genes showed serine acceptor activity. Modified nucleosides of these tRNAs were also analyzed.  相似文献   

17.
The effect of U(34) dethiolation on the anticodon-anticodon association between E. coli tRNA(Glu) and yeast tRNA(Phe) has been studied by the temperature jump relaxation technique. An important destabilization upon replacement of the thioketo group of s2U(34) by a keto group, was revealed by a lowering of melting temperature of about 20 degrees C. The measured kinetic parameters indicated that this destabilization effect was originated in an increase of dissociation and a decrease of association rate constants by a factor of 4 to 5. Modifications in both stacking interactions and flexibility in the anticodon loop would be responsible for this effect.  相似文献   

18.
19.
A functional tRNA(Val) gene, which codes for the major tRNA(ValIAC) isoacceptor species, and three new tRNA(Val) pseudogenes have been isolated from human genomic DNA. Two tRNA(Val) pseudogenes and a tRNA(Val) variant gene were found to be associated with tRNA genes encoding tRNA(ArgICG), tRNA(GlyUCC), and tRNA(ThrIGU), respectively, on distinct DNA fragments. All tRNA genes, including the pseudogenes, are actively transcribed in HeLa nuclear extract. Pre-tRNAs of tRNA(Val), tRNA(Arg), tRNA(Thr), and tRNA(Gly) genes are correctly processed to mature-sized tRNAs, whereas the three tRNA(Val) pseudogenes yield stable pre-tRNAs in vitro. These findings reveal that, together with the three known pseudogenes, half of the members of the human tRNA(Val) gene family are pseudogenes, all of which are active in homologous nuclear extracts in vitro and presumably also in vivo.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号