首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The incorporation of C14 leucine into the protein moiety of ribosomes has been studied as a sequel to the studies of ribosomal RNA synthesis. In contrast to the latter studies, labeled leucine is incorporated directly into 50S and 30S ribosomes without measurable delay by precursor stages. There is, however, evidence of some transfer of radioactivity from the 43S group of particles to the 50S. The inhibition of protein synthesis by chloramphenicol results in the accumulation of material similar to the eosome—the primary precursor in ribosome synthesis. There is also evidence for the synthesis of some neosome. The results of the studies of ribosomal RNA and protein synthesis are combined into a model of ribosome synthesis. Finally, consideration is made of the significance of these studies of ribosome synthesis for general problems of protein synthesis and information transfer.  相似文献   

2.
Escherichia coli strain 15-28 is a mutant with a defect in ribosome synthesis that leads to the accumulation of large amounts of ribonucleoprotein ("47S") particles during exponential growth. These particles are precursors to 50S ribosomes, but are distinct from precursors detected by pulse-labelling of the parent strain and also from ribosome precursors that accumulate during inhibition of growth by CoC12. Either ribosome assembly in the mutant differs from that in the wild-type strain, or 47S particles represent a hitherto unstudied stage in the synthesis of 50S ribosomes.  相似文献   

3.
RT-RiboSyn measures the specific rate of ribosome synthesis in distinct microbial populations by measuring the generation rate of precursor 16S rRNA relative to that of mature 16S rRNA when precursor 16S rRNA processing is inhibited. Good agreement was demonstrated between specific rate of ribosome synthesis and specific growth rate of Acinetobacter calcoaceticus.  相似文献   

4.
We previously cloned RRP14/YKL082c, whose product exhibits two-hybrid interaction with Ebp2p, a regulatory factor of assembly of 60S ribosomal subunits. Depletion of Rrp14p results in shortage of 60S ribosomal subunits and retardation of processing from 27S pre-rRNA to 25S rRNA. Furthermore, 35S pre-rRNA synthesis appears to decline in Rrp14p-depleted cells. Rrp14p interacts with regulatory factors of 60S subunit assembly and also with Utp11p and Faf1p, which are regulatory factors required for assembly of 40S ribosomal subunits. We propose that Rrp14p is involved in ribosome synthesis from the beginning of 35S pre-rRNA synthesis to assembly of the 60S ribosomal subunit. Disruption of RRP14 causes an extremely slow growth rate of the cell, a severe defect in ribosome synthesis, and a depolarized localization of cortical actin patches throughout the cell cycle. These results suggest that Rrp14p has dual functions in ribosome synthesis and polarized cell growth.  相似文献   

5.
J Dodd  J M Kolb  M Nomura 《Biochimie》1991,73(6):757-767
Earlier studies have shown that the reconstitution of Escherichia coli 50S as well as 30S ribosomal subunits from component rRNA and ribosomal protein (r-protein) molecules in vitro is not completely cooperative and binding of more than one r-protein to a single 16S rRNA (or 23S rRNA) molecule is required to initiate a successful 30S (or 50S) ribosome assembly reaction. We first confirmed this conclusion by carrying out 30S subunit reconstitution in the presence of a constant amount of 16S rRNA together with various amounts of total 30S r-proteins (TP30) and by analyzing the physical state of reconstituted particles rather than by assaying protein synthesizing activity of the particles as was done in the earlier studies. As expected, under conditions of excess rRNA, the efficiency of 30S subunit reconstitution per unit amount of TP30 decreased greatly with the decrease in the ratio of TP30 to rRNA, indicating the lack of complete cooperativity in the assembly reaction. We then asked the question whether the cooperativity of ribosome assembly is complete in vivo. We treated exponentially growing E coli cells with low concentrations of chloramphenicol which is known to inhibit protein synthesis without inhibiting rRNA synthesis, creating conditions of excess synthesis of rRNA relative to r-proteins. Several concentrations of chloramphenicol (ranging from 0.4 to 4.0 micrograms/ml) were used so that inhibition of protein synthesis ranged from 40 to 95%. Under these conditions, we examined the synthesis of RNA, ribosomal proteins and 50S ribosomal subunits as well as the synthesis of total protein. We found that the synthesis of 50S subunits was not inhibited as much as the synthesis of total protein at lower concentrations of chloramphenicol, but the degree of inhibition of 50S subunit synthesis increased sharply with increasing concentrations of chloramphenicol and was in fact greater than the degree of inhibition of total protein synthesis at chloramphenicol concentrations of 2 micrograms/ml or higher. The inhibition of 50S subunit synthesis was significantly greater than the inhibition of r-protein synthesis at all chloramphenicol concentrations examined. These data are consistent with the hypothesis that the cooperativity of ribosome assembly in vivo is also not complete as is the case for in vitro ribosome reconstitution, but are difficult, if not impossible, to explain on the basis of the complete cooperativity model.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
7.
Overproduction of rRNA was artificially induced in Escherichia coli cells to test whether the synthesis of ribosomal protein (r-protein) is normally repressed by feedback regulation. When rRNA was overproduced more than twofold from a hybrid plasmid carrying the rrnB operon fused to the lambda pL promoter (pL-rrnB), synthesis of individual r-proteins increased by an average of about 60%. This demonstrates that the synthesis of r-proteins is repressed under normal conditions. The increase of r-protein production, however, for unknown reasons, was not as great as the increase in rRNA synthesis and resulted in an imbalance between the amounts of rRNA and r-protein synthesis. Therefore, only a small (less than 20%) increase in the synthesis of complete 30S and 50S ribosome subunits was detected, and a considerable fraction of the excess rRNA was degraded. Lack of complete cooperativity in the assembly of ribosome subunits in vivo is discussed as a possible explanation for the absence of a large stimulation of ribosome synthesis observed under these conditions. In addition to the induction of intact rRNA overproduction from the pL-rrnB operon, the effects of unbalanced overproduction of each of the two large rRNAs, 16S rRNA and 23S rRNA, on r-protein synthesis were examined using pL-rrnB derivatives carrying a large deletion in either the 23S rRNA gene or the 16S rRNA gene. Operon-specific derepression after 23S or 16S rRNA overproduction correlated with the overproduction of rRNA containing the target site for the operon-specific repressor r-protein. These results are discussed to explain the apparent coupling of the assembly of one ribosomal subunit with that of the other which was observed in earlier studies on conditionally lethal mutants with defects in ribosome assembly.  相似文献   

8.
9.
10.
Incubating ribosomes and eukaryotic initiation factor eIF3 with an inosine-substituted mRNA (where the mRNA secondary structure is strongly reduced) in the absence of ATP and other protein synthesis factors produces a 40 S ribosome.mRNA complex. When Met-tRNAMeti and eIF2 are added, a 60 S ribosome subunit attaches forming an 80 S ribosome.mRNA complex. ATP and the three mRNA factors, eIF4B, cap-site factor, and eIF4A, strongly stimulate the attachment of the 60 S subunit. In the absence of Met-tRNAMeti, the 60-S subunit does not attach, and adding ATP and the mRNA factors inhibits the accumulation of 40 S ribosome.inosine mRNA complexes. These results indicate that a 40 S ribosome, probably in a complex with eIF3, has an intrinsic capacity to attach to mRNA. Further, they suggest that Met-tRNAMeti may interact in a subsequent step to stabilize the 40 S ribosome.mRNA complex and allow the attachment of a 60 S ribosome subunit. Although seen most clearly with the inosine-substituted mRNAs, the 40 S ribosome reaction is also obtained with "guanosine" mRNA. A 40 S ribosome attaches to guanosine mRNA without ATP and mRNA factors when an incubation mixture containing ribosomes, eIF3, and mRNA is fixed with glutaraldehyde. In addition, a 40 S ribosome.guanosine mRNA complex can be obtained without glutaraldehyde in incubations containing ATP and the three mRNA factors in the absence of Met-tRNAMeti. The latter reaction is limited because of the instability of the 40 S ribosome.mRNA complex in the absence of Met-tRNA. Nevertheless, its authenticity is indicated by its full dependence upon ATP and the three mRNA factors. The lack of factor requirement for the formation of 40 S ribosome complexes with inosine-substituted mRNAs indicates that ATP and the three mRNA factors function primarily to unwind the secondary structure of a guanosine mRNA. Data relevant to a role for ATP in facilitating ribosome migration on an mRNA are also discussed.  相似文献   

11.
Strain BM108 of Escherichia coli has a chromosomal mutation in the rpmB , G operon that prevents synthesis of ribosomal proteins L28 and L33. The mutation was lethal unless synthesis of protein L28 was induced from a plasmid. Without protein L28, RNA and protein synthesis were linear rather than exponential. No 70S ribosomes were made. Instead, RNA accumulated in '30S material' and '47S particles'; the latter were distinct from 50S ribosomal subunits, lacked proteins L28 and L33 and had substoicheometric amounts of three other proteins. When L28 synthesis was induced (but protein L33 was still absent), the strain grew as well as, and assembled 70S ribosomes with similar kinetics to, a wild-type control. Thus, protein L28 is required for ribosome assembly in strain BM108 while protein L33 has no significant effect on ribosome synthesis or function.  相似文献   

12.
Insights into protein biosynthesis from structures of bacterial ribosomes   总被引:1,自引:0,他引:1  
Understanding the structural basis of protein biosynthesis on the ribosome remains a challenging problem for cryo-electron microscopy and X-ray crystallography. Recent high-resolution structures of the Escherichia coli 70S ribosome without ligands, and of the Thermus thermophilus and E. coli 70S ribosomes with bound mRNA and tRNAs, reveal many new features of ribosome dynamics and ribosome-ligand interactions. In addition, the first high-resolution structures of the L7/L12 stalk of the ribosome, responsible for translation factor binding and GTPase activation, reveal the structural basis of the high degree of flexibility in this region of the ribosome. These structures provide groundbreaking insights into the mechanism of protein synthesis at the level of ribosome architecture, ligand binding and ribosome dynamics.  相似文献   

13.
We have recently shown that the mammalian nucleolar protein Bop1 is involved in synthesis of the 28S and 5.8S ribosomal RNAs (rRNAs) and large ribosome subunits in mouse cells. Here we have investigated the functions of the Saccharomyces cerevisiae homolog of Bop1, Erb1p, encoded by the previously uncharacterized open reading frame YMR049C. Gene disruption showed that ERB1 is essential for viability. Depletion of Erb1p resulted in a loss of 25S and 5.8S rRNAs synthesis, while causing only a moderate reduction and not a complete block in 18S rRNA formation. Processing analysis showed that Erb1p is required for synthesis of 7S pre-rRNA and mature 25S rRNA from 27SB pre-rRNA. In Erb1p-depleted cells these products of 27SB processing are largely absent and 27SB pre-rRNA is under-accumulated, apparently due to degradation. In addition, depletion of Erb1p caused delayed processing of the 35S pre-rRNA. These findings demonstrate that Erb1p, like its mammalian counterpart Bop1, is required for formation of rRNA components of the large ribosome particles. The similarities in processing defects caused by functional disruption of Erb1p and Bop1 suggest that late steps in maturation of the large ribosome subunit rRNAs employ mechanisms that are evolutionarily conserved throughout eukaryotes.  相似文献   

14.
The ribosome is a macromolecular assembly that is responsible for protein biosynthesis in all organisms. It is composed of two-subunit, ribonucleoprotein particles that translate the genetic material into an encoded polypeptides. The small subunit is the site of codon-anticodon interaction between the messenger RNA (mRNA) and transfer RNA (tRNA) substrates, and the large subunit catalyses peptide bond formation. The peptidyltransferase activity is fulfilled by 23S rRNA, which means that ribosome is a ribozyme. 5S rRNA is a conserved component of the large ribosomal subunit that is thought to enhance protein synthesis by stabilizing ribosome structure. This paper shortly summarises new results obtained on the structure and function of 5S rRNA.  相似文献   

15.
《The Journal of cell biology》1990,111(6):2261-2274
Two strains of Saccharomyces cerevisiae were constructed that are conditional for synthesis of the 60S ribosomal subunit protein, L16, or the 40S ribosomal subunit protein, rp59. These strains were used to determine the effects of depriving cells of either of these ribosomal proteins on ribosome assembly and on the synthesis and stability of other ribosomal proteins and ribosomal RNAs. Termination of synthesis of either protein leads to diminished accumulation of the subunit into which it normally assembles. Depletion of L16 or rp59 has no effect on synthesis of most other ribosomal proteins or ribosomal RNAs. However, most ribosomal proteins and ribosomal RNAs that are components of the same subunit as L16 or rp59 are rapidly degraded upon depletion of L16 or rp59, presumably resulting from abortive assembly of the subunit. Depletion of L16 has no effect on the stability of most components of the 40S subunit. Conversely, termination of synthesis of rp59 has no effect on the stability of most 60S subunit components. The implications of these findings for control of ribosome assembly and the order of assembly of ribosomal proteins into the ribosome are discussed.  相似文献   

16.
Korostelev A  Trakhanov S  Laurberg M  Noller HF 《Cell》2006,126(6):1065-1077
Our understanding of the mechanism of protein synthesis has undergone rapid progress in recent years as a result of low-resolution X-ray and cryo-EM structures of ribosome functional complexes and high-resolution structures of ribosomal subunits and vacant ribosomes. Here, we present the crystal structure of the Thermus thermophilus 70S ribosome containing a model mRNA and two tRNAs at 3.7 A resolution. Many structural details of the interactions between the ribosome, tRNA, and mRNA in the P and E sites and the ways in which tRNA structure is distorted by its interactions with the ribosome are seen. Differences between the conformations of vacant and tRNA-bound 70S ribosomes suggest an induced fit of the ribosome structure in response to tRNA binding, including significant changes in the peptidyl-transferase catalytic site.  相似文献   

17.
18.
Spahn CM  Jan E  Mulder A  Grassucci RA  Sarnow P  Frank J 《Cell》2004,118(4):465-475
Internal initiation of protein synthesis in eukaryotes is accomplished by recruitment of ribosomes to structured internal ribosome entry sites (IRESs), which are located in certain viral and cellular messenger RNAs. An IRES element in cricket paralysis virus (CrPV) can directly assemble 80S ribosomes in the absence of canonical initiation factors and initiator tRNA. Here we present cryo-EM structures of the CrPV IRES bound to the human ribosomal 40S subunit and to the 80S ribosome. The CrPV IRES adopts a defined, elongate structure within the ribosomal intersubunit space and forms specific contacts with components of the ribosomal A, P, and E sites. Conformational changes in the ribosome as well as within the IRES itself show that CrPV IRES actively manipulates the ribosome. CrPV-like IRES elements seem to act as RNA-based translation factors.  相似文献   

19.
In Gram-negative bacteria, the multi-domain protein S1 is essential for translation initiation, as it recruits the mRNA and facilitates its localization in the decoding centre. In sharp contrast to its functional importance, S1 is still lacking from the high-resolution structures available for Escherichia coli and Thermus thermophilus ribosomes and thus the molecular mechanism governing the S1–ribosome interaction has still remained elusive. Here, we present the structure of the N-terminal S1 domain D1 when bound to the ribosome at atomic resolution by using a combination of NMR, X-ray crystallography and cryo-electron microscopy. Together with biochemical assays, the structure reveals that S1 is anchored to the ribosome primarily via a stabilizing π-stacking interaction within the short but conserved N-terminal segment that is flexibly connected to domain D1. This interaction is further stabilized by salt bridges involving the zinc binding pocket of protein S2. Overall, this work provides one hitherto enigmatic piece in the ′ribosome puzzle′, namely the detailed molecular insight into the topology of the S1–ribosome interface. Moreover, our data suggest novel mechanisms that have the potential to modulate protein synthesis in response to environmental cues by changing the affinity of S1 for the ribosome.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号