首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the characteristics of the changes in intracellular calcium (Ca2+) concentration ([Ca2+](i)) and the viability of the unfertilized mouse oocytes exposed to various concentrations of ethylene glycol (EG)-containing solutions or vitrification solutions. Oocytes exposed to EG (1, 5, 10, 20, and 40% (v/v)) exhibited a rapid and dose-dependent increase in [Ca2+](i). The survival rate was 100% when oocytes were exposed to the EG concentration up to 5% through 5 min, while all oocytes were dead within 3 min when exposed to 10, 20, or 40% EG. When extracellular Ca2+ was removed, increase in [Ca2+](i) at 10 and 20% EG was less than that at the same concentrations of EG with extracellular Ca2+. The survival rates of the oocytes exposed to 10, 20, and 40% EG at 3 min were 100, 97, and 0%, respectively. In the presence of 20 microM 1,2-bis(o-aminopheoxy)ethane-N,N,N',N'-tetraacetic acid tetra acetoxymethyl ester (BAPTA-AM), a Ca2+ chelator, a small increase in [Ca2+](i) exposed to 10, 20, and 40% EG was observed until 4 min. Subsequently prolonged elevation of the [Ca2+](i) was observed in the oocytes exposed to 40% EG but not with 10 and 20% EG. The survival rate of the oocytes, in the presence of 20 microM BAPTA-AM, exposed to 10 and 20% EG was 100% throughout 5 min, while the oocytes exposed to 40% EG were alive only for 3 min. Treatment by the vitrification solution with various concentrations of EG (10, 20, and 40%) caused a smaller increase in [Ca2+](i), while the survival rates were higher compared to those without vitrification solution at the same concentrations of EG. These data suggested that the sustained [Ca2+](i) rises by EG in unfertilized mouse oocytes resulted in cell death. Therefore, the lowering of [Ca2+](i) in the oocytes exposed to the cryoprotectant may improve the viability of cryopreserved unfertilized oocytes.  相似文献   

2.
A systematic approach was taken to assess the vitrification properties of ethylene glycol-based solutions supplemented with carbohydrates. Solutions were prepared by weight (gravimetrically) using ethylene glycol as the cryoprotectant, 0.9% NaCl in water, and six different sugars: d-glucose, d(-)-fructose, d-sorbitol, sucrose, d(+)-trehalose, and raffinose. Sugars were added on a molal basis (0. 1, 0.5, and 1 m). Characteristics of the solutions were measured during warming by differential scanning calorimetry using a cooling rate of 100 degrees C/min and a warming rate of 10 degrees C/min. In the absence of carbohydrates a 59 wt% EG-saline solution formed a stable glass. When EG was replaced by an equimolal concentration of glucose, fructose, or sorbitol (monosaccharides) at 0.1, 0.5, or 1.0 m there was no change in the total solute concentration at which vitrification occurred, but the glass transition (Tg) occurred at a higher temperature than in EG-saline alone. When EG was replaced by an equimolal concentration of sucrose or trehalose (disaccharides) both the Tg and the lowest total solute concentration required for vitrification became progressively higher as the molecular weight, or the ratio of sugar to EG in the solutions, increased. At the highest tested disaccharide concentration (1 m) vitrification was achieved at a total solute concentration of 65 wt% (sucrose) and 67 wt% (trehalose). The polysaccharide raffinose significantly modified the vitrification properties of ethylene glycol solutions. When 0.5 or 0.1 m raffinose replaced EG on an equimolal basis the glass transition point was raised more than with either the monosaccharides or the disaccharides. Raffinose allowed vitrification at a total solute concentration of 67 wt% (0.5 m) and 63 wt% (0.1 m). The maturation of immature mouse oocytes, and the development of embryos in media containing 5-7 mM of any sugar was comparable to controls, indicating that they are not toxic. Exposure of freshly collected GV or MII oocytes to sugar concentrations between 0.5 and 1.0 M, for up to 10 min had no significant effect on the proportion which subsequently formed two cells. We conclude that added sugars do contribute to a solutions overall vitrification properties, and their properties should be taken into consideration when vitrification solutions are being designed or modified.  相似文献   

3.
The present study was undertaken to investigate the effects of ethylene glycol concentration and time of exposure to equilibration solution on the post-thaw morphological appearance and the in vitro maturation rate of buffalo oocytes. Vitrification solution-I (VS-I) consisted of 4.5M ethylene glycol (EG), 3.4M dimethyl sulphoxide, 5. 56mM glucose, 0.33mM sodium pyruvate and 0.4% w/v bovine serum albumin in Dulbecco's phosphate buffered saline (DPBS), whereas vitrification solution-II (VS-II) contained 3.5M EG, with other constituents at same concentrations as in VS-I. The equilibration solutions-I and II were prepared by 50% dilution (v/v) of VS-I and VS-II, respectively, in DPBS. Prior to vitrification, the cumulus-oocyte complexes (COCs) were exposed to equilibration solution-I or II for 1 or 3min at room temperature (25-30 degrees C). Groups of four to five oocytes were then placed in 15microl of respective vitrification solution, and immediately loaded into 0. 25ml French straws, each containing 150microl of 0.5M sucrose in DPBS. The straws were placed in liquid nitrogen (LN(2)) vapour for 2min, plunged and stored in LN(2) for at least 7 days. The straws were thawed by keeping in warm water at 28 degrees C for 20s, and the oocytes were equilibrated for 5min in 0.5M sucrose for one-step dilution. The percentage of oocytes found to be morphologically normal varied from 89 to 96% for the two equilibration solutions and the two exposure times. Among the damaged oocytes, cracking of zona pellucida was the abnormality observed most frequently. The nuclear maturation rate of oocytes equilibrated in equilibration solutions-I and II for 1 (28 and 24%, respectively) or 3min (32 and 33%, respectively) did not differ significantly. These results show that it is possible to cryopreserve buffalo oocytes by vitrification using a combination of 3.5M EG and 3.4M DMSO with an exposure time of 3min.  相似文献   

4.
The cryopreservation of pronuclear-stage embryos has particular importance in transgenic technology and human assisted reproductive technology (ART). The objective of this study was to improve the efficiency of cryopreservation of pronuclear-stage mouse embryos. Two vitrification methods (solid surface vitrification (SSV) vs. vitrification in cryotube) have been compared with special emphasis on the effect of the exposure of the embryos to the solutions for various times and the sugar content (trehalose, sucrose, or raffinose) of the vitrification solutions. Pronuclear-stage embryos were either exposed to 1 M dimethyl sulfoxide (DMSO) + 1 M propylene-glycol (PG) solution for 2, 5, 10, or 15 min or not exposed to this "equilibration" solution. The vitrification solutions consisted of 2.75 M DMSO and 2.75 M PG in M2 medium supplemented with 1 M trehalose (DPT), 1 M sucrose (DPS), or 1 M raffinose (DPR). In the cryotube method, groups of 15-25 embryos were transferred into a 1.8 ml cryotube containing 30 microl of DPT, DPS, or DPR. After 30 sec, the cryotubes were directly plunged into liquid nitrogen (LN(2)) and stored for 1 day to 1 month. Vitrified samples were warmed by immersing the cryotubes in a 40 degrees C water bath and then immediately diluted with 300 microl of 0.3 M trehalose, sucrose, or raffinose in M2. In the SSV method, after equilibration 15-20 embryos were exposed to DPT, DPS, or DPR solutions for around 20 sec before being dropped in 2-microl drops onto a pre-cooled (-150 to -180 degrees C) metal surface. Vitrified droplets were stored in cryovials in LN(2). Warming was performed by transferring the vitrified droplets into 0.3 M solutions of trehalose, sucrose, or raffinose at 37 degrees C, respectively. Results showed that both SSV and cryotube vitrification methods can result in high rates of in vitro blastocyst development (up to 58.3 and 68.5% with DPR, respectively), not statistically different from that of the controls (58.3 and 64.4%). Even without the equilibration step prior to vitrification, relatively high-survival rates have been achieved, except for the DPS solution. In conclusion, vitrification of pronuclear-stage mouse embryos can result in high rates of in vitro development to blastocyst, and the use of raffinose in the vitrification solution is advantageous to improve cryosurvival.  相似文献   

5.
Research on different cryoprotectants and their associations is important for successful vitrification, since greater cryoprotectant concentration of vitrification solution may be toxic to oocytes. The aim of the present research was to compare the efficiency of immature bovine oocyte vitrification in different associations of ethylene glycol (EG), glycerol and dimethylsulfoxide (Me(2)SO). In the first experiment, oocytes were exposed to the cryoprotectant for either 30 or 60s in final solutions of EG+DMSO1 (20% EG+20% Me(2)SO) or EG+DMSO2 (25% EG+25% Me(2)SO) or EG+GLY (25% EG+25% glycerol). In the second experiment, the oocytes were vitrified in open pulled straws (OPS) using 30s exposure of final solutions of EG+DMSO1 or EG+DMSO2 or EG+GLY. Maturation rates of 30s exposure groups were not different from the control, but 60s cryoprotectant exposure was toxic, decreasing maturation rates. The vitrification with EG+DMSO2 resulted in enhanced maturation rate (29.2%) as compared with EG+DMSO1 (11.7%) and EG+GLY (4.3%) treatments. These data demonstrate that concentration and type of cryoprotectant have important effects on the developmental competence of vitrified oocytes.  相似文献   

6.
We compare different vitrification protocols on the pregnancy and lambing rate of in vitro produced (IVP) and in vivo derived (IVD) ovine embryos. Ovine blastocysts were produced by in vitro maturation, fertilization and culture of oocytes collected from slaughtered ewes or superovulated and inseminated animals. Embryos were cryopreserved after exposure at room temperature either for 5 min in 10% glycerol (G), then for 5 min in 10% G + 20% ethylene glycol (EG), then for 30 s in 25% G + 25% EG (glycerol group), or for 3 min in 10% EG + 10% dimethyl sulphoxide (DMSO), then for 30s in 20% EG + 20% DMSO + 0.3 M sucrose (DMSO group). One group of in vitro produced embryos was cryopreserved similarly to the DMSO group, but with 0.75 M sucrose added to the vitrification solution (DMSO 0.75 group). Glycerol group embryos were then loaded into French straws or open pulled Straws (OPS) while the DMSO group embryos were all loaded into OPS and directly plunged into liquid nitrogen. Embryos were warmed with either a one step or three step process. In the one step process, embryos were placed in 0.5 M sucrose. The three-step process was a serial dilution in 0.5, 0.25 and 0.125 M sucrose. The embryos of DMSO 0.75 group were warmed directly by plunging them into tissue culture medium-199 (TCM-199) + 20% foetal bovine serum (FBS) in the absence of sucrose (direct dilution). Following these manipulations, the embryos were transferred in pairs into synchronised recipient ewes and allowed to go to term. The pregnancy and the lambing rate within each group of IVP and IVD embryos indicated that there was no statistical difference among the vitrification protocols.  相似文献   

7.
Cryopreservation of mammalian oocytes is an important way to provide a steady source of materials for research and practice of parthenogenetic activation, in vitro fertilization, and nuclear transfer. However, oocytes cryopreservation has not been common used, as there still are some problems waiting to be solved on the repeatability, safety, and validity. Then, it is necessary to investigate the damage occurred from vitrification and find a way to avoid or repair it. In this study, mouse mature oocytes were firstly pretreated in different equilibrium media, such as 5% ethylene glycol (EG) + 5% dimethyl sulfoxide (DMSO), 10% EG + 10% DMSO, and 15% EG + 15% DMSO in TCM199 supplemented with 20% fetal calf serum (FCS), for 1, 3, and 5 min, respectively, and then oocytes were transferred into vitrification solution (20% EG, 20% DMSO, 0.3 M sucrose, and 20% FCS in TCM199, M2, Dulbecco’s phosphate buffered saline, and 0.9% saline medium, respectively) and immediately loaded into glass capillaries to be plunged into liquid nitrogen. After storage from 1 h to 1 wk, they were diluted in stepwise sucrose solutions. The surviving oocytes were stained for cortical granule, meiotic spindles, and chromosomes. Oocytes without treatments were used as controls. The results showed that oocytes pretreated in 5% EG +5% DMSO group for 3–5 min or in 10% EG + 10% DMSO group for 1–3 min were better than other treatments. Oocytes vitrified in TCM199 as basic medium showed higher survival and better subsequent embryonic development than other groups. When the concentration of FCS in vitrification solution reduced below 15%, the rates of survival, fertilization, and developing to blastocyst declined dramatically. The inner diameter (0.6 mm) of glass capillaries and amount of vitrification solution (1–3 μl) achieved more rapid cooling and warming and so reduce the injury to oocytes. Cropreservation led to the exocytosis of cortical granule of oocytes (about 10%) and serious disturbance of microtubules and chromosomes. With 2 h incubation, the microtubules could repolymerize and the rate of fertilization in vitro was much higher than those of 1 and 3 h incubation groups. In conclusion, the protection of basic medium and FCS to oocytes during cryopreservation and sufficient cooling and warming rates using glass capillaries have profound effects on oocytes survival and subsequent embryonic development competence. The appropriate time for fertilization in vitro may be related to the recovery of spindles after incubation and avoiding ageing in the whole process.  相似文献   

8.
Vitrification of buffalo (Bubalus bubalis) oocytes   总被引:6,自引:0,他引:6  
Dhali A  Manik RS  Das SK  Singla SK  Palta P 《Theriogenology》2000,53(6):1295-1303
The objective of the present study was to develop a method for the cryopreservation of buffalo oocytes by vitrification. Cumulus-oocyte complexes (COCs) were obtained from slaughterhouse ovaries. Prior to vitrification of COCs in the vitrification solution (VS) consisting of 4.5 M ethylene glycol, 3.4 M dimethyl sulfoxide, 5.56 mM glucose, 0.33 mM sodium pyruvate and 0.4% w/v bovine serum albumin in Dulbecco's phosphate buffered saline (DPBS), the COCs were exposed to the equilibration solution (50% VS v/v in DPBS) for 1 or 3 min at room temperature (25 to 30 degrees C). The COCs were then placed in 15-microL of VS and immediately loaded into 0.25-mL French straws, each containing 150 microL of 0.5 M sucrose in DPBS. The straws were placed in liquid nitrogen (LN2) vapor for 2 min, plunged and stored in LN2 for at least 7 d. The straws were thawed in warm water at 28 degrees C for 20 sec. For dilution, the COCs were equilibrated in 0.5 M sucrose in DPBS for 5 min and then washed 4 to 5 times in the washing medium (TCM-199+10% estrus buffalo serum). The proportion of oocytes recovered in a morphologically normal form was significantly higher (98 and 88%, respectively; P<0.05), and the proportion of oocytes recovered in a damaged form was significantly lower (2 and 12%, respectively; P<0.05) for the 3-min equilibration than for 1 min. For examining the in vitro developmental potential of vitrified-warmed oocytes, the oocytes were placed in 50-microL droplets (10 to 15 oocytes per droplet) of maturation medium (TCM-199+15% FBS+5 microg/mL FSH-P), covered with paraffin oil in a 35-mm Petri dish and cultured for 26 h in a CO2 incubator (5% CO2 in air) at 38.5 degrees C. Although the nuclear maturation rate did not differ between the 1- and 3-min equilibration periods (21.5+/-10.7 and 31.5+/-1.5%, respectively), the between-trial variation was very high for the 1-min period. This method of vitrification is simple and rapid, and can be useful for cryopreservation of buffalo oocytes.  相似文献   

9.
Experiments were conducted to assess the morphological viability and in vitro developmental potential of bovine oocytes after exposure to Ethylene Glycol‐bis(‐aminoethyl Ether) N,N,N,N‐Tetra‐acetic Acid (EGTA) prior to slow freezing. Different concentrations of EGTA (0, 1, 5 and 10 mM) and exposure intervals (5, 10 and 15 min) were tested on immature (GV) and in vitro matured (IVM) oocytes equilibrated in 1.5 mM propylene glycol (PG) without (experiment 1) or with slow freezing (experiment 2). In addition, PG and ethylene glycol (EG) were compared for cryoprotective efficacy. In vitro maturation (IVM), in vitro fertilization (IVF) and embryo culture (IVC) were performed in defined conditions. Pretreatment of both types of oocytes with 1 mM EGTA for 5 min without freezing yielded morphological and functional results comparable to those obtained for controls while results from higher concentrations of EGTA were lower (P < 0.05). Higher rates of freeze‐thaw survival and embryonic development were obtained after pretreating GV oocytes with 1 or 5 mM EGTA for 5 min. Similarly, better results were obtained when IVM oocytes were pretreated with 1 mM EGTA for either 5 or 10 min. When pretreated with 1 mM EGTA for 5 min and frozen with PG IVM oocytes exhibited higher survival rates (P < 0.05) than those frozen with EG. However, no significant differences were observed in the in vitro development of surviving GV or IVM oocytes frozen with either PG or EG. Results suggest that a prefreeze treatment with 1 mM EGTA for 5 min can enhance oocyte viability. Conditions described enabled blastocyst development of 2.9% of GV oocytes and 8.0% of IVM oocytes after cryopreservation and IVF. Mol. Reprod. Dev. 52:86–98, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

10.
This study examined the effects of adding a macromolecule, polyvinylpyrrolidone (10% PVP) and a sugar (0.3 M trehalose) to vitrification solutions (VS) containing either one (40% ethylene glycol [EG], two (25% EG+25% DMSO) or three (20% EG+20% DMSO+10% 1, 3-butanediol [BD]) permeable cryoprotectants on the survival and hatching of IVP bovine embryos, following vitrification, warming and in-straw cryoprotectant dilution. Grade 1 and 2 compact morulae and blastocysts were selected on Day 7 (Day 0=IVF) of culture in SOFaaBSA and equilibrated for 10 min at room temperature in 10% EG. Following exposure, for up to 1 min at 4 degrees C, to one of the above VS (with or without PVP+trehalose), the embryos were loaded into straws and immersed in liquid nitrogen. Following warming and in-straw cryoprotectant dilution, the embryos were cultured for 48 h to assess hatching. There was no effect of VS on the survival of embryos after 24 h, however fewer compact morulae than blastocysts survived after 24 h (24% vs. 75%; P<0.001) or hatched after 48 h (15% vs. 59%; P<0.001). When blastocysts only were considered, an interaction between VS and additional PVP+trehalose was also observed (P<0.01). Hatching was reduced when they were added to 25% EG+25% DMSO (70% vs. 45%) but was not affected for either 40% EG (44 and 49%) or to 20% EG+20% DMSO+10% BD (72 and 72%). Pregnancy rates (Day 90 ultrasound) of recipients that were transferred either two non-vitrified or two vitrified (20% EG+20% DMSO+10% BD) blastocysts, did not differ (3/6 [50%] and 11/20 [55%]). However, significantly (P<0.02) fewer recipients that received compact morulae maintained pregnancy to Day 90 although this was not affected by vitrification (fresh vs. vitrified; 1/5 [20%] vs. 3/18 [17]). These data demonstrate that a VS comprising three cryoprotectants, rather than one, enables more embryos to hatch during post-thaw culture and that the survival, following direct transfer of these vitrified embryos, is not different to non-vitrified embryos.  相似文献   

11.
This study examined morphological appearance, viability and hatching rates in relation to the total cell number following vitrification of in vitro produced bovine blastocysts and expanded blastocysts. In Experiment 1, embryos obtained after 7, 8 or 9 d of culture were pooled and equilibrated in either 10% ethylene glycol (EG) or 10% EG plus 0.3M trehalose in Dulbecco's phosphate buffered saline (DPBS) supplemented with 10% calf serum and 0.6% BSA for 5 min each, at room temperature, and then vitrified together in precooled vitrification solutions consisting of 40% EG (Treatment 1), 40% EG plus 0.3M trehalose (Treatment 2), 40% EG plus 0.3M trehalose and 20% polyvinylpyrrolidone (PVP, Treatment 3) in DPBS. The embryo viability and hatching rates of Treatment 1 (19 and 3%) differed significantly (P < 0.05) from those of Treatment 2 (56 and 31%) and Treatment 3 (70 and 43%). There was a significant difference (P < 0.05) in embryo viability between Treatment 2 (31%) and Treatment 3 (43%). In Experiment 2, Day 7, 8 and 9 embryos were vitrified separately, with higher viability and hatching rates in Experiment 1 than in Experiment 2. The viabilities of Day 7 (87%), 8 (71%) and 9 (46%) embryos differed significantly (P < 0.05). Again, there were significant differences (P < 0.01) among the hatching rates of Day 7 (75%), 8 (38%) and 9 (9%) embryos. The total cell number of hatched blastocysts was then determined by differential fluorochrome staining. The total cell number of Day 7, 8 and 9 embryos differed significantly (P < 0.05).  相似文献   

12.
Gorgonian corals are slowly declining due to human interaction and environmental impacts. Cryopreservation of gorgonian corals is an ex-situ method of conservation, ensuring future reproduction. The present study assessed the vitrification properties of cryoprotectant (CPT) mixtures using the cryotop, cryoloop and open pulled straw (OPS) cryopereservation methods prior to experimentation on gorgonian (Junceella juncea) oocytes. Investigations of the equilibration and vitrification solutions’ (ES and VS) effect on oocytes throughout different incubation periods were conducted. The cryotop method was found to be the most successful in ensuring vitrification. The most favourable VS was composed of propylene glycol (PG), ethylene glycol (EG) and methanol with concentrations of 3.5M, 1.5M and 2M respectively. Experiments were performed using the cryotop method to cryopreserve Junceella juncea oocytes using VS2, the solution had the least impact on oocytes at 5°C rather than at 26°C. The success of the vitrification procedures was determined by adenosine triphosphate (ATP) levels in cooled-thaw oocytes and the highest viability obtained from the present study was 76.6 ± 6.2%. This study provides information regarding gorgonian corals’ tolerance and viability throughout vitrification to further advance the vitrification protocol on whip corals.  相似文献   

13.
A total of 678 bovine blastocysts, which had been produced by in vitro maturation, fertilization, and culture, were placed into plastic straws and were vitrified in various solutions of ethylene glycol (EG) + polyvinylpyrrolidone (PVP). Part of the straw was loaded with TCM199 medium + 0.3 M trehalose as a diluent; the diluent portions of the straw were prefrozen to either -30 or -196 degrees C. Then, the embryos suspended in the vitrification solution were pipetted into the balance of the straw and vitrified by direct immersion into liquid nitrogen. For thawing, the straws were warmed for 3 s in air and 20 s in a water bath at 39 degrees C and then agitated to mix the diluent and cryoprotectant solution for 5 min followed by culture in TCM199 + 10% FCS + 5 + microg/ml insulin + 50 microg/ml gentamycin sulfate for 72 h. Variables that were examined were the time of exposure to EG prior to vitrification, the PVP concentration, and the temperature of exposure to EG + PVP prior to vitrification. Survival and hatching rates of the blastocysts exposed to 40% EG in four steps at 4 degrees C were higher than those of embryos exposed in two steps (81.3 +/- 4.3% and 80.2 +/- 3.4% vs 67.6 +/- 4.5% and 71.5 +/- 4.7%, respectively; P < 0.05). The same indices were superior following vitrification-thawing of the blastocysts in 40% EG + 20% PVP than it was in 40% EG + 10% PVP (76.1 +/- 5.5% vs 63.7 +/- 1.8%; P < 0.05; and 61.6 +/- 6.0% vs 70.5 +/- 4.7%; P < 0.01, respectively). Exposure to the vitrification solution (40% EG + 20% PVP) at higher temperatures (37.5 degrees C vs 4 degrees C) reduced both survival and hatching rates (45.8 +/- 6.9% vs 83.9 +/- 4.4% and 41.5 +/- 1.8% vs 64.0 +/- 4.7%, respectively; P < 0.001). These results indicate that blastocysts vitrified after prefreezing the diluent portions of the straws do favor developmental competence of in vitro produced embryos.  相似文献   

14.
This study was designed to evaluate vitrification procedures for in vitro matured bovine oocytes for efficient blastocyst production after warming, IVF and culture. A second goal was to replace serum as the macromolecular component of the vitrification solution, without compromising efficacy. The first experiment compared two containers, open pulled straws (OPS) versus cryoloops, and two vitrification protocols: short equilibration (H-TCM-199+10% EG+10% DMSO+20% FCS for 30s, followed by H-TCM-199+20% EG+20% DMSO+20% FCS+0.48M galactose for 20s) versus long equilibration (H-TCM-199+3% EG+20% FCS for 10min, followed by H-TCM-199+31% EG+20% FCS+1M galactose for 20s). Subsequent experiments used only cryoloops and the short equilibration protocol to evaluate the effect of replacing FCS with defined macromolecules (BSA, Ficoll, PVP, and PVA) in vitrification solutions. Cryoloops were superior to OPS for vitrification of oocytes as determined by blastocyst production (P<0.05). The short and long vitrification protocols gave similar results. The presence of macromolecules in vitrification solutions for bovine oocytes was necessary for acceptable post-warming developmental capacity; 20% FCS, 1% and 2% BSA, 6% and 18% Ficoll, 6% and 20% PVP, 1% PVA, and the combinations of 18% Ficoll+1% BSA, and 6% PVP+1% BSA provided similar protection during vitrification of oocytes; development ranged from 14.8% to 23.0% blastocysts/oocyte, which was not different (P>0.05) from non-vitrified controls (26.9-34.0% blastocysts/oocyte). Too much (6%) and too little (0.3%) BSA, and 0.3% PVA for vitrification resulted in lower blastocyst production (P<0.05) relative to unvitrified oocytes.  相似文献   

15.
The objective of this study was to investigate the potential of swamp buffalo oocytes vitrified-warmed at the metaphase of the second meiotic cell division (M-II) stage to develop to the blastocyst stage after parthenogenetic activation (PA) or intracytoplasmic sperm injection (ICSI). In Experiment 1, we examined the effects of exposure time of oocytes to cryoprotectants (CPA) on their in vitro development after PA. In vitro matured (IVM) oocytes were placed in 10% dimethylsulfoxide (DMSO) + 10% ethylene glycol (EG) for 1 min and then exposed to 20% DMSO + 20% EG + 0.5 M sucrose for 30 s, 45 s or 60 s (1 min + 30 s, 1 min + 45 s and 1 min + 60 s groups, respectively). The oocytes were then exposed to warming solution (TCM199 HEPES + 20% FBS and 0.5M sucrose) for 5 min and then washed in TCM199 HEPES + 20% FBS for 5 min. IVM oocytes without CPA treatments served as a control group. The viability assessed by fluorescein diacetate (FDA) staining was 100% in all groups. The developmental rates after PA to the blastocyst stage between 1min+30s (16%) and control (26%) groups did not differ significantly, but they were significantly higher than those in 1 min + 45 s (10%) and 1 min + 60 s (2%) groups. In Experiment 2, we examined the effect of two CPA exposure times, 1 min + 30 s and 1 min + 45 s on the in vitro development after PA of oocytes vitrified by the microdrop method. The viabilities in vitrified 1 min + 30 s, 1 min + 45 s and the control (without CPA treatments) groups were not different (97%, 95% and 100%, respectively). The development of surviving oocytes to the blastocyst stage in the vitrified 1 min + 30 s group (8%) was significantly higher than that in the vitrified 1 min + 45 s group (4%) and significantly lower than those in control group (26%). In Experiment 3, we examined the effect of two CPA exposure times, 1 min + 30 s and 1 min + 45 s on in vitro development after ICSI of vitrified oocytes. Viabilities in vitrified oocytes among 1 min + 30 s, 1 min + 45 s and control groups were not different (96%, 91% and 100%, respectively). After ICSI, vitrified-warmed oocytes were activated and oocytes with the second polar body were cultured for 7 days. The development of ICSI oocytes to the blastocyst stage in the vitrified 1 min + 30 s group (11%) was significantly higher than that in the vitrified 1 min + 45 s (7%) group and significantly lower than those in control group (23%). In conclusion, our study demonstrated that the 1 min + 30 s CPA treatment regimen could yield the highest blastocyst formation rates after PA and ICSI for oocytes vitrified by the microdrop method.  相似文献   

16.
Previous studies have found low rates of blastocyst development (0–11%) after vitrification of germinal vesicle (GV)-stage equine oocytes. In this study, we systematically evaluated a short (non-equilibrating) system for GV-stage oocyte vitrification. In Exp. 1, we assessed oocyte volume in cumulus-oocyte complexes (COCs) exposed to components of a short protocol, using 2% each of ethylene glycol and propylene glycol in the first solution (VS1); 17.5% of each plus 0.3 M trehalose in the second solution (VS2); and fetal bovine serum as the base medium. Based on the time to oocyte minimum volume, we selected a 40-sec exposure to VS1. In Exp. 2, we evaluated exposure times to VS2 and, based on rates of subsequent maturation in vitro, we selected 65 s. In Exp. 3, we used the optimized vitrification system (40-VS1; 65-VS2) and evaluated three warming procedures. Blastocyst development after ICSI was equivalent (15%) for COCs warmed in either standard (trehalose stepwise dilution) or isotonic (base medium) solutions, but was reduced (0%) for COCs warmed in a highly hypertonic (1.5 M trehalose) solution. Exposure to the vitrification and warming solutions, without actual vitrification, was associated with reduced blastocyst development (0–5%; Exp. 4). We conclude that this optimized short protocol supports moderate blastocyst production after vitrification of GV-stage equine COCs. Oocytes can be warmed in isotonic medium, which simplifies the procedure. The systems used still showed a high level of toxicity and further work is needed on both vitrification and warming methods to increase the efficiency of this technique.  相似文献   

17.
Vitrification by using two-step exposures to combined cryoprotective agents (CPAs) has become one of the most common methods for oocyte cryopreservation. By quantitatively examining the status of oocytes during CPA additions and dilutions, we can analyze the degree of the associated osmotic damages. The osmotic responses of mouse MII oocyte in the presence of the combined CPAs (ethylene glycol, EG, and dimethyl sulfoxide, DMSO) were recorded and analyzed. A two-parameter model was used in the curve-fitting calculation to determine the values of hydraulic conductivity (L(p)) and permeability (P(s)) to the combined CPAs at 25°C and 37°C. The effects of exposure durations and the exposure temperatures on the cryopreservation in terms of frozen-thawed cell survival rates and subsequent development were examined in a series of cryopreservation experiments. Mouse MII oocytes were exposed to pretreatment solution (PTS) and vitrification solution (VS) at specific temperatures. The PTS used in our experiment was 10% EG and 10% DMSO dissolved in modified PBS (mPBS), and the VS was EDFS30 (15% EG, 15% DMSO, 3 × 10(-3) M Ficoll, and 0.35 M sucrose in mPBS).The accumulative osmotic damage (AOD) and intracellular CPA concentrations were calculated under the different cryopreservation conditions, and for the first time, the quantitative interactions between survival rates, subsequent development rates, and values of AOD were investigated.  相似文献   

18.
Dattena M  Ptak G  Loi P  Cappai P 《Theriogenology》2000,53(8):1511-1519
Ovine blastocysts were produced by maturation, fertilization and in vitro culture (IVM/IVF/IVC) of oocytes from slaughtered adult and prepubertal ewes and collection from superovulated and inseminated adult animals. Dulbecco's PBS supplemented with 0.3 mM Na Pyruvate and 20% FCS was used as the basic cryopreservation solution. The embryos were exposed to the vitrification solution as follows: 10% glycerol (G) for 5 min, then 10% G +20% ethylene glycol (EG) for 5 min. Embryos were placed into 25% G + 25% EG in the center of 0.25- mL straws and plunged immediately into LN2. Warming was done by placing the straws into a water bath at 37 degrees C for 20 sec, and their contents were expelled into a 0.5 M sucrose solution for 3 min; the embryos were then transferred into 0.25 M and 0.125 M sucrose solution for 3 min each. Warmed blastocysts were transferred to the culture medium for 24 h. Survival was defined as the re-expansion of the blastocoele. All surviving blastocysts were transferred to synchronized recipient ewes, and the pregnancy was allowed to go to term. Of 68 vitrified in vitro produced blastocysts, 46 re-expanded (67.6%) and 10 lambs were born (14.7%). From the 62 in vivo derived and vitrified embryos, 52 re-expanded (83.8%) and 39 lambs were born (62.9%). The lambing rate of in vitro produced fresh transfer embryos was 40% (20 lambs/50 blastocysts transferred), and of the 32 in vivo derived blastocysts and transferred fresh, 26 lambs were born (81.2%). The results indicate that in vitro produced embryos can be successfully cryopreserved by vitrification.  相似文献   

19.
Isolated caprine early-staged follicles were submitted to osmotic tolerance tests in the presence of sucrose, ethylene glycol (EG), or NaCl solutions and were exposed to and cryopreserved (by slow or rapid cooling) in MEM alone or MEM supplemented with sucrose, EG (1.0 or 4.0 M), or both. When follicles were exposed to 1.5 M NaCl, only 2% of the follicles were viable, whereas 87% of the follicles were viable after exposure to 4.0 M EG. Regarding exposure time, the highest percentage of viable follicles was obtained when follicles were exposed for 10 min to 1.0 M EG + 0.5 M sucrose; exposure for 60 s to 4.0 M EG + 0.5 M sucrose also maintained high percentage viability in follicles. Slow cooling in the presence of 1.0 M EG + 0.5 M sucrose (75%) or rapid cooling in the presence of 4.0 M EG + 0.5 M sucrose (71%) resulted in a significantly higher proportion of viable follicles than all other treatments (P < 0.05). A 24-h culture of frozen-thawed follicles was used to assess survival; only slow-frozen follicles showed viability rates similar to control follicles (64% vs. 69% respectively; P > 0.05). Interestingly, the percentage of viable rapid-cooled follicles (59%) was similar to that obtained after in vitro culture of conventional slow-cooled follicles but was significantly lower than that in controls. Thus, in addition to determining improved procedures for the exposure of follicles to EG and sucrose before and after freezing of caprine early-staged follicles, we report the development of rapid- and slow-cooling protocols.  相似文献   

20.
Hochi S  Fujimoto T  Choi YH  Braun J  Oguri N 《Theriogenology》1994,42(7):1085-1094
Immature equine oocytes were frozen-thawed with ethylene glycol (EG), 1,2-propanediol (PD) or glycerol (GL) in PBS and cultured to assess the rate of in vitro maturation (Experiment 1). Compact-cumulus oocyte complexes were collected from slaughterhouse ovaries and equilibrated for 10 min in the freezing medium containing 10% (V/V) cryoprotectant and 0.1 M sucrose. The 0.25-ml straws, loaded with 10 to 30 oocytes, were seeded at -6 degrees C and cooled to -35 degrees C at 0.3 degrees C/min before being plunged into liquid nitrogen. The straws were thawed rapidly in a 37 degrees C waterbath for 20 sec. The proportions of frozen-thawed oocytes reaching Metaphase II (MII) stage after in vitro maturation of 32 h were 15.8% (EG), 5.8% (PD) and 0% (GL), while 63.3% of the nonfrozen control oocytes matured in vitro. The fertilizing ability of immature and mature oocytes after freezing in EG was tested by the insemination of zona-free oocytes with stallion spermatozoa (Experiment 2). Spermatozoa were preincubated for 3 h with 5 mM caffeine, treated with 0.1 mu M ionophore A23187, and inseminated for 20 h at the concentration of 1 to 2 x 10(7)/ml with 6 to 10 oocytes in 50 mu l of Brackett and Oliphant (BO) medium. Immature oocytes (Group 1) were matured in vitro after thawing and then their zona pellucida removed using 0.5% protease. The zona of mature oocytes were removed immediately after thawing (Group 2) or maturation (nonfrozen controls). The oocytes, which had mechanically damaged plasma membrane or lost by artifact, were not examined for insemination. Significantly more control oocytes exhibited a polar body at the time of insemination (53.5%) than either frozen-thawed immature or mature oocytes (25.8 and 27.3%, respectively). Similar proportion of frozen-thawed and control oocytes were penetrated by spermatozoa (71.8 to 79.1%) and exhibited 2 or more pronuclei (73.6 to 80.8%). The mean numbers of spermatozoa per penetrated oocyte were 1.9, 3.0 and 2.5, respectively, for Groups 1 and 2 and for the control oocytes. These results indicate that immature equine oocytes mature to the MII stage in vitro following freezing and thawing in EG or PD but not in GL. Stallion spermatozoa can penetrate zona-free immature and mature oocytes following freezing/thawing in EG and form morphologically normal pronuclei.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号