首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As the principal components of the developing tooth enamel matrix, amelogenins play a significant role in tooth enamel formation and organization. In order to elucidate the structure and function of amelogenins in the evolution of enamel, we have selected the Iguana iguana as a squamate model organism. Here we report the first complete squamate amelogenin sequence available as of yet and document unique features of Iguana amelogenins and enamel. Transmission electron microscopy documented randomly oriented Iguana enamel crystals during the elongation phase compared with organized enamel crystal patterns at comparable stages in mammals. Sequencing of PCR amplified products revealed a full-length I. iguana amelogenin cDNA containing 877 nucleotides with a 564 nucleotide coding sequence encoding 187 amino acids. The homologies of the newly discovered I. iguana amelogenin amino acid sequence with the published mouse, caiman (Palaeosuchus), and snake (Elaphe) amelogenin were 41.3%, 53.5%, and 55.5%, respectively. On Western blots one major protein with a molecular weight of 24 kDa, and two minor proteins with molecular weights of 28 and 13.5 kDa, respectively, were detected based on the cross-reactivity of antisera against recombinant Rana pipiens amelogenin proteins. Sequence analysis revealed a moderate sequence homology between mammalian and reptilian amelogenin genes. A significant alteration was the deletion of the hydrophilic GSP sequence from exon 3 in the mouse sequence resulting in a conversion to a hydrophobic region in Iguana. Together, these findings identified a novel amelogenin cDNA sequence in the squamate reptilian I. iguana and functional implications for the evolution of amelogenins and enamel in squamates.  相似文献   

2.
Amelogenins, the major protein component of the mineralizing enamel extracellular matrix, are critical for normal enamel formation as documented in the linkage studies of a group of inherited disorders, with defective enamel formation, called Amelogenesis imperfecta. Recent cases of Amelogenesis imperfecta include mutations that resulted in truncated amelogenin protein lacking the hydrophilic C-terminal amino acids. Current advances in knowledge on amelogenin structure, nanospheres assembly and their effects on crystal growth have supported the hypothesis that amelogenin nanospheres provide the organized microstructure for the initiation and modulated growth of enamel apatite crystals. In order to evaluate the function of the conserved hydrophilic C-terminal telopeptide during enamel biomineralization, the present study was designed to analyze the self-assembly and apatite binding behavior of amelogenin proteins and their isoforms lacking the hydrophilic C-terminal. We applied dynamic light scattering to investigate the size distribution of amelogenin nanospheres formed by a series of native and recombinant proteins. In addition, the apatite binding properties of these amelogenins were examined using commercially available hydroxyapatite crystals. Amelogenins lacking the carboxy-terminal (native P161 and recombinant rM166) formed larger nanospheres than those formed by their full-length precursors: native P173 and recombinant rM179. These data suggest that after removal of the hydrophilic carboxy-terminal segment further association of the nanospheres takes place through hydrophobic interactions. The affinity of amelogenins lacking the carboxy-terminal regions to apatite crystals was significantly lower than their parent amelogenins. These structure-functional analyses suggest that the hydrophilic carboxy-terminal plays critical functional roles in mineralization of enamel and that the lack of this segment causes abnormal mineralization.  相似文献   

3.
Amelogenin is the most abundant protein in developing dental enamel. It is believed to play an important role in the regulation of the growth and organization of enamel crystals. Amelogenin, unlike many other proteins found in biominerals, is mostly hydrophobic except for a 13 amino acid hydrophilic C-terminal domain. To clarify the role of amelogenin in enamel mineralization, we designed calcium phosphate crystal growth experiments in the presence of recombinant amelogenins with or without the charged C-terminal domain. The shape and organization of the crystals were examined by TEM in bright field and diffraction modes. It was found that both full-length and truncated amelogenin inhibit crystal growth in directions normal to the c-axis. At the same time, crystallites organized into parallel arrays only in the presence of the full-length amelogenin in monomeric form. Pre-assembled amelogenins had no effect on crystals organization. These results imply that the hydrophobic portion of amelogenin plays a role in an inhibition of crystal growth, whereas the C-terminal domain is essential for the alignment of crystals into parallel arrays. Our data also suggest that nascent enamel structure emerges as a result of cooperative interactions between forming crystals and assembling proteins.  相似文献   

4.
Amelogenin is an extracellular protein first identified as a matrix component important for formation of dental enamel during tooth development. Lately, amelogenin has also been found to have positive effects on clinical important areas, such as treatment of periodontal defects, wound healing, and bone regeneration. Here we present a simple method for purification of recombinant human amelogenin expressed in Escherichia coli, based on the solubility properties of amelogenin. The method combines cell lysis with recovery/purification of the protein and generates a >95% pure amelogenin in one step using intact harvested cells as starting material. By using amelogenin as a fusion partner we could further demonstrate that the same method also be can explored to purify other target proteins/peptides in an effective manner. For instance, a fusion between the clinically used protein PTH (parathyroid hormone) and amelogenin was successfully expressed and purified, and the amelogenin part could be removed from PTH by using a site-specific protease.  相似文献   

5.
Previous studies have assumed that amelogenin is responsible for the therapeutic effect of the enamel matrix derivative (EMD) in periodontal tissue healing and regeneration. However, it is difficult to confirm this hypothesis because both the EMD and the amelogenins are complex mixtures of multiple proteins. Further adding to the difficulties is the fact that periodontal tissue regeneration involves various types of cells and a sequence of associated cellular events including the attachment, migration and proliferation of various cells. In this study, we investigated the potential effect of a 25-kDa recombinant porcine amelogenin (rPAm) on primarily cultured periodontal ligament fibroblasts (PDLF), gingival fibroblasts (GF) and gingival epithelial cells (GEC). The cells were treated with 25-kDa recombinant porcine amelogenin at a concentration of 10 μg/mL. We found that rPAm significantly promoted the proliferation and migration of PDLF, but not their adhesion. Similarly, the proliferation and adhesion of GF were significantly enhanced by treatment with rPAm, while migration was greatly inhibited. Interestingly, this recombinant protein inhibited the growth rate, cell adhesion and migration of GEC. These data suggest that rPAm may play an essential role in periodontal regeneration through the activation of periodontal fibroblasts and inhibition of the cellular behaviors of gingival epithelial cells.  相似文献   

6.
Dynamic light scattering (DLS) analysis together with atomic force microscopy (AFM) imaging was applied to investigate the supramolecular self-assembly properties of a series of recombinant amelogenins. The overall objective was to ascertain the contribution of certain structural motifs in amelogenin to protein-protein interactions during the self-assembly process. Mouse amelogenins lacking either amino- or carboxy-terminal domains believed to be involved in self-assembly and amelogenins having single or double amino acid mutations identical to those found in cases of amelogenesis imperfecta were analyzed. The polyhistidine-containingfull-length recombinant amelogenin protein [rp(H)M180] generated nanospheres with monodisperse size distribution (hydrodynamic radius of 20.7 +/- 2.9 nm estimated from DLS and 16.1 +/- 3.4 nm estimated from AFM images), comparable to nanospheres formed by full-length amelogenin rM179 without the polyhistidine domain, indicating that this histidine modification did not interfere with the self-assembly process. Deletion of the N-terminal self-assembly domain from amelogenin and their substitution by a FLAG epitope ("A"-domain deletion) resulted in the formation of assemblies with a heterogeneous size distribution with the hydrodynamic radii of particles ranging from 3 to 38 nm. A time-dependent dynamic light scattering analysis of amelogenin molecules lacking amino acids 157 through 173 and containing a hemagglutinin epitope ("B"-domain deletion) resulted in the formation of particles (21.5 +/- 6.8 nm) that fused to form larger particles of 49.3 +/- 4.3 nm within an hour. Single and double point mutations in the N-terminal region resulted in the formation of larger and more heterogeneous nanospheres. The above data suggest that while the N-terminal A-domain is involved in the molecular interactions for the formation of nanospheres, the carboxy-terminal B-domain contributes to the stability and homogeneity of the nanospheres, preventing their fusion to larger assemblies. These in vitro findings support the notion that the proteolytic cleavage of amelogenin at amino- and carboxy-terminii occurring during enamel formation influences amelogenin to amelogenin interactions during self-assembly and hence alters the structural organization of the developing enamel extracellular matrix, thus affecting enamel biomineralization.  相似文献   

7.
Amelogenin is a dental enamel matrix protein involved in formation of dental enamel. In this study, we have expressed two different recombinant murine amelogenins in Escherichia coli: the untagged rM179, and the histidine tagged rp(H)M180, identical to rM179 except that it carries the additional N-terminal sequence MRGSHHHHHHGS. The effects of the histidine tag on expression levels, and on growth properties of the amelogenin expressing cells were studied. Purification of a crude protein extract containing rp(H)M180 was also carried out using IMAC and reverse-phase HPLC. The results of this study showed clearly that both growth properties and amelogenin expression levels were improved for E. coli cells expressing the histidine tagged amelogenin rp(H)M180, compared to cells expressing the untagged amelogenin rM179. The positive effect of the histidine tag on amelogenin expression is proposed to be due to the hydrophilic nature of the histidine tag, generating a more hydrophilic amelogenin, which is more compatible with the host cell. Human osteoblasts treated with the purified rp(H)M180 showed increased levels of secreted osteocalcin, compared to untreated cells. This response was similar to cells treated with enamel matrix derivate, mainly composed by amelogenin, suggesting that the recombinant protein is biologically active. Thus, the histidine tag favors expression and purification of biologically active recombinant amelogenin.  相似文献   

8.
Regeneration of mineralized tissues affected by chronic diseases comprises a major scientific and clinical challenge. Periodontitis, one such prevalent disease, involves destruction of the tooth-supporting tissues, alveolar bone, periodontal-ligament and cementum, often leading to tooth loss. In 1997, it became clear that, in addition to their function in enamel formation, the hydrophobic ectodermal enamel matrix proteins (EMPs) play a role in the regeneration of these periodontal tissues. The epithelial EMPs are a heterogeneous mixture of polypeptides encoded by several genes. It was not clear, however, which of these many EMPs induces the regeneration and what mechanisms are involved. Here we show that a single recombinant human amelogenin protein (rHAM+), induced in vivo regeneration of all tooth-supporting tissues after creation of experimental periodontitis in a dog model. To further understand the regeneration process, amelogenin expression was detected in normal and regenerating cells of the alveolar bone (osteocytes, osteoblasts and osteoclasts), periodontal ligament, cementum and in bone marrow stromal cells. Amelogenin expression was highest in areas of high bone turnover and activity. Further studies showed that during the first 2 weeks after application, rHAM+ induced, directly or indirectly, significant recruitment of mesenchymal progenitor cells, which later differentiated to form the regenerated periodontal tissues. The ability of a single protein to bring about regeneration of all periodontal tissues, in the correct spatio-temporal order, through recruitment of mesenchymal progenitor cells, could pave the way for development of new therapeutic devices for treatment of periodontal, bone and ligament diseases based on rHAM+.  相似文献   

9.
Extracts of enamel matrix proteins are used to regenerate periodontal tissues. Amelogenin, the most abundant enamel protein, plays an important role in the regeneration of these tissues. However, the molecular mechanisms by which amelogenin contributes to periodontal regeneration remain unknown. Using primary human bone marrow stroma cells (hBMSCs) transduced with lentivirus encoding human amelogenin (hAm), we performed genome-wide expression profiling to analyze the effects of hAm transduction on the regulation of genes involved in osteogenic differentiation. Our results revealed that BMP-2, BMP-6, OPN and VEGFC were up-regulated. These results suggest that hAm may be a key element in regulating hBMSCs osteogenic differentiation.  相似文献   

10.
Self-assembly of the extracellular matrix protein amelogenin is believed to play an essential role in regulating the growth and organization of enamel crystals during enamel formation. The full-length amelogenin uniquely regulates the growth, shape, and arrangement of enamel crystals. Protein hydrolysis will ultimately facilitate a tissue with high mineral content. Protein processing is however highly specific suggesting a functional role of the cleaved amelogenins in enamel maturation. Here we hypothesize that the cooperative self-assembly of the recombinant full-length amelogenin 25 kDa and the 23 kDa proteolytic cleavage product is a function of pH, mixing ratio and incubation time and is associated with the isoelectric point of the protein. Self-assembly of amelogenin into nanospheres which increased in size with increasing pH was observed by atomic force microscopy. Elongated structures of about 100 nm length and 25 nm width formed over several days for amelogenin 25 and 23 kDa predominantly at pH-values of 6.5 and 7.5, respectively. When both proteins 25 and 23 kDa were mixed, self-assembled nanostrings of 200–300 nm length consisting of fused nanospheres were obtained at pH around 7.0 within 24 h. The protein nanostrings formed links over time and a continuous mesh was obtained after 7 days. Electrical conductivity data also showed gradual changes when both amelogenins were mixed in solutions supporting the idea that elongated structures form over extended periods of time. We propose that due to the difference in the isoelectric point, self-assembled nanospheres composed of 23 or 25 kDa amelogenin have opposite ionic charges at pH-values around 7.0 and thus experience ionic attraction that enables cooperative self-assembly.  相似文献   

11.
The amelogenin gene contributes the majority of tooth enamel proteins and plays a significant role in enamel biomineralization. While several mammalian and reptilian amelogenins have been cloned and sequenced, basal vertebrate amelogenin evolution remains to be understood. In order to start elucidating the structure and function of amelogenins in the evolution of enamel, the leopard frog (Rana pipiens) was used as a model. Tissues from Rana pipiens teeth were analyzed for enamel structure and RNA extracts were processed for sequence analysis. Electron microscopy revealed that Rana pipiens enamel contains long and parallel crystals similar to mammalian enamel, while immunoreactions confirmed the site-specific localization of cross-reactive amelogenins in Rana pipiens enamel. Sequencing of amelogenin PCR products revealed a 782bp cDNA with a 546-nucleotide coding sequence encoding 181 amino acids. The homology of the newly discovered Rana pipiens amelogenin nucleotide and amino acid sequence with the published mouse amelogenin was 38.6% and 45%, respectively. These findings report the first complete amelogenin cDNA sequence in amphibians and indicate a close homology between mammalian enamel formation and Rana pipiens enamel biomineralization.  相似文献   

12.
13.
Self-assembly of the extracellular matrix protein amelogenin is believed to play an essential role in regulating the growth and organization of enamel crystals during enamel formation. This study examines the effect of temperature and pH on amelogenin self-assembly under physiological pH conditions in vitro, using dynamic light scattering, turbidity measurements, and transmission electron microscopy. Full-length recombinant amelogenins from mouse (rM179) and pig (rP172) were investigated, along with proteolytic cleavage products (rM166 and native P148) lacking the hydrophilic C-terminus of parent molecules. Results indicated that the self-assembly of full-length amelogenin is primarily triggered by pH in the temperature range from 13 to 37 degrees C and not by temperature. Furthermore, very large assemblies of all proteins studied formed through the rearrangement of similarly sized nanospherical particles, although at different pH values: pH 7.7 (P148), pH 7.5 (rM166), pH 7.2 (rP172), and pH 7.2 (rM179). Structural differences were also observed. The full-length molecules formed apparently tightly connected elongated, high-aspect ratio assemblies comprised of small spheres, while the amelogenin cleavage products appeared as loosely associated spherical particles, suggesting that the hydrophilic C-terminus plays an essential role in higher-order amelogenin assembly. Hence, tightly controlled pH values during secretory amelogenesis may serve to regulate the functions of both full-length and cleaved amelogenins.  相似文献   

14.
Amelogenins are enamel matrix proteins that play a crucial role in enamel formation. Recent studies have revealed that amelogenins also have cell signaling properties. Although amelogenins had been described as specific products of ameloblasts, recent research has demonstrated their expression in bone marrow stromal cells. In this study, we examined the effect of recombinant human full-length amelogenin (rh174) on the proliferation of human mesenchymal stem cells (MSCs) derived from bone marrow and characterized the associated changes in intracellular signaling pathways. MSCs were treated with rh174 ranging in dose from 0 to 1,000 ng/ml. Cell proliferative activity was analyzed by bromodeoxyuridine (BrdU) immunoassay. The expression of lysosomal-associated membrane protein 1 (LAMP1), a possible amelogenin receptor, in MSCs was analyzed. Anti-LAMP1 antibody was used to block the binding of rh174 to LAMP1. The MAPK-ERK pathway was examined by Cellular Activation of Signaling ELISA (CASE) kit and western blot analysis. A specific MAPK inhibitor, U0126, was used to block ERK activity. It was shown that rh174 increased the proliferation of MSCs and MAPK-ERK activity. The MSC proliferation and MAPK-ERK activity enhanced by rh174 were reduced by the addition of anti-LAMP1 antibody. Additionally, the increased proliferation of MSCs induced by rh174 was inhibited in the presence of U0126. In conclusion, it is demonstrated that rh174 increases the proliferation of MSCs by interaction with LAMP1 through the MAPK-ERK signaling pathway, indicating the possibility of MSC application to tissue regeneration in the orofacial region.  相似文献   

15.
The amelogenins are the most abundant secreted proteins in developing dental enamel. Enamel from amelogenin (Amelx) null mice is hypoplastic and disorganized, similar to that observed in X-linked forms of the human enamel defect amelogenesis imperfecta resulting from amelogenin gene mutations. Both transgenic strains that express the most abundant amelogenin (TgM180) have relatively normal enamel, but strains of mice that express a mutated amelogenin (TgP70T), which leads to amelogenesis imperfecta in humans, have heterogeneous enamel structures. When Amelx null (KO) mice were mated with transgenic mice that produce M180 (TgM180), the resultant TgM180KO offspring showed evidence of rescue in enamel thickness, mineral density, and volume in molar teeth. Rescue was not observed in the molars from the TgP70TKO mice. It was concluded that a single amelogenin protein was able to significantly rescue the KO phenotype and that one amino acid change abrogated this function during development.  相似文献   

16.
Proteins with predominantly hydrophobic character called amelogenins play a key role in the formation of the highly organized enamel tissue by forming nanospheres that interact with hydroxyapatite crystals. In the present investigation, we have studied the temperature and pH-dependent self-assembly of two recombinant mouse amelogenins, rM179 and rM166, the latter being an engineered version of the protein that lacks a 13 amino acid hydrophilic C-terminus. It has been postulated that this hydrophilic domain plays an important role in controlling the self-assembly behavior of rM179. By small-angle X-ray and neutron scattering, as well as by dynamic light scattering, we observed the onset of an aggregation of the rM179 protein nanospheres at pH 8. This behavior of the full-length recombinant protein is best explained by a core-shell model for the nanospheres, where hydrophilic and negatively charged side chains prevent the agglomeration of hydrophobic cores of the protein nanospheres at lower temperatures, while clusters consisting of several nanospheres start to form at elevated temperatures. In contrast, while capable of forming nanospheres, rM166 shows a very different aggregation behavior resulting in the formation of larger precipitates just above room temperature. These results, together with recent observations that rM179, unlike rM166, can regulate mineral organization in vitro, suggest that the aggregation of nanospheres of the full-length amelogenin rM179 is an important step in the self-assembly of the enamel matrix.  相似文献   

17.
The matrix-mediated enamel biomineralization involves secretion of the enamel specific amelogenin proteins that through self-assembly into nanosphere structures provide the framework within which the initial enamel crystallites are formed. During enamel mineralization, amelogenin proteins are processed by tooth-specific proteinases. The aim of this study was to explore the factors that affect the activity of enamel proteases to process amelogenins. Two factors including amelogenin self-assembly and enzyme specificity are considered. We applied a limited proteolysis approach, combined with mass spectrometry, in order to determine the surface accessibility of conserved domains of amelogenin assemblies. A series of commercially available proteinases as well as a recombinant enamelysin were used, and their proteolytic actions on recombinant amelogenin were examined under controlled and limited conditions. The N-terminal region of the recombinant mouse amelogenin rM179 was found to be more accessible to tryptic digest than the C-terminal region. The endoproteinase Glu-C cleaved amelogenin at both the N-terminal (E18/V) and C-terminal (E178/V) sites. Chymotrypsin cleaved amelogenin at both the carboxy- (F151/S) and amino-terminal (W25/Y) regions. Interestingly, the peptide bond F/S152 was also recognized by the action of enamelysin on recombinant mouse amelogenin whereas thermolysin cleaved the S152/M153 peptide bond in addition to T63/L64 and I159/L160 and M29/I30 bonds. It was then concluded that regions at both the carboxy- and amino-terminal were exposed on the surface of amelogenin nanospheres when the N-terminal 17 amino acid residues were proposed to be protected from proteolysis, presumably as the result of their involvement in direct protein-protein interaction. Cleavage around the FSM locus occurred by recombinant enamelysin under limited conditions, in both mouse (F151/S152) and pig amelogenins (S148/M). Our in vitro observations on the limited proteolysis of amelogenin by enamelysin suggest that enamelysin cleaved amelogenin at the C-terminal region showing a preference of the enzyme to cleave the S/M and F/S bonds. The present limited proteolysis studies provided insight into the mechanisms of amelogenin degradation during amelogenesis.  相似文献   

18.
Partial amino acid sequences for selected amelogenin polypeptides isolated from the developing enamel of cow, pig and human foetuses are reported. It was found that there was an identity of sequence for the initial 28 residues of the polypeptides analysed, irrespective of their origin or size. A tyrosine-rich polypeptide was shown to be the N-terminal fragment of the principal higher-molecular-weight amelogenins, although a leucine-rich polypeptide of similar size was not identified in any other amelogenin structure. The findings demonstrate a striking degree of sequence conservation for the amelogenin proteins of the extracellular enamel matrix and support the concept of a discrete fragmentation of an initial 30 000 Da amelogenin molecule during the mineralization of the enamel.  相似文献   

19.
At the secretory stage of tooth enamel formation the majority of the organic matrix is composed of amelogenin proteins that are believed to provide the scaffolding for the initial carbonated hydroxyapatite crystals to grow. The primary objective of this study was to investigate the interaction between amelogenins and growing apatite crystals. Two in vitro strategies were used: first, we examined the influence of amelogenins as compared to two other macromolecules, on the kinetics of seeded growth of apatite crystals; second, using transmission electron micrographs of the crystal powders, based on a particle size distribution study, we evaluated the effect of the macromolecules on the aggregation of growing apatite crystals. Two recombinant amelogenins (rM179, rM166), the synthetic leucine-rich amelogenin polypeptide (LRAP), poly(L -proline), and phosvitin were used. It was shown that the rM179 amelogenin had some inhibitory effect on the kinetics of calcium hydroxyapatite seeded growth. The inhibitory effect, however, was not as destructive as that of other macromolecules tested. The degree of inhibition of the macromolecules was in the order of phosvitin < LRAP < poly(L -proline) < rM179 < rM166. Analysis of particle size distribution of apatite crystal aggregates indicated that the full-length amelogenin protein (rM179) caused aggregation of the growing apatite crystals more effectively than other macromolecules. We propose that during the formation of hydroxyapatite crystal clusters, the growing apatite crystals adhere to each other through the molecular self-association of interacting amelogenin molecules. The biological implications of this adherence effect with respect to enamel biomineralization are discussed. © 1998 John Wiley & Sons, Inc. Biopoly 46: 225–238, 1998  相似文献   

20.
SDS-polyacrylamide gel electrophoresis, immunoblot and amino acid composition analyses were applied to human and mouse acellular cementum proteins immunologically related to enamelins and amelogenins. In this analysis, anti-mouse amelogenin, anti-human enamelin and synthetic peptide (e.g., -LPPHPGHPGYIC-) antibodies were shown to cross-react with tooth crown-derived enamelin with a molecular mass of 72,000 Da (72 kDa), amelogenins (26 kDa), and also to four human cementum proteins (72, 58, 50 and 26 kDa) and two mouse cementum proteins (72 and 26 kDa). Each of the antibodies recognized tooth root-derived cementum polypeptides which share one or more epitopes with tooth crown-derived enamel proteins. The molecular mass and isoelectric points for crown-derived and root-derived enamel-related proteins were similar. Analysis of human and mouse cementum proteins revealed a characteristic amino acid composition enriched in glutamyl, serine, glycine, alanine, proline, valine and leucine residues; compared to the major enamel protein amelogenin, cementum proteins were low in proline, histidine and methionine. The human and mouse putative intermediate cementum proteins appear to represent a distinct class of enamel-related proteins. Moreover, these results support the hypothesis that epithelial root sheath epithelia express several cementum proteins immunologically related to canonical enamel proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号