首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
P Soubigou  M Ali    C Plas 《The Biochemical journal》1987,246(3):567-573
Sequential changes in the numbers of cell-surface receptors induced by a transitory exposure to insulin in cultured 18-day foetal-rat hepatocytes were investigated in the presence of drugs and at a temperature of 22 degrees C, which inhibit cellular insulin degradation. Chloroquine (70 microM) and monensin (3 microM) did not greatly change the initial rate of internalization of cell-surface receptor sites after exposure to 10 nM-insulin, but led to a steady state after 20 min, which represented 40% of the initial binding, compared with 5 min and 60% in the absence of the drug. Moreover, these drugs strongly decreased the proportion of receptor sites recovered at the cell surface after subsequent removal of the hormone. They were ineffective when insulin was not present. The removal of monensin together with the hormone allowed partial restoration of cell-surface receptor sites and degradation of cell-associated insulin to start again at the initial speed, indicating a reversible effect of the drug. During this phase, the drug concentration-dependence for the two effects showed that receptor recycling was restored with concentrations of monensin not as low as for insulin degradation. The effect of vinblastine (50-100 microM) was similar to that of chloroquine and monensin, whereas no modification in the internalization and recovery processes was observed in the presence of bacitracin concentrations (1-3 mM) that inhibit insulin degradation by 70%. A temperature of 22 degrees C did not prevent the receptor internalization, but had a slowing effect on the recycling process, which appeared to vary in experiments where insulin degradation remained inhibited. The present study shows that the process of insulin degradation mediated by receptor endocytosis is not a prerequisite for insulin-receptor recycling in cultured foetal hepatocytes.  相似文献   

2.
Insulin-stimulated glycogenesis and insulin degradation were studied simultaneously at 37 degrees C in cultured foetal hepatocytes grown for 2-3 days in the presence of cortisol. Degradation of cell-associated insulin, as measured by trichloroacetic acid precipitation, was significant after 4 min in the presence of 1-3 nM-125I-labelled insulin. This process became maximal (30% of insulin degraded) after 20 min, a time when binding-state conditions were achieved. No insulin-degradative activity was detected in a medium that had been exposed to cells. At steady-state, the appearance of insulin degradation products in the medium was linearly dependent on time (1.5 fmol/min per 10(6) cells at 1nM-125I-labelled insulin). Chloroquine (3-50 microM), bacitracin (0.1-10 mM) and NH4Cl (1-10 mM) inhibited insulin degradation as soon as this became detectable and caused an increase in the association of insulin to hepatocytes after 20 min. Lidocaine and dansylcadaverine had similar effects, whereas N-ethylmaleimide, aprotinin, phenylmethanesulphonyl fluoride and leupeptin were found to be ineffective. Chloroquine, and also bacitracin, at concentrations that inhibited insulin degradation, decreased the insulin-stimulated incorporation of [14C]glucose into glycogen over 2 h. This effect of chloroquine was specific, since it did not modify the basal glycogenesis, or the glycogenic effect of a glucose load in the absence of insulin. It therefore appears that the receptor-mediated insulin degradation (or some associated pathway) is functionally related to the glycogenic effect of insulin in foetal hepatocytes.  相似文献   

3.
Sephadex (G-50 fine grade)-gel chromatography and trichloroacetic acid (TCA) precipitation were used to investigate the effects of chloroquine and bacitracin on the nature of cell-associated radioactivity in studies on the binding and degradation of 125I-insulin in cultured rat hepatocytes. Sephadex peak I, eluted with the void volume, increased with hepatocyte incubation time and comprised 6% of total cell-bound radioactivity at 120 min. However, all radioactivity in this peak was due to unspecific binding. Peak II, corresponding to intact insulin, represented 95% of specifically cell-associated label at 5 min and decreased to 77% at 120 min. Peak III, containing the final low-Mr degradation products, increased with incubation time (22% of specifically bound label at 120 min). The TCA-precipitable and TCA-soluble fractions of hepatocytes extracted with 0.1% SDS were within 4-7% of the proportions of radioactivity in peaks II and III respectively. Scatchard plots based on insulin-binding data from Sephadex chromatography or TCA precipitation were identical. Dissociation studies revealed that at least 75% of the intact insulin associated with the hepatocytes was bound to receptors at the cell surface. Bacitracin increased the proportion of cell-associated intact hormone and decreased that of ligand degraded when analysed by either Sephadex chromatography or TCA precipitation. The proportion of surface-bound to internalized intact hormone remained unaltered, indicating that bacitracin acted predominantly at the cell surface. In the presence of chloroquine, which dramatically increased the contribution of peak I to specific binding, 'intact' insulin was substantially overestimated when determined as the TCA-precipitable fraction. In addition, all peak I material and 50% of cell-associated label in peak II was trapped intracellularly, thereby pointing to the lysosomal or prelysosomal site of action of this drug.  相似文献   

4.
The signaling pathways involved in insulin and glucagon regulation of CYP2E1 expression were examined in primary cultured rat hepatocytes. Insulin addition to primary cultured rat hepatocytes for 24 h resulted in an approximately 80% and >90% decrease in CYP2E1 mRNA levels at 1 and 10 nM insulin, respectively, relative to untreated cells. Addition of the phosphatidylinositol 3-kinase inhibitor wortmannin, or the Src kinase inhibitor geldanamycin, prior to insulin addition, inhibited the insulin-mediated decline in CYP2E1 mRNA. In contrast, treatment of cells with glucagon (100 nM), or the cAMP analogue dibutyryl-cAMP (50 microM), for 24 h increased CYP2E1 mRNA levels by approximately 7-fold. Addition of the protein kinase A inhibitor H89 prior to glucagon treatment attenuated the glucagon-mediated increase in CYP2E1 mRNA by approximately 70%. Glucagon (100 nM) opposed the effects of insulin (1 nM) on CYP2E1 mRNA expression and conversely, insulin blocked the effects of glucagon. These data provide compelling evidence for the regulation of CYP2E1 expression via mutually antagonistic signaling pathways involving insulin and glucagon.  相似文献   

5.
Isolated rat hepatocytes were incubated for 1 h at 37 degrees C with 10 nM insulin. Following washout of insulin, cells were incubated with [125I] monoiodoinsulin at 15 degrees C to assess surface insulin binding. Preincubation with 10 nM insulin did not cause a decrease in insulin binding. Scatchard analysis confirmed that insulin receptor number remained constant. In the presence of 200 microM chloroquine or 25 microM monensin, surface insulin binding after preincubation with 10 nM insulin fell to 81.1 +/- 1.2% or 39.0 +/- 2.7% of control, respectively. It is suggested that the maintenance of insulin receptor number following acute insulin treatment in vitro is due to an insulin receptor recycling pathway, possibly involving lysosomes and/or the Golgi apparatus.  相似文献   

6.
Binding and degradation of 125I-labelled insulin were studied in cultured foetal hepatocytes after exposure to the protein-synthesis inhibitors tunicamycin and cycloheximide. Tunicamycin (1 microgram/ml) induced a steady decrease of insulin binding, which was decreased by 50% after 13 h. As the total number of binding sites per hepatocyte was 20000, the rate of the receptor degradation could not exceed 13 sites/min per hepatocyte. Cycloheximide (2.8 micrograms/ml) increased insulin binding by 30% within 6 h, an effect that persisted for up to 25 h. This drug had a specific inhibitory effect on the degradation of proteins prelabelled for 10 h with [14C]glucosamine, without affecting the degradation of total proteins. Chronic exposure to 10 nM-insulin neither decreased insulin binding nor modified the effect of the drugs. The absence of down-regulation of insulin receptors cannot be attributed to rapid receptor biosynthesis in foetal hepatocytes. Cellular insulin degradation, which is exclusively receptor-mediated, was determined by two different parameters. First, the rate of release of degraded insulin into the medium was 600 molecules/min per hepatocyte with 1 nM labelled hormone, and increased (preincubation with cycloheximide) or decreased (tunicamycin) as a function of the amount of cell-bound insulin. Secondly, the percentage of cell-bound insulin degraded was not changed by the presence of protein-synthesis inhibitors (25-30%). The stability of insulin degradation suggested that this process was dependent on long-life proteinase systems. Such differences in degradation rates and cycloheximide sensitivity imply that hormone- and receptor-degradation processes utilize distinct pathways.  相似文献   

7.
The beta-cell glibenclamide receptor is an ADP-binding protein.   总被引:2,自引:0,他引:2       下载免费PDF全文
Pathways of bulk protein degradation controlled by insulin and isoprenaline (isoproterenol) were distinguished in Langendorff-perfused rat hearts. Proteins were biosynthetically labelled in vitro with [3H]leucine, followed by addition of 2 mM non-radioactive leucine to competitively prevent reincorporation. Rapidly degraded proteins were eliminated during a 3 h preliminary perfusion period without insulin. One third of bulk myocardial protein degradation was inhibited by isoprenaline as described previously. An insulin concentration of 5 nM maximally inhibited proteolysis, beginning within 2 min. Inhibition reached 32% within 1.25 h and 35% after 1.5 h. The minimum effective insulin concentration was approx. 10-50 pM, which caused 10-20% inhibition. Following 3 h of perfusion without insulin, the lysosomal inhibitor, chloroquine (30 microM), inhibited 38% of bulk degradation. The 35% proteolytic inhibition caused by insulin was followed by very little further inhibition on subsequent concurrent infusion of chloroquine, i.e. the inhibitory effects of insulin and chloroquine were not additive. In contrast, prior inhibition of lysosomal proteolysis by insulin or chloroquine did not prevent the subsequent additive inhibition caused by isoprenaline. Insulin and beta-agonists additively inhibited approx. two-thirds of bulk degradation. The biguanide antihyperglycaemic agent phenformin (2 microM) inhibited 35% of bulk degradation, beginning at 2 min and reaching a near maximum at approx. 1.25-1.5 h. Following inhibition of proteolysis with phenformin (20 microM), subsequent infusion of chloroquine (30 microM) produced only a slight additional inhibition. Following inhibition of 35% of degradation by 1.5 h of perfusion with insulin (5 nM), subsequent exposure to phenformin (2 microM) produced only a slight additional inhibition which did not exceed 38% of basal proteolysis. Thus insulin and phenformin both inhibit lysosomal proteolysis; however, the adrenergic-responsive pathway is distinct.  相似文献   

8.
The insulin-receptor cycle was investigated in cultured foetal rat hepatocytes by determining the variations in insulin-binding sites at the cell surface after short exposure to the hormone. Binding of 125I-insulin was measured at 4 degrees C after dissociation of prebound native insulin. Two protocols were used: exchange binding assay and binding after acid treatment; both gave the same results. Cell-surface 125I-insulin-receptor binding decreased sharply (by 40%) during the first 5 min of 10 nM-insulin exposure (t1/2 = 2 min) and remained practically constant thereafter; subsequent removal of the hormone restored the initial binding within 10 min. This fall-rise sequence corresponded to variations in the number of insulin receptors at the cell surface, with no detectable change in receptor affinity. The reversible translocation of insulin receptors from the cell surface to a compartment not accessible to insulin at 4 degrees C was hormone-concentration- and temperature-dependent. SDS/polyacrylamide-gel electrophoresis after cross-linking of bound 125I-insulin to cell-surface proteins with disuccinimidyl suberate showed that these variations were not associated with changes in Mr of binding components, in particular for the major labelled band of Mr 130,000. The insulin-receptor cycle could be repeated after intermittent exposure to insulin. Continuous or intermittent exposure to the hormone gave a similar glycogenic response, contrary to the partial effect of a unique short (5-20 min) exposure. A relationship could be established between the repetitive character of the rapid insulin-receptor cycle and the maximal expression of the biological effect in cultured foetal hepatocytes.  相似文献   

9.
The effects of various agents on the binding and degradation of 125I-labelled insulin by isolated rat hepatocytes and cultured H4 hepatoma cells were studied. Various lysosomotropic agents, including chloroquine, ammonium chloride, and the topical anesthetics, lidocaine and procaine inhibited insulin degradation by H4 hepatoma cells but had little effect on the binding of the hormone. Similarly, tosyl-L-lysyl chloromethyl ketone selectively inhibited the degradation of 125I-labelled insulin by isolated hepatocytes, as did the sulfhydryl reagents, p-hydroxy- and p-chloromercuriphenyl sulfonic acid. Inhibitors of energy production, including sodium fluoride, sodium azide, and dinitrophenol, also selectively inhibited the degradation of insulin by hepatocytes, although cyanide had no effect under the conditions used. Lectins and antimicrotubular agents, which are known to affect the mobility of plasma membrane proteins or of intracytoplasmic vesicles, selectively inhibited insulin degradation by hepatocytes to varying degrees, whereas agents which inhibit the function of microfilaments had no effect. At temperatures below 20 degrees C, insulin degradation was negligible but rose rapidly between 20 and 37 degrees C, suggesting that a membrane-related step is rate limiting in the overall degradative process. These results are all consistent with a model of insulin uptake by target tissue involving pinocytosis of receptor-bound hormone followed by intralysosomal degradation.  相似文献   

10.
Uptake of 22Na+ by liver plasma membrane vesicles, reflecting Na+ transport by (Na+, K+)ATPase or Na+/H+ exchange was studied. Membrane vesicles were isolated from rat liver homogenates or from freshly prepared rat hepatocytes incubated in the presence of [Arg8]vasopressin or pervanadate and insulin. The ATP dependence of (Na+, K+)ATPase-mediated transport was determined from initial velocities of vanadate-sensitive uptake of 22Na+, the Na(+)-dependence of Na+/H+ exchange from initial velocities of amiloride-sensitive uptake. By studying vanadate-sensitive Na+ transport, high-affinity binding sites for ATP with an apparent Km(ATP) of 15 +/- 1 microM were observed at low concentrations of Na+ (1 mM) and K+ (1mM). At 90 mM Na+ and 60 mM K+ the apparent Km(ATP) was 103 +/- 25 microM. Vesiculation of membranes and loading of the vesicles prepared from liver homogenates in the presence of vasopressin increased the maximal velocities of vanadate-sensitive transport by 3.8-fold and 1.9-fold in the presence of low and high concentrations of Na+ and K+, respectively. The apparent Km(ATP) was shifted to 62 +/- 7 microM and 76 +/- 10 microM by vasopressin at low and high ion concentrations, respectively, indicating that the hormone reduced the influence of Na+ and K+ on ATP binding. In vesicles isolated from hepatocytes preincubated with 10 nM vasopression the hormone effect was conserved. Initial velocities of Na+ uptake (at high ion concentrations and 1 mM ATP) were increased 1.6-1.7-fold above control, after incubation of the cells with vasopressin or by affinity labelling of the cells with a photoreactive analogue of the hormone. The velocity of amiloride-sensitive Na+ transport was enhanced by incubating hepatocytes in the presence of 10 nM insulin (1.6-fold) or 0.3 mM pervanadate generated by mixing vanadate plus H2O2 (13-fold). The apparent Km(Na+) of Na+/H+ exchange was increased by pervanadate from 5.9 mM to 17.2 mM. Vesiculation and incubation of isolated membranes in the presence of pervanadate had no effect on the velocity of amiloride-sensitive Na+ transport. The results show that hormone receptor-mediated effects on (Na+, K+)ATPase and Na+/H+ exchange are conserved during the isolation of liver plasma membrane vesicles. Stable modifications of the transport systems or their membrane environment rather than ionic or metabolic responses requiring cell integrity appear to be involved in this regulation.  相似文献   

11.
Native insulin inhibits the binding and degradation of 125I-labelled insulin in parallel. Half-maximal inhibition of degradation occurs with 10nm-insulin, a hormone concentration sufficient to saturate the insulin receptor. The proportion of bound hormone that is degraded increases as the insulin concentration is increased, suggesting that low-affinity uptake is functionally related to degradation. Since only a small fraction (approx. 10%) of the overall degradation occurs at the plasma membrane, or in the extracellular medium, translocation of bound hormone into the cell is the predominant mechanism mediating the degradation of insulin. In the presence of 0.6nm-insulin, a concentration at which most cell-associated hormone is receptor-bound, chloroquine increases the amount of 125I-labelled insulin retained by hepatocytes. However, chloroquine increases the retention of degradation products of insulin in incubations containing sufficient hormone (6nm) to saturate the receptor and permit occupancy of low-affinity sites. Glucagon does not compete for the interaction of 125I-labelled insulin (1nm) with the insulin receptor. In contrast, 20μm-glucagon inhibits 75% of the uptake of insulin (0.1μm) by low-affinity sites. A fraction of the cell-bound radioactivity is not intact insulin throughout a 90min association reaction at 37°C. During dissociation, fragments of 125I-labelled insulin are released to the medium more rapidly than is intact hormone. The production and transient retention of degradation products of the hormone complicates the characterization of the insulin receptor by equilibrium or kinetic methods of assay. It is proposed that insulin degradation occurs by receptor- and non-receptor-mediated pathways. The latter may be related to the action of glutathione–insulin transhydrogenase, with which both insulin and glucagon interact.  相似文献   

12.
1. The efficiency of the contribution of hexoses to basal- and stimulated-glycogenesis, when studied in cultured 18 day-old rat foetal hepatocytes in the presence of glucose, was as follows: galactose greater than glucose greater than fructose. 2. Glucose deprivation had opposite effects on the contributions of [14C]galactose (decreased) and [14C]fructose (increased) to glycogenesis, which occurred independently of insulin and were reversed by glucose concentrations as low as 30-100 microM. 3. The stimulation of glycogenesis by insulin measured with [14C]glucose (3.2-fold) was superior to that obtained with either [14C]galactose or [14C]fructose (2.7-fold in both cases), which revealed a specific beneficial effect of insulin on glucose contribution.  相似文献   

13.
In the present study, we have examined whether insulin degradation products are present on the surface of isolated rat hepatocytes and can be removed by an acid dissociation technique. Hepatocytes were incubated with [125I]insulin for 30 minutes, rapidly washed to remove unbound insulin, and then briefly exposed to acidic conditions (pH 5.0) to remove bound hormone from the cell surface. The radioactive material removed from the cell by acid dissociation and that remaining with the cells were separately analyzed by high performance liquid chromatography. The two primary degradation products of insulin present in control cell extracts were found only with the cell-associated material after acid dissociation. The insulin-sized radioactive material in the extract of acid-dissociable material consisted of only intact [125I]insulin. These results show that the two primary degradation products of insulin in rat hepatocytes are found only intracellularly and suggest that the degradation of the hormone begins after it is internalized.  相似文献   

14.
An improved non-perfusion method for the preparation of cultured foetal-rat hepatocytes is described. Digestion of the liver with collagenase and deoxyribonuclease I gave yields of 40 X 10(6) hepatocytes/g of liver. The plating efficiency of hepatocytes in medium with 10 microM-cortisol was 50%. Cell morphology and metabolism were maintained through 3 days of monolayer culture, with minimal contamination by haematopoietic cells or fibroblasts. The cultured cells bound and degraded 125I-insulin in a time- and dose-dependent manner. The estimated ED50 for competitive binding at 37 degrees C was 1.1 nM. Curvilinear Scatchard plots were observed, with estimates of 16 500 high-affinity sites (Kd = 813 pM) and 53 000 low-affinity sites (Kd = 23 nM) per cell. The cultured cells demonstrated a glycogenic response to insulin, with an estimated ED50 of 120 pM. The degree of glycogenic response to insulin varied with time in culture: 500% above basal on day 1, 200% on day 2, and only 150% on day 3. Cultured foetal cells also exhibited a time-dependent uptake of 2-aminoisobutyric acid, which, in contrast with previous reports with adult cells, was not stimulated by the presence of 10 nM-insulin. Cultured foetal hepatocytes may provide an interesting model with which to study the relationship between insulin-receptor binding and insulin action.  相似文献   

15.
The effect of insulin on the function of rat luteal cells in monolayer culture was examined. Cells were obtained from PMSG-hCG primed immature rats and further cultured in serum free medium with or without insulin. The hormone produced an increase of progesterone production and maximal stimulation was achieved at 0.2 nM of insulin (100% stimulation). This effect was enhanced by addition of methyl-isobutyl-xantine (MIX 0.1 mM) to the culture medium. However, the stimulation produced by LH was not augmented by the presence of insulin. The conversion of progesterone into 20 alpha-hydroxy-progesterone was also enhanced after insulin treatment. Luteal cells were also cultured in the presence of 25-hydroxy-cholesterol (10 micrograms/ml). In these conditions insulin produced a 2-fold increase in progesterone production. Aromatase activity was assessed by adding androstenedione (0.25 microM) as substrate. Insulin produced a 14-fold stimulation of estradiol production after 24 h of culture. Insulin action was tested in short time incubations of luteal cells in a glucose free medium, in these experiments the hormone was able to induce a significant increase in progesterone and 20 alpha-hydroxy-progesterone production. These data suggest that luteal cell function is regulated by insulin and that this hormone has a direct effect on the steroidogenic process.  相似文献   

16.
Isolated hepatocytes from streptozotocin injected rats bound the same amount of [125I]monoiodoinsulin as hepatocytes from control rats. Scatchard analysis confirmed that insulin receptor number and affinity were the same for both groups. Relatively more cell-associated radioactivity was located intracellularly in hepatocytes from streptozotocin injected rats. Pretreatment with chloroquine resulted in a smaller increase in intracellular [125I]monoiodoinsulin in cells isolated from streptozotocin injected rats than for control cells. These results suggest that intracellular insulin processing occurs more slowly in hepatocytes isolated from streptozotocin injected rats than from control rats.  相似文献   

17.
Previous studies have suggested that transglutaminase has a role in the internalization of some polypeptide hormones and is inhibited by the antibiotic, bacitracin. Bacitracin has been used in insulin-receptor studies to inhibit extracellular degradation of 125I-labelled insulin. The aim of this study was to investigate bacitracin's effect on 125I-labelled insulin-receptor interactions in isolated rat hepatocytes. 1 g/l bacitracin increased cell-associated 125I-labelled insulin at 20, 30 and 37°C (P < 0.001, 0.0005 and 0.0005, respectively). At 5 and 15°C (internalization does not occur), bacitracin did not affect cell-associated 125I-labelled insulin. The bacitracin effect was concentration dependent, increasing to 2 g/l. Scatchard analysis showed that bacitracin did not alter insulin receptor affinity or number. 1 g/l bacitracin abolished the effect of chloroquine. The increased cell-associated radioactivity with bacitracin was surface-bound in nature. 0.5 g/l bacitracin decreased 125I-labelled insulin degradation in hepatocyte suspensions (P < 0.001) and in buffer previously incubated with hepatocytes (P < 0.0005). More 125I-labelled insulin remained associated with cells during dissociation studies at 37°C when the buffer contained 1 g/l bacitracin. Label that appeared in the buffer after 60 min was significantly more intact in the presence of bacitracin (P < 0.025). These results suggest that bacitracin retards the internalization of 125I-labelled insulin in isolated rat hepatocytes.  相似文献   

18.
The cell association and degradation of insulin and alpha 2-macroglobulin-trypsin complex were measured in rat adipocytes with or without various inhibitors in the attempt to clarify whether the two ligands were taken up by the same or by different pathways. Several inhibitors, and particularly those of membrane traffic, lysosomal function and transglutaminase activity, affected the two ligands differently. Thus, chloroquine (100 microM) reduced both the uptake of alpha 2-macroglobulin X trypsin and its receptor-mediated degradation by about 70%. In contrast, the uptake of insulin was increased 2-3-times and the receptor-mediated degradation was only slightly reduced. Methylamine (10 mM) and ammonium chloride (10 mM) reduced degradation of alpha 2-macroglobulin X trypsin markedly without affecting that of insulin. Leupeptin (100 microM) increased uptake and reduced degradation of alpha 2-macroglobulin X trypsin without affecting insulin. Dansylcadaverine (500 microM) almost abolished uptake and degradation of alpha 2-macroglobulin X trypsin but had little effect on insulin. Moreover, uptake and degradation of alpha 2-macroglobulin X trypsin was much more sensitive than insulin to the action of metabolic inhibitors such as dinitrophenol and cyanide. The results show that the two ligands are taken up by functionally different systems. In addition, they support the hypothesis that lysosomes play a relatively minor role in the receptor-mediated degradation of insulin.  相似文献   

19.
Treatment of isolated rat hepatocytes with 10-100 nM insulin for 5-10 min increased by about 2-fold the activity of a protamine kinase which exhibited properties similar to those of a protamine kinase from bovine kidney (Damuni, Z., Amick, G. D., and Sneed, T. R. (1989) J. Biol. Chem. 264, 6412-6416). Half-maximal increase in protamine kinase activity occurred at about 1 nM insulin. This effect of insulin was detected only when 25 mM NaF or 50 mM KPO4 were included in the homogenization buffers and was not prevented by preincubation of the hepatocytes with 10 microM cycloheximide. Insulin stimulation of protamine kinase was maintained following chromatography of extracts on protamine-agarose, DEAE-cellulose, and Sephacryl S-200 gel filtration. The apparent Mr of the protamine kinase from control and insulin-treated hepatocytes was 45,000 as estimated by gel permeation chromatography. Experiments utilizing partially purified protamine kinase from control and insulin-treated hepatocytes indicated that insulin did not affect the apparent Km for protamine, Mg2+, or ATP, but increased the Vmax for the protamine kinase reaction by 1.6-2-fold. Incubation with the catalytic subunit of protein phosphatase 2A completely inactivated the protamine kinase from control and insulin-treated cells. The results indicate that the insulin-stimulated increase in protamine kinase activity may be due to a covalent modification, possibly phosphorylation, of the protamine kinase.  相似文献   

20.
Insulin was enzymatically moniodinated with 127-I or 125-I, and an improved method of purification by anion exchange chromatography was employed. (127-I)Monoiodoinsulin was identified by spectrophotometric analysis and its molar extinction coefficient determined to be 6.31 times 10-3 M-1 cm minus 1. The observed specific activity of carrier-free (125-I)monoidoinsulin was close to the theoretical value (378mCi/mg). The monoiodotyrosyl residue of monoidoinsulin was shown to be solvent-exposed. The ionic properties of the substituted hormone were altered at pH values close to the pK of monoiodotyrosine (8.85), but the pI was unchanged (5.65). (127-I)Monoiodoinsulin formed rhombohedral crystals and co-crystallized with native insulin. Monoidoinsulin was indistinguishable from insulin with respect to binding to two out of three guinea pig anti-insulin sera, to binding to IM9 cultured human lymphocytes, and to binding to isolated rat hepatocyte plasma membranes. The potency of monoidoinsulin was not statistically different from that of insulin in the rat fat cell bioassay and in the mouse convulsion assay. An insulin-degrading enzyme extracted from rat liver degraded monoiodoinsulin less readily than native insulin; monoiodoinsulin was a competitive inhibitor of insulin degradation, and the Km values were 30 nM AND 78 NM for monoidoinsulin and native insulin, respectively. It is concluded that monoidination does not markedly alter the three-dimensional structure of the molecule and that only a few sensitive biological systems are able to distinguish the monoidinated from the native hormone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号