首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
M Kozak  A J Shatkin 《Cell》1978,13(1):201-212
Four types of experiments were carried out with reovirus messenger RNAs or with 5′ terminal fragments of known sequence to identify features in mRNA which appear to be important for formation of initiation complexes with ribosomes. With a number of reovirus mRNAs, 40S initiation complexes had been previously shown to protect a significantly larger segment of the RNA (including the 5′ terminal m7G) than that protected by 80S initiation complexes. Each 80S-protected sequence had an AUG codon and was a subset of the 40S-protected sequence from the same message. When 40S- and 80S-protected fragments were tested for ability to rebind to ribosomes, the 80S-protected fragments showed considerably lower binding ability, implying that the “extra” sequences protected by 40S initiation complexes contribute to ribosome attachment. Nevertheless, wheat germ ribosomes select the same 5′ terminal initiation site in each reovirus mRNA, irrespective of the presence or absence of m7G on the message. This was demonstrated by comparing fingerprints of the ribosome-protected regions obtained with methylated versus unmethylated RNA. The contribution of m7G to formation of initiation complexes is therefore quantitative rather than qualitative. Limited T1 RNAase digestion of isolated 5′ terminal fragments from several reovirus messages generated a series of smaller fragments which were analyzed for ability to rebind to ribosomes. Partial digestion products up to 30 nucleotides in length which retained the 5′ cap but not the AUG codon were unable to associate stably with ribosomes, whereas every AUG-containing fragment that was analyzed was able to form initiation complexes. The efficiency of binding of certain AUG-containing fragments, however, was reduced by removal of either the 5′ terminal region, including the cap, or of sequences comprising the beginning of the coding region, on the 3′ side of the AUG. Complex formation between messenger RNA and ribosomes was inhibited by the trinucleotide AUG, but not by various other oligonucleotides. Although the inhibition was specific, a vast excess of trinucleotide was required for moderate inhibition of 80S complex formation, and the same concentration of AUG failed to inhibit formation of 40S initiation complexes.  相似文献   

2.
The 70 S ribosomes of Escherichia coli were treated with 2-iminothiolane with the resultant addition of 110 sulfhydryl groups per ribosome. The modified ribosomes were oxidized to promote disulfide bond formation, some of which formed intermolecular crosslinks. About 50% of the crosslinked 70 S ribosomes did not dissociate when exposed to low concentrations of magnesium in the absence of reducting agent. Dissociation took place in the presence of reducing agents, which indicated that the subunits had become covalently linked by disulfide linkages. Proteins extracted from purified crosslinked 70 S ribosomes were first fractionated by polyacrylamide/urea gel electrophoresis. The proteins from sequential slices of these gels were analyzed by two-dimensional polyacrylamide/sodium dodecyl sulfate diagonal gel electrophoresis. Monomeric proteins derived from crosslinked dimers appeared below the diagonal containing non-crosslinked proteins, since the second electrophoresis, but not the first, is run under reducing conditions to cleave the crosslinked species. Final identification of the proteins in each dimer was made by radioiodination of the crosslinked proteins, followed by two-dimensional polyacrylamide/urea gel electrophoresis in the presence of non-radioactive total 70 S proteins as markers. This paper describes the identification of 23 protein dimers that contained one protein from each of the two different ribosomal subunits. The proteins implicated must have some part of their structure in proximity to the other ribosomal subunit and are therefore defined as “interface proteins”. The group of interface proteins thus defined includes 50 S proteins that are part of the 5 S RNA: protein complex and 30 S proteins at the initiation site. Correlations between the crosslinked interface proteins and other functional data are discussed.  相似文献   

3.
4.
In bacteria, ribosomal hibernation shuts down translation as a response to stress, through reversible binding of stress‐induced proteins to ribosomes. This process typically involves the formation of 100S ribosome dimers. Here, we present the structures of hibernating ribosomes from human pathogen Staphylococcus aureus containing a long variant of the hibernation‐promoting factor (SaHPF) that we solved using cryo‐electron microscopy. Our reconstructions reveal that the N‐terminal domain (NTD) of SaHPF binds to the 30S subunit as observed for shorter variants of HPF in other species. The C‐terminal domain (CTD) of SaHPF protrudes out of each ribosome in order to mediate dimerization. Using NMR, we characterized the interactions at the CTD‐dimer interface. Secondary interactions are provided by helix 26 of the 16S ribosomal RNA. We also show that ribosomes in the 100S particle adopt both rotated and unrotated conformations. Overall, our work illustrates a specific mode of ribosome dimerization by long HPF, a finding that may help improve the selectivity of antimicrobials.  相似文献   

5.
Metabolism of 5S RNA in the absence of ribosome production   总被引:3,自引:0,他引:3  
L Miller 《Cell》1974,3(3):275-281
The results presented in this report show that during early development of Xenopus laevis the synthesis of 5S RNA occurs in blastula embryos, whereas the synthesis of 18S and 28S RNA cannot be detected until gastrulation. Thus the initiation of synthesis of the three ribosomal RNAs is not coordinate during early development. Blastula embryos are similar to anucleolate mutants of Xenopus laevis, in that they both synthesize 5S RNA, but are unable to assemble new ribosomes because they do not synthesize 18S and 28S RNA or ribosomal proteins. The blastula and anucleolate embryos thus provide a unique opportunity to determine if newly synthesized soluble 5S RNA can exchange with the 5S RNA present in existing ribosomes. The results show that newly synthesized 5S RNA is not incorporated into the ribosomes of blastula or anucleolate embryos. Furthermore, the 5S RNA synthesized by anucleolate mutants has a shorter half-life than the 5S RNA made by normal embryos. The synthesis of excess 5S RNA and its subsequent degradation in the absence of ribosome production appears to be another example of the phenomenon of wastage of newly synthesized ribosomal RNA.  相似文献   

6.
Structure of 50 to 70S RNA from Moloney sarcoma viruses.   总被引:12,自引:6,他引:6       下载免费PDF全文
The 50 to 70S RNAs of two clonal isolates of defective Moloney sarcoma-leukemia helper virus complex were analyzed by gel electrophoresis and electron microscopy. The RNAs extracted from both clone 3 and clone 124-5R of Moloney sarcoma-leukemia virus complex contained some large monomer subunits ca. 10,000 nucleotides in length (10 kilobases), which are believed to be the Moloney leukemia virus subunits. Both RNAs had an excess of a smaller, sarcoma-specific subunit, 5 kilobases (clone 3) or 6 kilobases (clone 124-5R) in length. Electron microscopy of intact 50 to 70S dimer RNA molecules showed for both clones many dimers of two small subunits, some dimers of two large subunits, but few if any heterodimers with one large and one small subunit. This result was unexpected because the sequences near the 5'end of the RNA subunits, which are believed to be involved in the dimer linkage, are probably homologous between the large and small subunits. We also observed that some small-small dimers migrated anomalously slowly on nondenaturing gels. The nature of this slow-migrating complex is unkown; it could be a higher aggregate of the small-small dimer with additional small or large subunits, or it could be an extended conformation of the small-small dimer.  相似文献   

7.
Protein synthesis across kingdoms involves the assembly of 70S (prokaryotes) or 80S (eukaryotes) ribosomes on the mRNAs to be translated. 70S ribosomes are protected from degradation in bacteria during stationary growth or stress conditions by forming dimers that migrate in polysome profiles as 100S complexes. Formation of ribosome dimers in Escherichia coli is mediated by proteins, namely the ribosome modulation factor (RMF), which is induced in the stationary phase of cell growth. It is reported here a similar ribosomal complex of 110S in eukaryotic cells, which forms during nutrient starvation. The dynamic nature of the 110S ribosomal complex (mammalian equivalent of the bacterial 100S) was supported by the rapid conversion into polysomes upon nutrient-refeeding via a mechanism sensitive to inhibitors of translation initiation. Several experiments were used to show that the 110S complex is a dimer of nontranslating ribosomes. Cryo-electron microscopy visualization of the 110S complex revealed that two 80S ribosomes are connected by a flexible, albeit localized, interaction. We conclude that, similarly to bacteria, rat cells contain stress-induced ribosomal dimers. The identification of ribosomal dimers in rat cells will bring new insights in our thinking of the ribosome structure and its function during the cellular response to stress conditions.  相似文献   

8.
Double-stranded RNA is a potent inhibitor of protein synthesis in rabbit reticulocyte lysates. Three lines of evidence suggest that at least part of this inhibitory activity is due to activation of a nuclease which degrades mRNA: (1) In the presence of emetine reticulocyte polysomes are partially degraded to structures containing 1–3 ribosomes; (2) 34S Mengo-virus RNA is degraded to fragments sedimenting at less than 18S; (3) The template activity of globin mRNA extracted from the lysates is reduced by 90% when compared to appropriate controls. The ability of double-stranded RNA to activate a nuclease in the reticulocyte system is very similar to that observed in extracts from interferon treated cells and probably involves formation of the unusual oligonucleotide pppA2′ p5′ A2′ p5′ A.  相似文献   

9.
10.
Two Types of Ribosome in Mouse–Hamster Hybrid Cells   总被引:87,自引:0,他引:87  
  相似文献   

11.
The growth phase-dependent change in sucrose density gradient centrifugation patterns of ribosomes was analyzed for both laboratory strains of Escherichia coli and natural isolates from the ECOR collection. All of the natural isolates examined formed 100S ribosome dimers in the stationary phase, and ribosome modulation factor (RMF) was associated with the ribosome dimers in the ECOR strains as in the laboratory strain W3110. The ribosome profile (70S monomers versus 100S dimers) follows a defined pattern over time during lengthy culture in both the laboratory strains and natural isolates. There are four discrete stages: (i) formation of 100S dimers in the early stationary phase; (ii) transient decrease in the dimer level; (iii) return of dimers to the maximum level; and (iv) dissociation of 100S dimers into 70S ribosomes, which are quickly degraded into subassemblies. The total time for this cycle of ribosome profile change, however, varied from strain to strain, resulting in apparent differences in the ribosome profiles when observed at a fixed time point. A correlation was noted in all strains between the decay of 100S ribosomes and the subsequent loss of cell viability. Two types of E. coli mutants defective in ribosome dimerization were identified, both of which were unable to survive for a prolonged period in stationary phase. The W3110 mutant, with a disrupted rmf gene, has a defect in ribosome dimerization because of lack of RMF, while strain Q13 is unable to form ribosome dimers due to a ribosomal defect in binding RMF.  相似文献   

12.
Protein synthesis across kingdoms involves the assembly of 70S (prokaryotes) or 80S (eukaryotes) ribosomes on the mRNAs to be translated. 70S ribosomes are protected from degradation in bacteria during stationary growth or stress conditions by forming dimers that migrate in polysome profiles as 100S complexes. Formation of ribosome dimers in Escherichia coli is mediated by proteins, namely the ribosome modulation factor (RMF), which is induced in the stationary phase of cell growth. It is reported here a similar ribosomal complex of 110S in eukaryotic cells, which forms during nutrient starvation. The dynamic nature of the 110S ribosomal complex (mammalian equivalent of the bacterial 100S) was supported by the rapid conversion into polysomes upon nutrient-refeeding via a mechanism sensitive to inhibitors of translation initiation. Several experiments were used to show that the 110S complex is a dimer of nontranslating ribosomes. Cryo-electron microscopy visualization of the 110S complex revealed that two 80S ribosomes are connected by a flexible, albeit localized, interaction. We conclude that, similarly to bacteria, rat cells contain stress-induced ribosomal dimers. The identification of ribosomal dimers in rat cells will bring new insights in our thinking of the ribosome structure and its function during the cellular response to stress conditions.Key words: ribosome, translation, stress, starvation, polysome  相似文献   

13.
We have isolated cytoplasmic ribosomes from Euglena gracilis and characterized the RNA components of these particles. We show here that instead of the four rRNAs (17-19 S, 25-28 S, 5.8 S and 5 S) found in typical eukaryotic ribosomes, Euglena cytoplasmic ribosomes contain 16 RNA components. Three of these Euglena rRNAs are the structural equivalents of the 17-19 S, 5.8 S and 5 S rRNAs of other eukaryotes. However, the equivalent of 25-28 S rRNA is found in Euglena as 13 separate RNA species. We demonstrate that together with 5 S and 5.8 S rRNA, these 13 RNAs are all components of the large ribosomal subunit, while a 19 S RNA is the sole RNA component of the small ribosomal subunit. Two of the 13 pieces of 25-28 S rRNA are not tightly bound to the large ribosomal subunit and are released at low (0 to 0.1 mM) magnesium ion concentrations. We present here the complete primary sequences of each of the 14 RNA components (including 5.8 S rRNA) of Euglena large subunit rRNA. Sequence comparisons and secondary structure modeling indicate that these 14 RNAs exist as a non-covalent network that together must perform the functions attributed to the covalently continuous, high molecular weight, large subunit rRNA from other systems.  相似文献   

14.
The topography of 5.8 rRNA in rat liver ribosomes has been examined by comparing diethyl pyrocarbonate-reactive sites in free 5.8 S RNA, the 5.8 S-28 rRNA complex, 60 S subunits, and whole ribosomes. The ribosomal components were treated with diethyl pyrocarbonate under salt and temperature conditions which allow cell-free protein synthesis; the 5.8 S rRNA was extracted, labeled in vitro, chemically cleaved with aniline, and the fragments were analyzed by rapid gel-sequencing techniques. Differences in the cleavage patterns of free and 28 S or ribosome-associated 5.8 S rRNA suggest that conformational changes occur when this molecule is assembled into ribosomes. In whole ribosomes, the reactive sites were largely restricted to the "AU-rich" stem and an increased reactivity at some of the nucleotides suggested that a major change occurs in this region when the RNA interacts with ribosomal proteins. The reactivity was generally much less restricted in 60 S subunits but increased reactivity in some residues was also observed. The results further indicate that in rat ribosomes, the two -G-A-A-C- sequences, putative binding sites for tRNA, are accessible in 60 S subunits but not in whole ribosomes and suggest that part of the molecule may be located in the ribosomal interface. When compared to 5 S rRNA, the free 5.8 S RNA molecule appears to be generally more reactive with diethyl pyrocarbonate and the cleavage patterns suggest that the 5 S RNA molecule is completely restricted or buried in whole ribosomes.  相似文献   

15.
The fragments of 125I-labelled rabbit globin messenger RNA protected from pancreatic RNAase by initiating 40 S subunits and 80 S ribosomes were analysed using the techniques of RNA sequencing. The fragments were cleaved specifically at cytidine residues generating oligonucleotides labelled in their 3′ terminal residue. Analysis of the partial digestion products of these oligonucleotides after treatment with pancreatic, T1, U2 and T2 RNAase enabled their sequences to be deduced. Sequences were determined from knowledge of the specificities of the ribonucleases and then confirmed in a separate analysis making use of the known electrophoretic mobilities of each base. This combination of methods served to establish that the 40 S- and 80 S-protected fragments are related, and that both contain the initiation codon of the mRNA. The 80 S-protected fragment is about 40 bases in length whilst the 40 S-protected fragments range from 50 to more than 60 bases in length. The most prominent of these 40 S-protected fragments is about 50 bases in length and extends more towards the 5′ end of the mRNA than does the 80 S-protected fragment. It follows that 80 S ribosomes do not protect the 5′ end of the mRNA from nuclease digestion and that the 5′ terminus of rabbit globin mRNA must be at least 15 to 30 bases from the initiation codon.  相似文献   

16.
To characterize the cis-acting determinants that function in RNA dimer formation and maintenance, we examined the stability of RNA dimers isolated from virus particles containing mutations in the encapsidation region of human immunodeficiency virus type 1 (HIV-1). The genomic RNAs of all mutants containing lesions in elements required for in vitro dimerization exhibited thermal stability similar to that of wild-type (WT) HIV-1. These data indicate that the eventual formation of stable dimeric RNA in vivo is not absolutely dependent on the elements that promote dimer formation in vitro. Surprisingly, mutants that lacked a large segment of the middle portion of the genome, outside the likely primary dimer linkage region, formed RNA dimers that were measurably more stable than WT. In addition, the insertion of one or multiple copies of a foreign gene, which resulted in a series of vectors that approached RNA length similar to that of WT RNA, still exhibited augmented dimer stability. These results suggest that there are regions in the HIV-1 genome outside the primary dimer initiation and dimer linkage regions that can negatively affect dimer stability.  相似文献   

17.
A synthesis has been developed, providing nucleotide dimers comprising natural or unnatural nucleoside residues. A ribonucleoside 5′-phosphorimidazolide is added to a nucleoside adsorbed on montmorillonite at neutral pH with the absence of protecting groups. Approximately, 30% of the imidazolide is converted into each 2′-5′ dimer and 3′-5′ dimer with the rest hydrolyzed to the 5′-monophosphate. Experiments with many combinations have suggested the limits to which this method may be applied, including heterochiral and chimeric syntheses. This greener chemistry has enabled the synthesis of dimers from activated nucleotides themselves, activated nucleotides with nucleosides, and activated nucleotides with nucleotide 5′-monophosphates. Both homo- and heterochiral combinations of reagents have been tried. The montmorillonite-catalyzed oligomerization of 5′-activated nucleotides leads to oligomers up to 50 residues in length (Huang & Ferris, 2007) using the excellent catalyst Volclay®. However, all oligomers must necessarily begin as dimers, so we considered it important to study in detail the formation of these products under prebiotic conditions. Then, a meaningful comparison could be drawn between our syntheses and the formation of long oligomers that is part of our studies of the origins of life. In the synthesis of trimers from these dimers, we looked for alternative synthetic methods via a 5′-phosphate dimer with activated nucleotides as well as 5′-hydroxy nucleotide dimers with the same reactant. The method has shown promise in targeting trimer synthesis and the procedure lends itself to the development of combinatorial libraries. The use of enzymatic hydrolysis has played a crucial role in this work, facilitating product identity across the spectrum of products prepared. The yields of the corresponding homochiral and heterochiral dimers from A and U will require careful modeling of the reactants in their interactions with both the clay and one another to locate the source of the similarities and differences. The lack of reactivity of arabino- and xylo-nucleosides also poses interesting structural, modeling, and origins of life issues. Results with clays that catalyze long oligomer formation only poorly reveal that they too catalyze these dimer syntheses, albeit less well than Volclay.®   相似文献   

18.
A scanning mechanism has been proposed (Kozak, 1978) to explain how eukaryotic ribosomes select the correct AUG codon for initiation of protein synthesis. The hypothesis is that a 40 S ribosomal subunit binds initially at or near the 5′-terminus of a message and subsequently migrates toward the interior of the messenger RNA, stopping when it encounters the first AUG codon, at which point a 60 S subunit joins and peptide bond formation begins. The scanning mechanism predicts that if a message were modified by introduction of a new AUG triplet upstream of the existing initiator codon, the adventitious AUG should be the preferred site for formation of an 80 S initiation complex. This prediction has been confirmed in the present studies with two reovirus messenger RNAs, in which sodium bisulfite was used to convert an ACG sequence (located in the 5′ untranslated region of each message) to AUG. Analysis of the ribosome-protected mRNA fragments recovered from sparsomycin-blocked 80 S initiation complexes revealed that a high percentage of wheat germ ribosomes were centered around the “unnatural” 5′-proximal AUG created by the bisulfite treatment, although some ribosomes were also positioned at the second (normal) initiator codon. The bisulfite modification was carried out in 7 m-urea at 37 °C. resulting in quantitative conversion of cytosine to uracil. Thus, both the primary and secondary structure of the message were drastically altered. These perturbations did not impair the efficiency of ribosome binding, nor did the highly unfolded state of the mRNA permit ribosomes to attach to spurious sites in the interior of the message. The data support a mechanism in which the initiator codon is selected by virtue of its position in a message (i.e. closest to the 5′-terminus), without regard to either the primary or secondary structure of the flanking regions.  相似文献   

19.
The montmorillonite-catalyzed reactions of the 5′-phosphorimidazolide of adenosine used as a model generated RNA type oligomers. These reactions were found to be dependent on the presence of mineral salts. Whereas montmorillonite (pH 7) produced only dimers and traces of trimer in water, addition of sodium chloride (0.1–2.0 M) enhanced the chain length of oligomers to 10-mers as detected by HPLC. Maximum catalytic activity was observed with sodium chloride at a concentration between 0.8 and 1.2 M. This concentration of sodium chloride resembled its abundance in the ancient oceans (0.9–1.2 M). Magnesium chloride produced a similar effect but its joint action with sodium chloride did not produce any difference in the oligomer chain length. Therefore, Mg2+ was not deemed necessary for generating longer oligomers. The effect of monovalent cations upon RNA chain length was: Li+ > Na+ > K+. A similar effect was observed with the anions with enhanced oligomer length in the following order: Cl? > Br? > I?. Thus, the smaller ions facilitated the formation of the longest oligomers. Inorganic salts that tend to salt out organic compounds from water and salts which show salt-in effects had no influence on the oligomerization process indicating that the montmorillonite-catalyzed RNA synthesis is not affected by either of these hydrophobic or hydrophilic interactions. A 2.3-fold decrease in the yield of cyclic dimer was observed upon increasing the sodium chloride concentration from 0.2 to 2.0 M. Inhibition of cyclic dimer formation is vital for increasing the yield of linear dimers and longer oligomers. In summary, sodium chloride is likely to have played an essential role in any clay mineral-catalyzed prebiotic RNA synthesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号