首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Higher plants are exposed to natural environmental organic chemicals, associated with plant–environment interactions, and xenobiotic environmental organic chemicals, associated with anthropogenic activities. The effects of these chemicals result not only from interaction with metabolic targets, but also from interaction with the complex regulatory networks of hormone signaling. Purpose-designed plant hormone analogues thus show extensive signaling effects on gene regulation and are as such important for understanding plant hormone mechanisms and for manipulating plant growth and development. Some natural environmental chemicals also act on plants through interference with the perception and transduction of endogenous hormone signals. In a number of cases, bioactive xenobiotics, including herbicides that have been designed to affect specific metabolic targets, show extensive gene regulation effects, which are more in accordance with signaling effects than with consequences of metabolic effects. Some of these effects could be due to structural analogies with plant hormones or to interference with hormone metabolism, thus resulting in situations of hormone disruption similar to animal cell endocrine disruption by xenobiotics. These hormone-disrupting effects can be superimposed on parallel metabolic effects, thus indicating that toxicological characterisation of xenobiotics must take into consideration the whole range of signaling and metabolic effects. Hormone-disruptive signaling effects probably predominate when xenobiotic concentrations are low, as occurs in situations of residual low-level pollutions. These hormone-disruptive effects in plants may thus be of importance for understanding cryptic effects of low-dosage xenobiotics, as well as the interactive effects of mixtures of xenobiotic pollutants.  相似文献   

2.
Environmental contaminants are now a ubiquitous part of the ecological landscape, and a growing literature describes the ability of many of these chemicals to alter the developmental trajectory of the embryo. Because many environmental pollutants readily bioaccumulate in lipid rich tissues, wildlife can attain considerable body burdens. Embryos are often exposed to these pollutants through maternal transfer, and a growing number of studies report long-term or permanent developmental consequences. Many biological mechanisms are reportedly affected by environmental contaminants in the developing embryo and fetus, including neurodevelopment, steroidogenesis, gonadal differentiation, and liver function. Embryos are not exposed to one chemical at a time, but are chronically exposed to many chemicals simultaneously. Mixture studies show that for some developmental disorders, mixtures of chemicals cause a more deleterious response than would be predicted from their individual toxicities. Synergistic responses to low dose mixtures make it difficult to estimate developmental outcomes, and as such, traditional toxicity testing often results in an underestimate of exposure risks. In addition, the knowledge that biological systems do not necessarily respond in a dose-dependent fashion, and that very low doses of a chemical can prove more harmful than higher doses, has created a paradigm shift in studies of environmental contaminant-induced dysfunction. Although laboratory studies are critical for providing dose-response relationships and determining specific mechanisms involved in disease etiology, wildlife sentinels more accurately reflect the genetic diversity of real world exposure conditions, and continue to alert scientists and health professionals alike of the consequences of developmental exposures to environmental pollutants.  相似文献   

3.
Current evidence indicates that endocrine disrupters (EDs) can induce adverse effects on the male reproductive tract in various mammalian species. Recent reports indicate deterioration in male reproductive health in several human populations, but the evidence for a causal link with endocrine disruption is still weak. In addition, the experimental conditions of most of the reportedin vivo studies are not representative of environmental exposures (for example, high doses, short-term exposure, a single ED) and the mechanisms by which EDs disrupt the reproductive system are poorly understood. The objective of the present study is to develop an animal model to assess the reproductive effects and study the putative cellular and molecular mechanisms involved after exposure to genistein (phytoestrogen) and vinclozolin (fungicide with a known antiandrogenic potential) alone or in combination. The study will be performed in male Wistar rats, with administration of low and high doses of the compounds from conception to adulthood and a subset of the males in each treatment group will be mated with unexposed females. We plan to assess the level of sperm production, histology of the reproductive organs, motility and morphometry of spermatozoa and hormone levels, as well as DNA fragmentation of spermatozoa and determination of the number of germ cells, Sertoli cells and the diameters of seminiferous tubules. Estrogen, androgen, progesterone and FSH receptors will be detected and quantified and the level of testicular apoptosis and several apoptosis pathways will be studied to determine the putative cellular and molecular mechanisms involved. The preliminary results confirmed the developmental effects previously reported for high doses of vinclozolin. More interestingly, they indicated a number of deleterious effects for male rats exposed to low dosages alone or mixtures of low and high dosages compared to controls and rats exposed to high dosages alone. For example, a number of developmental anomalies of the genitalia were observed and a significant decrease of sperm motility and motion and fertilizing ability were observed. These preliminary results provide evidence that chronic exposure to environmental levels of EDs or mixtures of EDs have a detrimental impact on the male reproductive tract. The next step involves assessment of the anatomical disorders and the study of some of the cellular and molecular mechanisms possibly involved.  相似文献   

4.
The objective of this work was to investigate the interactions between the level of concentrations of Ca, V Cr, Mn, Fe, Ni, Cu, Zn, As and Pb in potable water, soil, vegetation and school children hair and disease incidences of neoplasms, diseases of the blood and blood-forming organs and certain disorders involving the immune mechanism, endocrine, nutritional and metabolic diseases, mental and behavioral disorders and diseases of the circulatory system on the population groups which are homogeneously exposed to the environmental conditions. It was found that potable water among the other investigated aspects of the physical environment has the greatest impact on the public health. The environment-disease incidence interactions have been found for all investigated diseases groups. The results reported here emphasize the importance of the observation of the mutual effects of the environmental variables on the human health for the identification of their synergetic as well as antagonistic effects.  相似文献   

5.
Pollutants are suspected to contribute to the etiology of obesity and related metabolic disorders. Apart from occupational exposure which concerns a subset of chemicals, humans are mostly exposed to a large variety of chemicals, all life-long and at low doses. Food ingestion is a major route of exposure and it is suggested that pollutants have a worsened impact when combined with a high-fat diet. In the experimental studies described herein, we aimed to add further evidence on the metabolic impact of food pollutants using a recently set up model in which mice are life-long fed a high-fat/high-sucrose diet (HFSD) with/without common food pollutants shown to exhibit metabolic disrupting activities. Specifically, this mixture comprised bisphenol A, dioxin, polychlorobiphenyl PCB153, and phthalate and was added in HFSD at doses resulting in mice exposure at the Tolerable Daily Intake dose range for each pollutant. We herein focused on the 7-week-old females which exhibited early signs of obesity upon HFSD feeding. We observed no signs of toxicity and no additional weight gain following exposure to the mixture but alleviated HFSD-induced glucose intolerance in the absence of alteration of gluconeogenesis and steatosis. It suggested that the observed metabolic improvement was more likely due to effects on muscle and/or adipose tissues rather than on the liver. Consistently, female mice exhibited enhanced lean/fat mass ratio and skeletal muscle insulin sensitivity. Moreover, expression levels of inflammatory markers were reduced in adipose tissue at 7 but enhanced at 12 weeks of age in agreement with the inverse alterations of glucose tolerance observed at these ages upon pollutant exposure in the HFSD-fed females. Collectively, these data suggest apparent biphasic effects of pollutants upon HFSD feeding along with obesity development. These effects were not observed in males and may depend on interactions between diet and pollutants.  相似文献   

6.
Organic pollutants exhibiting endocrine disrupting activity (Endocrine Disruptors--EDs) are prevalent over a wide range in the aquatic ecosystems; most EDs are resistant to environmental degradation and are considered ubiquitous contaminants. The actual potency of EDs is low compared to that of natural hormones, but environmental concentrations may still be sufficiently high to produce detrimental biological effects. Most information on the biological effects and mechanisms of action of EDs has been focused on vertebrates. Here we summarize recent progress in studies on selected aspects of endocrine disruption in marine organisms that are still poorly understood and that certainly deserve further research in the near future. This review, divided in four sections, focuses mainly on invertebrates (effects of EDs and mechanisms of action) and presents data on top predators (large pelagic fish and cetaceans), a group of vertebrates that are particularly at risk due to their position in the food chain. The first section deals with basic pathways of steroid biosynthesis and metabolism as a target for endocrine disruption in invertebrates. In the second section, data on the effects and alternative mechanisms of action of estrogenic compounds in mussel immunocytes are presented, addressing to the importance of investigating full range responses to estrogenic chemicals in ecologically relevant invertebrate species. In the third section we review the potential use of vitellogenin (Vtg)-like proteins as a biomarker of endocrine disruption in marine bivalve molluscs, used worldwide as sentinels in marine biomonitoring programmes. Finally, we summarize the results of a recent survey on ED accumulation and effects on marine fish and mammals, utilizing both classical biomarkers of endocrine disruption in vertebrates and non-lethal techniques, such as non-destructive biomarkers, indicating the toxicological risk for top predator species in the Mediterranean. Overall, the reviewed data underline the potential to identify specific types of responses to specific groups of chemicals such as EDs in order to develop suitable biomarkers that could be useful as diagnostic tools for endocrine disruption in marine invertebrates and vertebrates.  相似文献   

7.
During the last decades, there has been a dramatic increase in the prevalence of metabolic diseases, diabetes and obesity, which may be primarily related to changes in diet, lifestyle and behaviour. However, because of the parallel increase in pollution, in the use of chemicals for a variety of purposes, in drug consumption and because of additional evidence showing the involvement of the endocrine system in the regulation of metabolism and body weight, scientists have suspected the implication of endocrine disruptors in the developments of these conditions and diseases. Experimental studies have shown a possible role of diethyl stilbestrol, bisphenol A and dioxins/PCBs in endocrine disruption and obesity and highlighted the importance of exposure during vulnerable states such as the perinatal period. Some epidemiological studies also supported the possible role of these pollutants in metabolic diseases and obesity. Obesity is known to alter the kinetics of persistant organic chemicals such as dioxins and PCBs. These pollutants are stored in the adipose tissue, which may protect other more sensitive organs. However, during drastic weight loss, these pollutants are released in blood and tend to delay the improvement in metabolic parameters that are usually observed following weight loss. In conclusion, certain pollutants appear to play a role in the development of metabolic diseases and obesity, although their relative contribution as compared to other risk factor is unknown. In addition, obesity and weight loss alter the kinetics of certains pollutants and their toxicity.  相似文献   

8.
The ability of pollutants to affect human health is a major concern, justified by the wide demonstration that reproductive functions are altered by endocrine disrupting chemicals. The definition of endocrine disruption is today extended to broader endocrine regulations, and includes activation of metabolic sensors, such as the peroxisome proliferator-activated receptors (PPARs). Toxicology approaches have demonstrated that phthalate plasticizers can directly influence PPAR activity. What is now missing is a detailed molecular understanding of the fundamental basis of endocrine disrupting chemical interference with PPAR signaling. We thus performed structural and functional analyses that demonstrate how monoethyl-hexyl-phthalate (MEHP) directly activates PPARgamma and promotes adipogenesis, albeit to a lower extent than the full agonist rosiglitazone. Importantly, we demonstrate that MEHP induces a selective activation of different PPARgamma target genes. Chromatin immunoprecipitation and fluorescence microscopy in living cells reveal that this selective activity correlates with the recruitment of a specific subset of PPARgamma coregulators that includes Med1 and PGC-1alpha, but not p300 and SRC-1. These results highlight some key mechanisms in metabolic disruption but are also instrumental in the context of selective PPAR modulation, a promising field for new therapeutic development based on PPAR modulation.  相似文献   

9.
The prevalence of cardiometabolic disease has reached an exponential rate of rise over the last decades owing to high fat/high caloric diet intake and satiety life style. Although the presence of dyslipidemia, insulin resistance, hypertension and obesity mainly contributes to the increased incidence of cardiometabolic diseases, population-based, clinical and genetic studies have revealed a rather important role for inherited myopathies and endocrine disorders in the ever-rising metabolic anomalies. Inherited metabolic and endocrine diseases such as glycogen storage and lysosomal disorders have greatly contributed to the overall prevalence of cardiometabolic diseases. Recent evidence has demonstrated an essential role for proteotoxicity due to autophagy failure and/or dysregulation in the onset of inherited metabolic and endocrine disorders. Given the key role for autophagy in the degradation and removal of long-lived or injured proteins and organelles for the maintenance of cellular and organismal homeostasis, this mini-review will discuss the potential contribution of autophagy dysregulation in the pathogenesis of inherited myopathies and endocrine disorders, which greatly contribute to an overall rise in prevalence of cardiometabolic disorders. Molecular, clinical, and epidemiological aspects will be covered as well as the potential link between autophagy and metabolic anomalies thus target therapy may be engaged for these comorbidities.  相似文献   

10.
Environmental pollutants which alter endocrine function are now known to decrease vertebrate reproductive success. There is considerable evidence for endocrine disruption from aquatic ecosystems, but knowledge is lacking with regard to the interface between terrestrial and aquatic ecosystems. Here, we show for the first time that birds foraging on invertebrates contaminated with environmental pollutants, show marked changes in both brain and behaviour. We found that male European starlings (Sturnus vulgaris) exposed to environmentally relevant levels of synthetic and natural estrogen mimics developed longer and more complex songs compared to control males, a sexually selected trait important in attracting females for reproduction. Moreover, females preferred the song of males which had higher pollutant exposure, despite the fact that experimentally dosed males showed reduced immune function. We also show that the key brain area controlling male song complexity (HVC) is significantly enlarged in the contaminated birds. This is the first evidence that environmental pollutants not only affect, but paradoxically enhance a signal of male quality such as song. Our data suggest that female starlings would bias their choice towards exposed males, with possible consequences at the population level. As the starling is a migratory species, our results suggest that transglobal effects of pollutants on terrestrial vertebrate physiology and reproduction could occur in birds.  相似文献   

11.
The prevalence of type-2 diabetes has dramatically increased worldwide during the last few decades. While lifestyle factors (sedentariness, noxious food), together with genetic susceptibility, are well-known actors, there is accumulating evidence suggesting that endocrine disrupting chemicals (EDCs) may also play a pathophysiological role in the occurrence of metabolic diseases. Both experimental and epidemiological evidence support a role for early and chronic exposure to low doses of chemical pollutants with endocrine and metabolic disrupting effects. Most are present in the food chain and accumulate in the fat mass after absorption. In rodents, bisphenol A stimulates synthesis and secretion of pancreatic β cells and disturbs insulin signaling in liver, muscle and adipose tissue through epigenetic changes leading to insulin resistance and β cell impairment. In humans, epidemiological reports show statistical link between exposure to pesticides, polychlorinated bisphenyls, bisphenol A, phthalates, dioxins or aromatic polycyclic hydrocarbides or heavy metals and DT2 after acute accidental releases or early in life and/or chronic, low doses exposure. More prospective, longitudinal studies are needed to determine the importance of such environmental risk factors.  相似文献   

12.
13.
环境污染对几类水生无脊椎动物内分泌功能扰乱的研究现状   总被引:13,自引:0,他引:13  
EnminZOU 《动物学报》2003,49(5):551-565
近年来,在环境毒理学这门边缘学科中又诞生了一个新的领域,即环境污染对内分泌功能的扰乱。研究发现,许多人工合成的杀虫剂和工业化合物能够扰乱脊椎动物的内分泌功能,这些化合物也存在于水环境中。近年来,这些环境有机污染物是否对水生无脊椎动物的内分泌功能同样具有扰乱作用成了环境内分泌学这个新领域的热点之一。由于近年来的研究侧重于腔肠动物、轮虫、软体动物、甲壳动物及棘皮动物,因此,本文主要介绍有关环境污染物对这几类水生无脊椎动物内分泌功能扰乱的研究进展。另外,对环境污染对水生无脊椎动物内分泌扰乱这个研究热点的现状以及今后的发展方向进行了评述。在从事环境污染对无脊椎动物内分泌功能影响的研究时,研究者必须意识到无脊椎动物和脊椎动物在内分泌机制上的差异,不可随意地在这两大类动物类群之间互相引伸研究结果。  相似文献   

14.
Parasitism poses a serious threat to hosts under certain circumstances, while the well-being of organisms is also negatively affected by environmental pollution. Little information is available on the simultaneous effects of parasites and pollutants on the physiological homeostasis of organisms. The present paper demonstrates that parasites: (i) may influence the metabolism of pollutants in infected hosts, (ii) interact with pollution in synergistic or antagonistic ways, and (iii) may induce physiological reactions in hosts which were thought to be pollutant-induced. Experimental studies on the uptake and accumulation of metals by fish reveal that fish infected with acanthocephalans have lower metal levels than uninfected hosts; e.g. Pomphorhynchus laevis reduces lead levels in fish bile, thereby diminishing or impeding the hepatic intestinal cycling of lead, which may reduce the quantity of metals available for fish. Alterations in pollutant uptake and accumulation in different intermediate and final hosts due to parasites are thus very important in the field of ecotoxicology. In addition to such alterations, there is a close interaction between the effects of pollutants and parasites which seems to be mediated at least partly by the endocrine system, which itself is closely related to the immune system in fish. Laboratory studies on eels experimentally infected with the swimbladder nematode Anguillicola crassus reveal that toxic chemicals such as polychlorinated biphenyls produce immunosuppressive effects which facilitate parasite infection. Similarly, an increase in serum cortisol concentration in eels due to chemical exposure and infection is correlated with decreasing levels of anti-A. crassus antibodies. Furthermore, parasites are able to elicit physiological changes which are attributed to chemicals with endocrine disrupting activity, e.g. the cestode Ligula intestinalis is known to suppress gonad development in roach. The most thoroughly documented examples of endocrine disruption in wild fish are in roach, and it is conceivable that this disruption is not only due to chemical activity but also to parasites such as L. intestinalis or species of the phylum Microspora.  相似文献   

15.
A main objective in the field of mixture toxicity is to determine how well combined effects are predictable based on the known effects of mixture constituents. Conducting toxicity tests for all conceivable combinations of chemicals, to understand all mechanisms in the combined toxicity of environmental pollutants, is virtually unfeasible due to cost- and time-consuming procedures. Therefore, predictive tools for mixture toxicity are required to be developed within the applicable range of predictive toxicology. The concept of concentration addition (CA) model is often considered a general method for estimating mixture toxicity at the regulatory level. In the long run, however, the possibility of toxicological synergism between mixture components actually occurs, especially from the no-effect level or non-toxic substances. This is ignored under the CA concept, and needs to be examined and integrated into existing addition models at a scientific level, this paper reviews existing integrated models for estimating the toxicity of complex mixtures in literature. Current approaches to assess mixture toxicity and the need for new research concepts to overcome challenges which recent studies have confronted are discussed, particularly those involved in computational approaches to predict mixture toxicity in an environment risk assessment based on mixture components.  相似文献   

16.
Normal vitamin A function depends on adequate stores of the vitamin, a finely regulated supply of the vitamin to target tissues, and an ability of cells to generate functionally active forms of the vitamin. Both endogenous and exogenous factors can adversely affect vitamin A homeostasis. Polyhalogenated aromatic hydrocarbons are ubiquitous environmental pollutants and cause severe disturbances in vitamin A metabolism, manifested by an accelerated metabolism and breakdown of vitamin A and its metabolites and a depletion of vitamin A from the body; this sequence of events accounts for the vitamin A deficiency-like symptoms associated with PHAH intoxication. The mechanism(s) responsible for these events most likely includes altered activities of enzymes that are either directly or indirectly involved in critical vitamin A metabolic pathways. Human populations that continue to be exposed to environmental pollutants, may accumulate critical levels of polyhalogenated aromatic hydrocarbons and will be at risk for inadequate vitamin A function as well as for other health impairments that have been difficult to link to any specific causes. Therefore, it is important to seriously evaluate the similarities in physiological disturbances across species that have become apparent in studies with wildlife inhabiting polluted environments similar to ours; the relevance to human health is evident.  相似文献   

17.
The burgeoning obesity epidemic has placed enormous strains on individual and societal health mandating a careful search for pathogenic factors, including the contributions made by endocrine disrupting chemicals (EDCs). In addition to evidence that some exogenous chemicals have the capacity to modulate classical hormonal signaling axes, there is mounting evidence that several EDCs can also disrupt metabolic pathways and alter energy homeostasis. Adipose tissue appears to be a particularly important target of these metabolic disruptions. A diverse array of compounds has been shown to alter adipocyte differentiation, and several EDCs have been shown to modulate adipocyte physiology, including adipocytic insulin action and adipokine secretion. This rapidly emerging evidence demonstrating that environmental contaminants alter adipocyte function emphasizes the potential role that disruption of adipose physiology by EDCs may play in the global epidemic of metabolic disease. Further work is required to better characterize the molecular targets responsible for mediating the effects of EDCs on adipose tissue. Improved understanding of the precise signaling pathways altered by exposure to environmental contaminants will enhance our understanding of which chemicals pose a threat to metabolic health and how those compounds synergize with lifestyle factors to promote obesity and its associated complications. This knowledge may also improve our capacity to predict which synthetic compounds may alter energy homeostasis before they are released into the environment while also providing critical evidentiary support for efforts to restrict the production and use of chemicals that pose the greatest threat to human metabolic health. This article is part of a Special Issue entitled: Modulation of Adipose Tissue in Health and Disease.  相似文献   

18.
The vertebrate endocrine system is well-characterized, with many reports of disruption by environmental chemicals. In contrast, cnidarians are less compartmentalized, physiological regulation is poorly understood, and the potential for disruption is unknown. Endocrine-like activity has not been systematically studied in cnidarians, but several classical vertebrate hormones (e.g., steroids, iodinated organic compounds, neuropeptides, and indoleamines) have been identified in cnidarian tissues. Investigators have made progress in identifying putative bioregulatory molecules in cnidarians, and testing the effects of these individual compounds. Less progress has been made in elucidating signaling pathways. For example, putative gonadotropin-releasing hormone and sex steroids have been identified in cnidarian tissues, but it is unknown whether these compounds are components of a larger signal cascade comparable to the vertebrate hypothalamic-pituitary-gonadal axis. Further, while sex steroids and iodinated organic compounds may help to regulate cnidarian physiology, the mechanisms of action are unknown. Homologs to the vertebrate steroid and thyroid receptors have not been identified in cnidarians, so more research is needed to understand the mechanisms of endocrine-like signaling in cnidarians. Elucidation of cnidarian regulatory pathways will provide insight into evolution of hormonal signaling. These studies will also improve understanding of how cnidarians respond to environmental cues and will provide a basis to investigate disruption of physiological processes by physical and chemical stressors.  相似文献   

19.
Endocrine-disrupting chemicals (EDCs) represent a broad class of exogenous substances that cause adverse effects in the endocrine system mainly by interacting with nuclear hormone receptors (NRs). Humans are generally exposed to low doses of pollutants, and current researches aim at deciphering the mechanisms accounting for the health impact of EDCs at environmental concentrations. Our correlative analysis of structural, interaction and cell-based data has revealed a variety of, sometimes unexpected, binding modes, reflecting a wide range of EDC affinities and specificities. Here, we present a few representative examples to illustrate various means by which EDCs achieve high-affinity binding to NRs. These examples include the binding of the mycoestrogen α-zearalanol to estrogen receptors, the covalent interaction of organotins with the retinoid X- and peroxisome proliferator-activated receptors, and the cooperative binding of two chemicals to the pregnane X receptor. We also discuss some hypotheses that could further explain low-concentration effects of EDCs with weaker affinity towards NRs.  相似文献   

20.
An important goal of environmental health research is to assess the risk posed by mixtures of environmental exposures. Two popular classes of models for mixtures analyses are response-surface methods and exposure-index methods. Response-surface methods estimate high-dimensional surfaces and are thus highly flexible but difficult to interpret. In contrast, exposure-index methods decompose coefficients from a linear model into an overall mixture effect and individual index weights; these models yield easily interpretable effect estimates and efficient inferences when model assumptions hold, but, like most parsimonious models, incur bias when these assumptions do not hold. In this paper, we propose a Bayesian multiple index model framework that combines the strengths of each, allowing for non-linear and non-additive relationships between exposure indices and a health outcome, while reducing the dimensionality of the exposure vector and estimating index weights with variable selection. This framework contains response-surface and exposure-index models as special cases, thereby unifying the two analysis strategies. This unification increases the range of models possible for analysing environmental mixtures and health, allowing one to select an appropriate analysis from a spectrum of models varying in flexibility and interpretability. In an analysis of the association between telomere length and 18 organic pollutants in the National Health and Nutrition Examination Survey (NHANES), the proposed approach fits the data as well as more complex response-surface methods and yields more interpretable results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号