首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sea anemone gametes arise in the endoderm but migrate into the mesoglea at an early stage. In order to observe this process, large individuals of Actinia fragacea were collected from the same intertidal location at regular intervals over a 2-year period, and their gonads were examined by light and electron microscopy. The cellular origin of the oocytes is unclear, but the smallest recognizable oocytes are rounded cells, 6-8 microns in diameter, with relatively large nuclei which may contain synaptinemal complexes. Their cytoplasm contains numerous ribosomes, a flagellar basal-body-rootlet complex, and distinctive dense structures also present in male germ cells but not found in anemone nongerminal cells. During the endodermal phase of growth, the density of the oocyte nucleus increases, a single nucleolus becomes prominent, and mitochondria and glycogen accumulate in the cytoplasm. Most oocytes, but not all, only begin major vitellogenesis after entry into the mesoglea. Most oocytes enter the mesoglea vitellogenesis after entry into the mesoglea. Most oocytes enter the mesoglea before they attain a diameter of 25 microns. The oocytes migrate toward and enter the mesoglea by a process resembling amoeboid movement. During entry, the oocytes are constricted into a characteristic "hourglass" shape and become covered by a basal lamina continuous with that of the gonad epithelium. The last part of the oocyte to enter the mesoglea forms an intimate relationship with the surrounding endodermal cells, which is maintained after entry is complete, and is thought to be important in the establishment of the trophonema.  相似文献   

2.
We found that the androgenic gland (AG) of Macrobrachium rosenbergii possesses three cell types. Type I cells are small polygonal shaped-cells (13.4 μm in diameter), stain strongly with hematoxylin-eosin (H&;E), have abundant multilayered rough endoplasmic reticulum (rER), and nuclei containing mostly heterochromatin. Type II cells are slightly larger (18.6 μm in diameter), stain lightly with H&;E, have rER with dilated cisternae, and nuclei containing mostly euchromatin. Type III cells (previously undescribed) are similar in size and shape to type I cells, but the cytoplasm is unstained and they have a high amount of smooth endoplasmic reticulum (sER) and mitochondria with tubular cristae. Bilateral eyestalk-ablation resulted in AG hypertrophy with a proliferation and predominance of type I cells as determined by bromodeoxyuridine (BrdU) assays. Expression of insulin-like androgenic gland hormone (Mr-IAG), determined by immunohistochemistry, was weak in type I cells, strong in type II cells of both the intact and eyestalk-ablated, and negative in type III cells. It was also detected in spermatogonia, nurse cells, and epithelium lining of the spermatic duct. The function of Mr-IAG in these tissues is yet to be elucidated but the distribution implies a strong role in male reproduction.  相似文献   

3.
Summary The innervation of the pancreas of the domestic fowl was studied electron microscopically. The extrapancreatic nerve is composed mostly of unmyelinated nerve fibers with a smaller component of myelinated nerve fibers. The latter are not found in the parenchyma. The pancreas contains ganglion cells in the interlobular connective tissue. The unmyelinated nerve fibers branch off along blood vessels. Their synaptic terminals contact with the exocrine and endocrine tissues. The synaptic terminals can be divided into four types based on a combination of three kinds of synaptic vesicles. Type I synaptic terminals contain only small clear vesicles about 600 Å in diameter. Type II terminals are characterized by small clear and large dense core vesicles 1,000 Å in diameter. Type III terminals contain small clear vesicles and small dense core vesicles 500 Å in diameter. Type IV terminals are characterized by small and large dense core vesicles. The exocrine tissue receives a richer nervous supply than the endocrine tissue. Type II and IV terminals are distributed in the acinus, and they contact A and D cells of the islets. B cells and pancreatic ducts are supplied mainly by Type II terminals, the blood vessels by Type IV terminals.This work was supported by a scientific research grant (No. 144017) and (No. 136031) from the Ministry of Education of Japan to Prof. M. Yasuda  相似文献   

4.
The ultrastructure of three types of gland cells of embryos and free-swimming larvae of Austramphilina elongata is described. Type I gland cells contain large, more or less round electron-dense granules which are formed by numerous Golgi complexes. Type II gland cells contain thread-like, membrane-bound secretory granules with longitudinally arranged microtubules inside the granules; secretory droplets are produced by Golgi complexes and the microtubules apparently condense in the cytoplasm or in the droplets. Type III gland cells contain irregular-ovoid membrane-bound granules with coiled up microtubules which have an electron-dense core; the granules are formed by secretionderived from Golgi complexes and the microtubules aggregate around and migrate into the secretion; microtubules are at first hollow and the early secretory granules have a central electron-dense region.  相似文献   

5.
The labial glands in Prorhinotermes simplex consist of secretory cells organized into acini, water sacs and the ducts connecting the gland parts to the basis of the labium. Acini are composed of central and parietal cells. Central cells type I contain predominantly lucent vacuoles and are involved probably in hydroquinone production. They are lacking in soldiers. Type II central cells produce vacuoles of proteinaceous content which are of the same electron density (type IIa) or present in more shades (type IIb). Type IIa cells are present in all older individuals, whereas type IIb are lacking in soldiers and neotenics. Type III cells represent a specific stage of type I cells development, but they are definite functional secretory cells in soldiers. Acini of first instar larvae contain undifferentiated cells which differentiate into type I cells during the second instar. Specific larval central cells start to change into type II cells during first instar. The central cells of presoldiers show a transition from the pseudergate into the soldier situation. The parietal cells keep a uniform structure throughout the whole ontogeny. Only one type of cells form the water sacs in all castes. The cells are very flat with scarce organelles. The water sac cells produce lipid-like secretion, small lucent vacuoles and bunches of angulated vacuoles. The water sac probably functions as water storage organ only. Ontogenetical changes in water sac development are small. The acinar ducts originate inside the acinus where they are formed by flat cells with rare organelles. At the acinus border, cells equipped with mitochondria, microvilli and basal invaginations appear. The water sac ducts are formed by flat cells with rare organelles. Acinar ducts outside the acinus and water sac ducts are equipped with taenidiuam.  相似文献   

6.
The androgenic glands (AG) of male decapod crustaceans produce insulin-like androgenic gland (IAG) hormone that controls male sex differentiation, growth and behavior. Functions of the AG are inhibited by gonad-inhibiting hormone originating from X-organ-sinus gland complex in the eyestalk. The AG, and its interaction with the eyestalk, had not been studied in the blue swimmer crab, Portunus pelagicus, so we investigated the AG structure, and then changes of the AG and IAG-producing cells following eyestalk ablation. The AG of P. pelagicus is a small endrocrine organ ensheathed in a connective tissue and attached to the distal part of spermatic duct and ejaculatory bulb. The gland is composed of several lobules, each containing two major cell types. Type I cells are located near the periphery of each lobule, and distinguished as small globular cells of 5-7 μm in diameter, with nuclei containing mostly heterochromatin. Type II cells are 13-15 μm in diameter, with nuclei containing mostly euchromatin and prominent nucleoli. Both cell types were immunoreactive with anti-IAG. Following bilateral eyestalk ablation, the AG underwent hypertrophy, and at day 8 had increased approximately 3-fold in size. The percentage of type I cells had increased more than twice compared with controls, while type II cells showed a corresponding decrease.  相似文献   

7.
The ultrastructure of the nucleus of the basal optic root in an avian species (Columba livia) was investigated. The ectomamillary nucleus (EMN) in which terminates the basal optic tract reveals three types of neurons: 1) small round neurons bearing a scanty cytoplasm in organelles, 2) medium-sized neurons, spindle-shaped with a dense population of organelles and 3) large multipolar neurons with well developed perikaryal elements. Some of these neurons have their inner plasma-membrane which fuse to make junctional zones alternating between attachment plates and gap junctions. The analysis of the neuropil displays four types of vesicle-containing profiles (VCP), Type I VCP, identified as optic terminals, are numerous (49%), contain round vesicles (500-550 A) and establish Gray type I contacts principally with dendrites. They also participate in serial and triadic arrangements. Type II VCP have lighter hyaloplasm and are less numerous (6,7%). Rounded vesicles (450-500 A) with a clear content synapse also with Gray type I active zones on dendrites. Some of these profiles have the peculiarity of both a chemical and electrical transmission known as mixed synapses. Type III VCP are larger and contain a mixed population of rounded and flattened vesicles which synapse according to Gray type II. Type IV VCP are characterized by a light hyaloplasm where the microtubules are a predominant organelle. Their active zones are also of Gray type II.  相似文献   

8.
The morphology of in vitro grown lower trypanosomatids L. peterhoffi was studied by means of electron microscopy. The flagellates from both liquid and solid culture media are represented by uninucleate cells of two structural types. Type I flagellates are characterized by dense cytoplasm enriched with numerous ribosomes. Type II flagellates are most abundant in the cultures; they display a less dense cytoplasm and fewer ribosomes. The flagella of L. peterhoffi of both types form enlargements, which are most expressed at the outlet of the flagellar pocket. The nuclei of some cells contain twisted threads about 10 nm in diameter. L. peterhoffi from the liquid media usually possess long, narrow and curved flagellar pockets. On the solid medium, amoeboid and hemispherical colonies composed of both uninucleate and giant multinucleate cells are formed. In these cells the flagellar pockets are usually short and straight. Outside the flagellar pocket, the axoneme often becomes looped in the flagellar enlargements of the colonial uninucleate cells.  相似文献   

9.
《Journal of morphology》2017,278(10):1438-1449
Ovaries of Acipenser baerii are of an alimentary type and probably are meroistic. They contain ovarian nests, individual follicles, inner germinal ovarian epithelium, and fat tissue. Nests comprise cystoblasts, germline cysts, numerous early previtellogenic oocytes, and somatic cells. Cysts are composed of cystocytes, which are connected by intercellular bridges and are in the pachytene stage of the first meiotic prophase. They contain bivalents, finely granular, medium electron dense material, and nucleoli in the nucleoplasm. Many cystocytes degenerate. Oocytes differ in size and structure. Most oocytes are in the pachytene and early diplotene stages and are referred to as the PACH oocytes. Oocytes in more advanced diplotene stage are referred to as the DIP oocytes. Nuclei in the PACH oocytes contain bivalents and irregularly shaped accumulation of DNA (DNA‐body), most probably corresponding to the rDNA‐body. The DNA‐body is composed of loose, fine granular material, and comprises multiple nucleoli. At peripheries, it is fragmented into blocks that remain in contact with the inner nuclear membrane. In the ooplasm, there is the rough endoplasmic reticulum, Golgi complexes, free ribosomes, complexes of mitochondria with cement, fine fibrillar material containing granules, and lipid droplets. The organelles and material of nuclear origin form a distinct accumulation (a granular ooplasm) in the vicinity of the nucleus. Some of the PACH oocytes are surrounded by flat somatic cells. There are lampbrush chromosomes and multiple nucleoli present (early diplotene stage) in the nucleoplasm. These PACH oocytes and neighboring somatic cells have initiated the formation of ovarian follicles. The remaining PACH oocytes transform to the DIP oocytes. The DIP oocytes contain lampbrush chromosomes and a DNA‐body is absent in nuclei. Multiple nucleoli are numerous in the nucleoplasm and granular ooplasm is present at the vegetal region of the oocyte.  相似文献   

10.
Summary Early meiotic stages of Arbacia punctulata oocytes have revealed the presence of synaptinemal complexes in the chromosomes, which persist through zygotene-pachytene. The synaptinemal complexes conform broadly to the usual tripartite structures found in other higher forms. In addition, nuclei at these stages consist of a small nucleolus and dense bodies of varying sizes. The nucleolus is fibrillar in texture throughout and does not seem to incorporate Uridine-5-3H after pulse labeling, whereas the chromosomes are labeled. The nucleolar label is visualized at diplotene stages and onwards. The nuclear envelope differentiates by the appearance of numerous nuclear pore complexes with dense material in the annuli, and the chromosomes become markedly diffused. At vitellogenesis stage the nucleolus and chromatin become highly labeled after pulse incorporation of Uridine, indicating synthesis of ribosomal and chromosomal RNAs.This investigation was supported by grants No. A-5049, A-3624 and D-17 from National Research Council, Canada, grant No. DRB-9340-05 (U6) from Defense Research Board, Canada, and grant No. DRG-918 AT from Damon Runyon Memorial Fund for Cancer Research.  相似文献   

11.
The ultrastructure of the adenohypophysis (AH) in the larval anadromous sea lamprey, Petromyzon marinus L., was examined. The AH is subdivided into three regions, the pro-, meso-, and meta-AH. Cells of the nasopharyngeal stalk extend directly beneath the pro- and meso-AH to form the ventral surface of the gland. Some cells in the pro- and meso-AH are arranged into small follicles. Each region of the AH is characterized by a single granulated (secretory) cell type. Granulated cells constitute 80–90% of the pro-AH and contain secretory granules that range from 800 to 2400 Å in diameter. Only 10–20% of the cells in the meso-AH are granulated and they contain much smaller secretory granules (400 to 1250 Å diameter) than those in the pro-AH. Granulated cells constitute 80–90% of the meta-AH and contain only a few secretory granules, ranging from 1000 to 2500 Å in diameter, and many vesicles containing either a loose flocculent or dense granular material. Nongranulated (stellate) cells are found in all regions. They are characterized by their long cell processes, abundant cytoplasmic filaments, and variable electron density. The appearance of organelles in these cells suggests they are nonsecretory. They may play a role in maintaining the structural integrity of the gland and the regulation of granule release in the pro-AH. Two types of nongranulated cells make up 80–90% of the meso-AH. Type I are stellate cells, type II may be undifferentiated cells. The functional significance of the secretory cells in the larval AH is discussed.  相似文献   

12.
The storage sites of the pituitary glycoprotein hormones were identified with the use of electron microscopic immunocytochemical techniques and antisera to the beta (beta) chains of follicle-stimulating hormone (FSH), luteinizing hormone (LH) and thyroid-stimulating hormone (TSH). The TSH cells in normal rats is ovoid or angular and contains small granules 60-160 nm in diameter. In TSH cells hypertrophied 45 days after thyroidectomy, staining is in globular patches in granules or diffusely distributed in the expanded profiles of dilated rough endoplasmic reticulum. The gonadotrophs (FSH and LH cells) exhibited three different morphologies. Type I cells are ovoid with a population of large granules and a population of small granules. Staining for FSHbeta or LHbeta was intense and specific only in the large granules (diameter of 400 nm or greater). Type II cells are angular or stellate and contain numerous secretory granules averaging 200-220 nm in diameter. They predominate during stages in the estrous cycle when FSH or LH secretion is high. Type III cells look like adrenocorticotropin (ACTH) cells in that they are stellate with peripherally arranged granules. They generally stain only with anti-FSHbeta and their staining can not be abolished by the addition of 100 ng ACTH. In preliminary quantitative studies of cycling females, we found that on serial sections FSH cells and LH cells show similar shifts to a more angular population of cells during stages of active secretion. However, the shifts are not in phase with one another. Furthermore, there are at least 1.5 times more FSH cells than LH cells at all stages of the cycle. Our collection of serial cells shows that some cells (usually type I or II) stain for both gonadotropic hormones, whereas others (usually type II or III) contain only one.  相似文献   

13.
Summary The fine structure of granulosa lutein cells from three crabeater seals, Lobodon carcinophagus, and two leopard seals, Hydrurga leptonyx, has been studied from early through mid-pregnancy. Analysis of the arrangement and modifications of the cytoplasmic organelles and inclusions has revealed three types of lutein cells throughout the corpus. Type I cell typically possesses a central nucleus and cytoplasm containing very large amounts of smooth and/or fenestrated endoplasmic cisternae which frequently extend from the juxta-nuclear to the periphery of the cell. Type II cell contains a central or eccentric nucleus, moderate amounts of peripheral, smooth and fenestrated cisternae which often form large and concentric membranous whorls, numerous mitochondria and small lipid droplets. Frequently these cells show polarity in the arrangement of the cytoplasmic organelles and inclusions. Type III cell contains predominant large lipid droplets, many mitochondria, and small amounts of smooth and fenestrated cisternae. In light microscopy the type I cell is evenly granular, while the type III cell is highly vacuolated. Type II cells have both granular and vacuolated conditions. Ultrastructural features of type I and II cells suggest that they probably secrete most of the steroids, whereas the primary role of the type III cells appear to be lipid storage.This research was supported by National Science Foundation, Grant No. 1325 from the Office of Antarctic Biology.  相似文献   

14.
Summary Growth hormone (GH) secretory cells were identified by immunogold cytochemistry, and were classified on the basis of the size of secretory granules. Type I cells contained large secretory granules (250\2-350 nm in diameter). Type II cells contained the large secretory granules and small secretory granules (100\2-150 nm in diameter). Type III cells contained the small secretory granules. The percentages of each GH cell type changed with aging in male and female rats of the Wistar/Tw strain. Type I cells predominated throughout development; the proportion of type I cell was highest at 6 months of age, and decreased thereafter. The proportion of type II and type III cells decreased from 1 month to 6 months of age, but then increased at 12 and 18 months of age. The pituitary content of GH was highest at 6 months of age, and decreased thereafter. Estrogen and androgen, which are known to affect GH secretion, caused changes in the proportion of each GH cell type. The results suggest that when GH secretion is more active the proportion of type I GH cell increased, and when GH secretion is less active the proportion of type II and type III cells increased. The type III GH cell may therefore be an immature type of GH cell, and the type I cell the mature type of GH cell. Type II cells may be intermediate between type I and III cells.  相似文献   

15.
Summary The innervation of the gut of the venerid bivalve mollusc, Chione stutchburyi, has been examined by fluorescence histochemistry, electron microscopy and autoradiography. Specific green and yellow varicose fluorescent fibres indicate the presence of dopaminergic and serotonergic axons, respectively. Three different types of axons can be distinguished by the morphological characteristics of their vesicles. Type I axons contain predominantly small granular vesicles (average diameter 65 nm), Type II axons possess large granular vesicles (average diameter 100 nm) and Type III axons contain large opaque vesicles (average diameter 150 nm). The granular vesicles in both Types I and II axons react positively to dichromate, and their granularity is reduced by reserpine indicating that they are monoaminergic. Only Type I axons accumulate tritiated dopamine and are selectively damaged by 6-hydroxydopamine. It is concluded that Type I axons are dopaminergic. Type II axons are serotonergic: they alone take up tritiated 5-hydroxytryptamine, and 5,7-dihydroxytryptamine selectively causes degenerative changes in these axons. Type III axons contain an unidentified neurotransmitter substance. The large opaque vesicles of these axons do not react to dichromate and are unaffected by reserpine, 6-hydroxydopamine or 5,7-dihydroxytryptamine.  相似文献   

16.
Four classes of microscopic cuticular hair organs were found on the chelae of Homarus americanus (Milne-Edwards). Type I and Type II organs possess long single sensillae, 30–60 μm and 70–130 μm, respectively. Type III organs are toroid bumps 20–30 μm in diameter, with a small tuft of fibers projecting from the center. Type IV organs are small conical hairs ≈ 1 μm in length.Type IV organs were uniformly distributed over the claws. The distributions of Types I, II, and III organs were analysed through multivariate analysis of variance (MANOVA) with respect to claw, side, and area. Type I organs showed significance of the three-way interaction only. Type II organs showed significance of side, area, and the claw by area interaction. Type III organs showed significance of area, and all interactions. Changes in number and density of Types I, II and III organs, and in number of Type IV organs, were found with growth.  相似文献   

17.
Summary The ultrastructure of the intermediate lobe of the hypophysis was studied in Anolis carolinensis with the use of a threefold aldehyde fixative. Lizards with a brown skin were selected. The possibility of two types of secretory cells is discussed; neither cell type is innervated. Type I cells are rarely found and contain dense granules approximately 0.3 m in diameter; Type II cells vary widely in secretory activity. Most of the Type II cells contain a large number of dense secretory granules (up to about 1.3 m in diameter) almost filling the cytoplasm. Rough endoplasmic reticulum (RER), Golgi apparatus and mitochondria are poorly developed. Only some of these cells show signs suggesting a high secretory activity, namely a well developed RER, Golgi apparatus and numerous mitochondria. In these cells the RER sometimes forms large intracisternal droplets (up to 7 m in diameter). Two of the animals exhibited a more uniform, high secretory activity. Large (about 2 m in diameter), pale vacuoles, probably of extracellular character, were found mostly in the vicinity of the perivascular septum. Their role in the release of MSH is discussed. The present data, which are discussed with reference to earlier findings (Forbes, 1972), form the morphological basis for an experimental study on regulation of MSH release (Larsson et al., 1979).Supported by grants from the Swedish Natural Science Research Council (to P. Meurling) and the Royal Physiographic Society of LundThe authors are indebted to Mrs. Ingrid Hallberg, Mrs. Kirsten Thörneby and Mrs. Lena Sandell for valuable technical assistance and to Miss Inger Norling for photographic aid  相似文献   

18.
The liver of the Japanese newt, Cynops pyrrhogaster, has been investigated using light, scanning, and transmission electron microscopy. Hepatic parenchyma was composed of clusters and cords or tubules of polyhedral cells separated by a sinusoidal net. Hepatocytes had spherical, euchromatic nuclei with one or more nucleoli and stacked mitochondria with sparse cristae and dense bodies. Rough endoplasmic reticula formed peribiliary stacks and diffusely scattered vesicles and tubules. Smooth endoplasmic reticula were more pronounced in glycogen-rich hepatocytes. Most hepatocytes contained peroxisomes, Golgi complexes and large numbers of fat droplets within the cytoplasm along with glycogen. Some cells were mainly glycogen-storing and contained few or no fat droplets. A special feature of the newt liver was biliary atresia. Bile canaliculi had short, stout microvilli which were entirely atretic in some canaliculi. Canaliculi were sealed off by junctional complexes including zonulae occludentes and maculae adherentes. The latter showed extraordinary wider desmosomal gaps in the vicinity of the atretic bile canaliculi. The sinusoid wall was non-distinctive and contained fenestrated endothelial cells connected to Kupffer cells by zonulae occludentes. A distinctive new cell type (OG cell) was observed in the newt liver. These cells were found individually or in small clusters in proximity with the sinusoidal surfaces. They had small nuclei, a paucity of cytoplasmic organelles, but numerous, unique, osmiophilic granules of two distinct types. Less numerous Type I granules contained homogeneous electron-dense material, and a predominant Type II granule contained circumferentially arranged subparticulation. Granules of both types were detected within the cytoplasm of endothelial cells and within sinusoids together with blood elements. The function of this secretory type cell remains obscure, though it may represent a stage of melanophore.  相似文献   

19.
Taste buds in foliate papillae of the rhesus monkey were examined by electron microscopy. Three distinct cell types were identified. Type I cells were narrow elongated cells containing an oval nucleus, bundles of intermediate filaments, several Golgi bodies, and characteristic apical membrane-bounded dense granules. These cells exhibited morphological variations: some had a moderately dense cytoplasm, perinuclear free ribosomes, and flattened sacs of rough endoplasmic reticulum; others had a more lucent cytoplasm, dilated irregular rough endoplasmic reticulum, lysosome-like dense bodies, and lipid droplets. Type II cells typically contained a spherical, pale nucleus, a prominent nucleolus, supranuclear and infranuclear Golgi bodies, mitochondria with tubular cristae, and one or two centrioles. This cell type, too, showed some variation in the relative amounts of ribosomes and smooth endoplasmic reticulum, which varied inversely with each other. Type III cells were characterized by a clear apical cytoplasm essentially devoid of ribosomes and containing microtubules. In a few type III cells, the peri- and infranuclear regions contained many ribosomes and some rough endoplasmic reticulum. In most Type III cells, there were large numbers of dense and clear vesicles in the peri- and infranuclear regions; some of the vesicles were grouped in synapse-like arrangements with adjacent nerves. The morphological variations exhibited by all three cell types could be accounted for by age differences in each of the cells. This would be consistent with the notion that cell renewal occurs in each of the three cell populations.  相似文献   

20.
The neurohypophysial lobe is a thin-walled sac that, except for a few blood vessels, lacks any anatomical link with the adenohypophysis. Its wall consists of ependymal, fiber and palisade zones and is surrounded by blood vessels. The lobe is differentiated into distinct dorsal and ventral regions. The dorsal wall is doubly innervated by Gomori-positive axons arising in the anterior hypothalamus and by Gomori-negative fibers of unknown origin. Its surface is covered by an extensive vascular plexus. The ventral wall is innervated only by Gomori-negative fibers and is sparsely supplied with a few fine capillaries. All of the ependymal cells in both regions have the same ultrastructural appearance. The Gomori-positive or Type I axons are identified at the electron microscope level as fibers containing elementary granules with a diameter of 150–230 run. The Gomori-negative or Type II fibers contain dense-cored vesicles that vary from 80–125 nm in diameter. Both Type I and II fibers form synaptic-like complexes with the processes and end-feet of the ependymal cells. Type I axons also abut on the basal lamina bounding the perivascular spaces. It is suggested that the agranular reticulum of the ependymal cells may provide a transport pathway for neural products that are destined for release into the circulation. It is also possible that the ependyma itself is a target of neural activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号