首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 54 毫秒
1.
Abstract. The starlet sea anemone, Nematostella vectensis Stephenson 1935, is a burrowing, estuarine species that has become a model organism for fundamental studies of cnidarian and metazoan development. During early oogenesis, oocytes appear in the basal region of the gastrodermis in the reproductive mesenteries and gradually bulge into the adjacent connective tissue space (mesoglea) where the majority of oocyte growth and vitellogenesis occurs. However, oocytes do not physically contact the cellular and amorphous matrix of the mesogleal compartment due to a thin, intervening basal lamina. Oocytes retain limited contact with the basal gastrodermal epithelium via groups of ultrastructurally modified gastrodermal cells called trophocytes. Trophocytes are monociliated accessory cells of somatic origin that collectively form a structure called the trophonema, a unique accessory cell/oocyte association not observed outside the Cnidaria. The trophonema consists of 50–60 trophocytes that maintain contact with <1% of the oocyte surface and forms a circular, bowel‐shaped depression on the luminal surface of the gastrodermis as they sink into the mesoglea with the oocyte. The oocyte remains highly polarized throughout oogenesis with the germinal vesicle positioned near the trophonema and presumably representing the future animal pole of the embryo. Contact between the trophonema and the oocyte is restricted to cell junctions connecting peripheral trophocytes and narrow extensions from the oocyte. Previous studies suggest that the trophonema plays a role in transport of extracellular digestive products from the gastrovascular cavity to the oocyte, and the ultrastructural features described in this study are consistent with that view. Vitellogenesis is described for the first time in a sea anemone. Yolk synthesis involves both autosynthetic and heterosynthetic processes including the biosynthetic activity of the Golgi complex and the uptake of extraoocytic yolk precursors via endocytosis, respectively.  相似文献   

2.
The morphological features of oocyte and germinal epithelium (epithelial wall of germinal sinus) contact area in Scyphomedusa Aurelia aurita are described. Growing oocytes were divided into seven stages based on oocyte size. The structure revealed the area of contact between the oocyte and the germinal epithelium called the contact plate. During oocyte growth, single granules are fused into the homogeneous mass area of oocyte contact with epithelium. Plate components bound antibodies to mesoglein. It was assumed that the plate material contained ZP-domain proteins. Electrophoresis and immunoblotting results show that proteins immunologically similar to mesoglein have higher molecular masses, probably due to post-translation modifications, which are common for extracellular proteins. On the other hand, however, gonad proteins may be other representatives of jellyfish ZP-domain proteins. Further experiments should be conducted to clarify which alternative is true.  相似文献   

3.
In apoikogenic scorpions, growing oocytes protrude from the gonad (ovariuterus) and develop in follicles exposed to the mesosomal (i.e. hemocoelic) cavity. During subsequent stages of oogenesis (previtellogenesis and vitellogenesis), the follicles are connected to the gonad surface by prominent somatic stalks. The aim of our study was to analyze the origin, structure and functioning of somatic cells accompanying protruding oocytes. We show that these cells differentiate into two morphologically distinct subpopulations: the follicular cells and stalk cells. The follicular cells gather on the hemocoelic (i.e. facing the hemocoel) surface of the oocyte, where they constitute a cuboidal epithelium. The arrangement of the follicular cells on the oocyte surface is not uniform; moreover, the actin cytoskeleton of these cells undergoes significant modifications during oocyte growth. During initial stages of the stalk formation the stalk cells elongate and form F-actin rich cytoplasmic processes by which the stalk cells are tightly connected to each other. Additionally, the stalk cells develop microvilli directed towards the growing oocyte. Our findings indicate that the follicular cells covering hemocoelic surfaces of the oocyte and the stalk cells represent two distinct subpopulations of epithelial cells, which differ in morphology, behavior and function.  相似文献   

4.
In Molgula pacifica small previtellogenic oocytes are found between cells of the ovarian epithelium. Each oocyte subsequently grows within a compartment of the epithelium known as a primary follicle. The wall of the primary follicle is composed of outer follicular epithelial cells. While growing from about 15–70 μm in diameter, each oocyte gradually recruits a set of about 950 non-epithelial inner follicular cells. These cells co-differentiate in sets with each oocyte, but test cells never appear. The first filamentous components of the vitelline coat appear on the surface of an oocyte in places where it is in contact with undifferentiated (stage 2) inner follicular cells. Each fully differentiated inner follicular cell stores adhesive precursors in a large compartment of the endoplasmic reticulum and probably secretes components of the vitelline coat. There is no evidence that the outer follicular epithelial cells transform into inner follicular cells by dedifferentiation as has often been assumed. Inner follicular cells, in stage 1, are nearly identical to hemoblasts. Hemoblasts may form the inner follicular cells, but to do this they would have to cross the outer follicular epithelium and this phenomenon has not yet been seen.  相似文献   

5.
Sea anemone gametes arise in the endoderm but migrate into the mesoglea at an early stage. In order to observe this process, large individuals of Actinia fragacea were collected from the same intertidal location at regular intervals over a 2-year period, and their gonads were examined by light and electron microscopy. The cellular origin of the oocytes is unclear, but the smallest recognizable oocytes are rounded cells, 6-8 microns in diameter, with relatively large nuclei which may contain synaptinemal complexes. Their cytoplasm contains numerous ribosomes, a flagellar basal-body-rootlet complex, and distinctive dense structures also present in male germ cells but not found in anemone nongerminal cells. During the endodermal phase of growth, the density of the oocyte nucleus increases, a single nucleolus becomes prominent, and mitochondria and glycogen accumulate in the cytoplasm. Most oocytes, but not all, only begin major vitellogenesis after entry into the mesoglea. Most oocytes enter the mesoglea vitellogenesis after entry into the mesoglea. Most oocytes enter the mesoglea before they attain a diameter of 25 microns. The oocytes migrate toward and enter the mesoglea by a process resembling amoeboid movement. During entry, the oocytes are constricted into a characteristic "hourglass" shape and become covered by a basal lamina continuous with that of the gonad epithelium. The last part of the oocyte to enter the mesoglea forms an intimate relationship with the surrounding endodermal cells, which is maintained after entry is complete, and is thought to be important in the establishment of the trophonema.  相似文献   

6.
The microscopic anatomy and ultrastructure of the body cavity and adjacent organs in the sea spider Nymphon brevirostre Hodge, 1863 (Pycnogonida, Nymphonidae) were examined by transmission electron microscopy. The longitudinal septa subdividing the body cavity are described: (1) Dohrn’s horizontal septum, (2) lateral heart walls, and (3) paired ventral septa consisting of separate cellular bands. The body cavity is a hemocoel, it has no epithelial lining and is only bordered by a basal lamina. The epidermis, heart, and Dohrn’s septum are not separated from each other by basal laminae and may have a common origin. The cellular bands forming the longitudinal ventral septa are not covered with the basal lamina and presumably derive from cells belonging to the hemocoel. The roles of the morphological structures studied for the circulation of hemolymph are discussed. The gonad lies inside Dohrn’s septum, it is covered with its own basal lamina and surrounded by numerous lacunae of the hemocoel entering the septum. The gonad wall is formed with a single layer of epithelium. The same epithelial cells form the gonad stroma. The gonad cavity is not lined with the basal lamina; muscle cells are present in the gonad wall epithelium, thus rendering the lumen similar to a coelomic cavity. Freely circulating cells of two types are found in the hemocoel: small amebocytes containing electronic-dense granules that are similar to granulocytes of other arthropods, as well as hemocytes with large vacuoles of varying structure that are comparable with plasmatocytes; however some of these may be activated granulocytes.  相似文献   

7.
Oocytes of the polychaete Dipolydora commensalis develop in the gonad, in close contact with the wall of the genital blood vessel, up to the late stages of vitellogenesis. At the blood vessel wall, between the neighboring vitellogenic oocytes, and sometimes on the apical surface of the oocytes, there are flattened follicular cells. However, no continuous, well-expressed gonad envelope is found. Oogenesis is asynchronous. Gametes at all developmental stages, from oogonia to late vitellogenic oocytes, occur in the gonad. Dividing oogonia vary from 6 to 10 m in diameter. RNA, proteins, glycogen, and lipids accumulate in the oocytes during vitellogenesis. The breakdown of the oocyte germ vesicle occurs in the gonad. Before spawning, gametes accumulate in the coelom and reach 80–90 m in diameter, at which point a new generation appears in the gonad.  相似文献   

8.
This study describes the reproductive strategy of the stream‐dwelling catfish Hatcheria macraei in the Pichileufu River, Argentina. Gonad maturity phases, classified on the basis of histological analysis, stages of gamete development and the frequency distribution of oocyte size, were correlated with macroscopic features of the gonads. Hatcheria macraei has a cystovarian ovary, asynchronous oocyte development and lobular testes. Five oocyte and four spermatogenic stages were identified and related to macroscopic gonad characteristics, making it possible to divide gonad development into five phases for females and males. Mature oocyte diameter ranged from 922 to 1935 µm. Absolute fecundity in mature females varied from 115 to 480 oocytes. Hatcheria macraei has multiple spawning during a protracted reproductive season that extends from December to April. This, together with its small size, is characteristic of an opportunistic reproductive strategy, commonly found in species that inhabit adverse and unpredictable environments, such as the low‐order rivers of Patagonia.  相似文献   

9.
Summary The unpaired germarium of Dicrocoelium dendriticum contains many female germ cells at different stages of maturation and is enveloped by a fibrous basal lamina-like structure and a multilayered cytoplasmic sheath whose origins and functions are discussed. The maturation process of primary oocytes occurs completely within the prophase of the first meiotic division. It has been divided into three stages, as previously suggested for monogeneans. Stage I corresponds to oogonia and early oocytes which are located in the distal germinative area of the gonad. These cells are characterized by a high nucleo/cytoplasmic ratio and a poorly differentiated cytoplasm. Stage II corresponds to maturing oocytes grouped in the central area of the gonad and exhibiting long synaptonemal complexes and a prominent nucleolus. The main feature of cytoplasmic differentiation is the increase in the number of RER and Golgi complex which are involved in the production of small electron-dense granules. Stage III corresponds to mature oocytes located in the proximal area of the germarium near the origin of the oviduct. In this stage, the granules become regularly distributed in a monolayer in the peripheral ooplasm and make contact with the oolemma. They show a distinctive complex structure, are composed of proteins and glycoproteins and do not contain polyphenols. Their possible role as cortical granules is discussed in relation to chemical composition and previous studies on other Plathelminthes. Neither yolk globules nor glycogen are present in the oocytes.Abbreviations I oogonium and early oocyte - II growing oocyte - III mature oocyte - cg cortical granule - cs cytoplasmic sheath - db dense body - ecm extra cellular matrix - ER endoplasmic reticulum - fl fibrous extracellular layer - gc Golgi complex - m mitochondria - N nucleus - nu nucleolus - RER rough endoplasmic reticulum - sc synaptonemal complex  相似文献   

10.
Summary

In France, national management programs focus research on understanding reproductive factors in Crassostrea gigas to confront problems of the oyster industry. However, little information has been documented in which reproductive patterns include sexual changes. The reproductive cycle of oysters at three sites of the Atlantic coast of France was examined from 1996 to 1998, and the seasonal variations in oocyte size-frequencies, and sex ratio were described. The results showed a synchronism within the population concerning reproductive behavior. Young oocytes are generated after spawning and show no apparent changes during winter. Growth of oocytes begins in spring and cells reach maturity in April-May and are ready for a single spawning season in June-July. Oocytes that were not released during spawning are reabsorbed within the gonad. The significant difference between sites is that spawning occurred 1 month later in the southern area. A modal analysis showed that oocyte populations in the sample individuals are primordially bimodal, but with polymodal occurrences in June-July, in some cases. Irregular alternative sexuality was detected at all sites, and hermaphrodites appear to be a transition phase that allows changes from male to female during early spring. Previous observations, together with the study of the development of oocyte cohorts over time, permit a hypothetical model concerning the kinetics of gametogenesis in C. gigas. The model suggests that primary oocytes are generated from energy supplied from degenerating, as well as young oocytes that do not reach the mature stage within the gonad during autumn-winter. It seems that, during vitellogenesis, there is disintegration of smaller cells coupled with transfer of energy to the larger oocytes, which continue to grow and mature.  相似文献   

11.
A follicle specific protein (FSP-I) from the hawkmoth Manduca sexia, has been localized in developing follicles by immuno-fluorcscence and immuno-gold labeling techniques. At the light microscopical level, the protein was demonstrated to be present in both the basolateral and apical parts of foilicular epithelial cells, as well as in clearly defined, spherical compartments in the cortex of the developing oocyte. Immuno-gold labeling at the electron microscopical level revealed the localization of FSP-I in cndoplasmic compartments of the foilicular epithelial cells, in the extracellular matrix of the follicle and in endocytic compartments of the oocyte. Our results indicate that M. sexta FSP-I is synthctizcd and secreted by the foilicular epithelial cells, after which it is taken up by the developing oocyte through endocytic routes.  相似文献   

12.
This study documents changes in gonadal structure for the serial hermaphrodite (or bidirectional sex changer) divine dwarfgoby Eviota epiphanes (family Gobiidae) as individuals transition in both directions. To evaluate transitional gonad morphology, individuals actively producing the same gamete type (oocytes or sperm) were set up into pairs and euthanised over a period of 14 days to get a time series of morphological changes during gonad transformation. Results from this study show that rapid changes in the gonad take place at a structural level as individuals change their reproductive function and gamete production. Changing from oocyte production (o-phase) to sperm production (s-phase) starts with the breakdown of vitellogenic oocytes (i.e., atresia) followed by the appearance and proliferation of spermatogenic tissue which, in most cases, was not previously visible. Changing from sperm production to oocyte production included the cessation of sperm production, a reduction in size and number of seminiferous lobules and the maturation of previtellogenic oocytes already present in the gonads. Experimental fish changed from oocyte production to sperm production more readily than from sperm production to oocyte production. The hypothesis that shifts in sexual function among serially hermaphroditic fish species have a similar cost in either direction is not supported in E. epiphanes.  相似文献   

13.
The ovaries of Orthezia urticae and Newsteadia floccosa are paired and composed of numerous short ovarioles. Each ovariole consists of an anterior trophic chamber and a posterior vitellarium that contains one developing oocyte. The trophic chamber contains large nurse cells (trophocytes) and arrested oocytes. The total number of germ cells per ovariole (i.e., cluster) is variable, but it is always higher than 32 and less than 64. This suggests that five successive mitotic cycles of a cystoblast plus additional divisions of individual cells are responsible for the generation of the cluster. Cells of the trophic chamber maintain contact with the oocyte via a relatively broad nutritive cord. The trophic chamber and oocyte are surrounded by somatic cells that constitute the inner epithelial sheath around the former and the follicular epithelium around the latter. Anagenesis of hemipteran ovarioles is discussed in relation to the findings presented. © 1995 Wiley-Liss, Inc.  相似文献   

14.
摘要:应用免疫组织化学方法,系统观察性成熟期高白鲑(Coregonus peled)神经系统及性腺中的促性腺激素释放激素( GnRH)的分布情况。结果表明,GnRH在大脑、小脑、中脑、脊髓、延髓中免疫阳性反应明显,且主要分布在神经元内。GnRH免疫阳性细胞在卵巢和精巢中均有分布,而且其阳性部位在卵巢主要分布于小生长期卵...  相似文献   

15.
The aim of this study is to assess, by RT‐PCR, in situ hybridization, electron microscopy, and immunohistochemistry, the site/s of vitellogenin (VTG) synthesis in the mussel Mytilus galloprovincialis. Our investigations demonstrate that, among the analyzed tissues, the synthesis of VTG occurs only in the female gonad, that is, within the oocyte and follicle and connective cells. Such a synthesis is just evident in early vitellogenic oocytes, whose cytoplasm is characterized by numerous RER cisternae and an extended Golgi complex surrounded by nascent yolk platelets. The synthesis of VTG goes on in vitellogenic oocytes assuming a pear form, and progressively reduces once the oocyte shows the pear or polygonal form, typical of those oocytes that have concluded the growth. The expression of VTG occurs also within follicle (auxiliary) and connective cells. In particular, it is noteworthy that follicle cells are characterized by numerous RER cisternae and an active Golgi complex surrounded by numerous vesicles and vacuoles containing electron dense material. The same material is also present along their plasma membrane, within the intercellular space between oocyte and follicle cells, and finally within invaginations of the oocyte surface, thus suggesting a VTG transfer to the oocyte via endocytosis. Differently, no VTG synthesis was observed within digestive gland. All together the findings here reported strongly suggest that in M. galloprovincialis, inside the gonad, the VTG synthesis occurs in the oocyte (autosynthesis) and in the follicle and adipogranular cells (heterosynthesis). J. Cell. Physiol. 228: 547–555, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

16.
Oocytes of hymenopterans are equipped with peculiar organelles termed accessory nuclei. These organelles originate from the germinal vesicle (oocyte nucleus) and gather preferentially at the anterior pole. To gain insight into the mechanism of uneven (asymmetrical) distribution of accessory nuclei, the organization of the microtubule cytoskeleton in the oocytes of two hymenopterans Chrysis ignita and Cosmoconus meridionator has been studied. It is shown that during late previtellogenesis two networks of microtubules are present along the contact zone between the oocyte and enveloping follicular epithelium. The external one is associated with belt desmosomes connecting neighbouring follicular cells. The internal network is composed of randomly orientated microtubules and separates transparent, organelle-free periplasm from the endoplasm. All cellular organelles and the germinal vesicle are localized in the endoplasm. Accessory nuclei are accumulated in the anterior endoplasm; they always lie in direct contact with the subcortical network. Treatment with colchicine results in the disappearance of the periplasm as well as in the redistribution of cellular organelles including accessory nuclei. Presented findings suggest that subcortical microtubules play an important role in the positioning of accessory nuclei throughout the ooplasm.  相似文献   

17.
Each oocyte in the ovary of Acerentomon is surrounded by a layer of follicle cells (FC) and possesses a group of specialized, so-called chorion-producing cells (CPC). The FCs lying immediately under the CPCs form processes which make contact with the oocyte. Gap junctions occur at the points of contact between the oolemma and the membrane of the processes. A possible role of the heterocellular gap junctions in Acerentomon ovary is the coordination of development of the oocyte and CPCs.  相似文献   

18.
Mouse oocyte development in vitro with various culture systems   总被引:7,自引:0,他引:7  
These experiments were designed to determine whether or not hormones are required for the growth of mouse oocytes and to assess the possible role of companion granulosa cells in oocyte growth. To approach these problems, four systems for the culture of oocytes, either alone or in association with granulosa cells, were utilized: (1) isolated oocyte culture, (2) isolated oocyte-ovarian cell coculture, (3) isolated follicle culture, and (4) ovarian organ culture. Oocytes from 8-day-old B6D2F1 mice failed to grow in isolated oocyte culture. Addition of follicle-stimulating hormone (FSH), 17β-estradiol (E2), or serum to the medium failed to prevent oocyte degeneration or to promote oocyte growth. On the other hand, oocytes in isolated follicle culture or in organ culture grew significantly in defined medium. The results showed that oocytes grown in isolated follicle culture under defined conditions and in the absence of gonadotropins resemble oocytes grown in vivo in terms of their ultrastructural characteristics, with the exception of enlarged mitochondria. In addition, these oocytes were shown to exhibit some normal functional characteristics in terms of their increased levels of CO2 evolution from exogenous pyruvate, and the ability of the fully grown oocytes to initiate meiotic maturation when freed from granulosa cells. It was concluded that gonadotropins are not necessary for oocyte growth and that gonadotropins are not required to potentiate the spontaneous meiotic maturation of oocytes which occurs after their isolation from granulosa cells. The results indicated that association of granulosa cells and oocytes was necessary for oocyte growth. However, isolated oocytes in coculture with ovarian cells failed to grow. Addition of FSH or E2 to the cocultures failed to promote oocyte growth or delay oocyte degeneration. It was concluded that, under the culture conditions used, granulosa cells must be in contact with the oocyte, perhaps by means of specialized cell junctions, for oocyte growth to occur.  相似文献   

19.
The morphology of vitellogenic oocytes and the batch fecundity of five tropical forage species belonging to the family Characidae, were studied in 104 late‐maturing ovaries. Significant morphological differences between vitellogenic oocytes and ovarian follicles were found. The lowest batch fecundity values were recorded in Hemigrammus marginatus (480 ± 163) and Orthospinus franciscensis (1701 ± 562), which were the smaller species in terms of total length, body weight and oocyte diameter. The highest batch fecundity value was observed in Tetragonopterus chalceus (8384 ± 3944) having the highest GSI and oocyte diameter. Batch fecundity and gonad weight was highly correlated followed by body weight and total length. Relative fecundity was estimated per unit total length, body weight and gonad weight. The wide variation in fecundity observed between the specimens and the species analysed is possibly related to the multiple spawning reproductive strategy of these fishes. Since T. chalceus have higher values of batch and relative fecundity, it is concluded that this species has a higher reproductive potential than the other forage species studied.  相似文献   

20.
The female gonad of Prorhynchus is heterocellular (neoophoran organization) and consists of an unpaired, elongate germovitellarium enveloped by a finely granular extracellular lamina. It is composed of a posterior germinative area where early oocytes are randomly associated with differentiating vitellocytes and a growth area with follicular organization. In each follicle a single oocyte is surrounded by a layer of vitellocytes. By electron microscopy, the oocytes showed features typical of non-vitellogenic germ cells; they had chromatoid bodies, annulate lamellae, lipid droplets and R.E.R. and Golgi complexes producing small granules with a multilamellar pattern. Vitellocytes showed features typical of secretory cells with the R.E.R. and Golgi complex developed to a great extent and involved in the production of type A and type B globules, respectively. We speculate that type A globules are shell-globules and type B globules are yolk. The structure, composition and role of vitellocyte globules of Prorhynchus are compared with those of homologous inclusions from other Platyhelminthes.Abbreviations A type A globule - B type B globule - ECL extracellular lamina - GC Golgi complex - L lipid - RER rough endoplasmic reticulum - O oocyte - V vitellocyte  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号