首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Growth of a human leukemic T-cell line (CEM C7) in 10(-6) M dexamethasone results in inhibition of growth and rapid loss of cell viability after a delay of approximately 18 to 24 hours. Analysis of dexamethasone-treated cells by flow-microfluorometry showed that they were arrested in the G1 phase of the cell cycle. Loss of cell viability began at the same time as G1 accumulation was first detectable, and 20% of all cells were found to be blocked in G1 at this time suggesting that loss of viability and G1 arrest were coincident events. Half-maximal and maximal effects on both viability and G1 arrest after 48 hours in steroid were nearly identical with respect to steroid concentration and corresponded to half-maximal and full occupancy of glucocorticoid specific receptor by hormone, consistent with a glucocorticoid receptor mediated mechanism for both phenomena. Most non-viable cells were arrested in G1, and accumulation of cells in G1 was irreversible; removal of steroid in the presence of colcemid did not result in a decreased fraction of G1 cells. Furthermore, dexamethasone treatment did not protect cells against the effects of 33258 Hoechst-amplified killing of bromodeoxyuridine substituted cells exposed to light. These results show that dexamethasone arrests these leukemic cells in G1 and strongly suggest that dexamethasone-treated cells are killed upon entry into G1.  相似文献   

2.
Four metastatic variant sublines of the B16 murine melanoma were assayed for glucocorticoid receptors and examined for effects of dexamethasone on surface charge-related partition behaviour in aqueous two-polymer systems, expression of membrane external proteins, and adhesion to growth substratum. BL6 and F10 cells possessed cytosolic glucocorticoid receptors and, on exposure to dexamethasone, showed increased partition in the charged aqueous two-polymer system with high phosphate, but not in non-charged PO4/NaCl buffer system. This suggests that the charged two-polymer system may detect membrane changes that may be receptor-mediated effects of dexamethasone. An increase in expression of certain proteins (p250) was detected in glucocorticoid receptor-positive BL6 and F10 cells but not in the receptor-negative lines. However, other proteins, such as p220, showed an increase in all four cell lines, presumably not receptor-mediated. Dexamethasone produced no detectable changes in the ability of the cells to adhere to plastic substratum.  相似文献   

3.
Cell adhesion to extracellular matrix is mediated by receptor-ligand interactions. When a cell first contacts a surface, it spreads, exerting traction forces against the surface and forming new bonds as its contact area expands. Here, we examined the changes in shape, actin polymerization, focal adhesion formation, and traction stress generation that accompany spreading of endothelial cells over a period of several hours. Bovine aortic endothelial cells were plated on polyacrylamide gels derivatized with a peptide containing the integrin binding sequence RGD, and changes in shape and traction force generation were measured. Notably, both the rate and extent of spreading increase with the density of substrate ligand. There are two prominent modes of spreading: at higher surface ligand densities cells tend to spread isotropically, whereas at lower densities of ligand the cells tend to spread anisotropically, by extending pseudopodia randomly distributed along the cell membrane. The extension of pseudopodia is followed by periods of growth in the cell body to interconnect these extensions. These cycles occur at very regular intervals and, furthermore, the extent of pseudopodial extension can be diminished by increasing the ligand density. Measurement of the traction forces exerted by the cell reveals that a cell is capable of exerting significant forces before either notable focal adhesion or stress fiber formation. Moreover, the total magnitude of force exerted by the cell is linearly related to the area of the cell during spreading. This study is the first to monitor the dynamic changes in the cell shape, spreading rate, and forces exerted during the early stages (first several hours) of endothelial cell adhesion.  相似文献   

4.
We have generated several mammalian cell lines that stably express high levels of intact glucocorticoid receptor. These cells were created by cotransfecting a glucocorticoid-dependent dihydrofolate reductase (DHFR) gene into DHFR-deficient Chinese hamster ovary (CHO) cells together with a plasmid directing the expression of human glucocorticoid receptor. Using this approach, transfection frequencies indicate that the inclusion of glucocorticoid receptor cDNA increased the efficiency of DHFR transformation greater than 10-fold over nonreceptor control DNA. When a stably cotransfected line (designated MG/hGR) was subjected to short term growth in cytotoxic concentrations of the antifolate methotrexate, these cells strongly resisted growth inhibition when dexamethasone was present in the medium. This effect was steroid specific and was inhibited by the glucocorticoid antagonist RU38486. In an effort to exploit the methotrexate-induced coamplification properties of the DHFR gene as a means of creating cell lines having increased levels of glucocorticoid receptor, MG/hGR cells were chronically exposed to a relatively low concentration of methotrexate (50 nM). After this treatment a resistant line was isolated (MG/hGR/MTX50) that displayed complete dependence on exogenous glucocorticoid for growth. To investigate the molecular basis for the enhanced ability of MG/hGR/MTX50 cells to resist the cytotoxic effects of methotrexate in the presence of dexamethasone, glucocorticoid receptor protein in these cells was characterized and compared to parental CHO cells and methotrexate sensitive MG/hGR cells. Affinity labeling with [3H]dexamethasone mesylate and Western blot analysis with antiglucocorticoid receptor antiserum revealed that nontransfected CHO cells have virtually undetectable levels of glucocorticoid receptor protein whereas cotransfected MG/hGR cells contain at least 3 times more intact monomeric receptor protein of Mr 94,000. Correspondingly, analysis of receptor protein in MG/hGR/MTX50 cells indicated that these cells contain 8 to 10 times more glucocorticoid receptor than nontransfected CHO cells. Scatchard analysis of steroid binding curves revealed that these increases correspond to 6,600, 22,000 and 63,000 dexamethasone binding sites per cell for nontransfected CHO cells, cotransfected MG/hGR cells, and MG/hGR/MTX50 cells, respectively. Sedimentation profiles of native receptor in transfected and methotrexate-resistant cells further support the progressive increase in receptor content and demonstrate that glucocorticoid receptor exists in cotransfected cels as an oligomeric complex under hypotonic conditions (9S complex in the presence of 20 mM sodium molybdate, 7S in the absence of molybdate), which dissociates to a monomeric 4S species in the presence of 0.4 M KCl. These physicochemical properties are indistinguishable from those observed for the endogenous hamster glucocorticoid receptor and suggest that stably transfected human glucocort  相似文献   

5.
Abstract: The synthetic glucocorticoid dexamethasone enhanced histamine-evoked catecholamine secretion from cultured bovine chromaffin cells. Dexamethasone enhanced the effects of histamine on both adrenergic (epinephrine-rich) and noradrenergic (norepinephrine-rich) chromaffin cells but had a more dramatic effect on noradrenergic cells. Histamine-evoked secretion in noradrenergic cells appeared to become rapidly inactivated, whereas the rate of secretion in adrenergic cells was nearly constant for up to 2 h; dexamethasone treatment attenuated the inactivation seen in noradrenergic cells. The effect of dexamethasone appeared after a lag of several hours and was maximal by 24 h. The EC50 for dexamethasone was ∼1 n M . The effect of dexamethasone was mimicked by the glucocorticoid agonist RU 28362 and was blocked by the antagonist RU 38486, indicating that the effects of these steroids were mediated by the glucocorticoid or type II corticosteroid receptor. Histamine-evoked catecholamine secretion in both dexamethasone-treated and untreated cells was blocked by the H1 histamine receptor antagonist mepyramine but was not affected by the H2 antagonist cimetidine; thus, dexamethasone appeared to enhance an H1 receptor-mediated process. In the absence of glucocorticoids, H1 receptor mRNA levels were higher in adrenergic than in noradrenergic cells. Dexamethasone increased H1 receptor mRNA levels in both cell types. The increased expression of H1 receptors presumably contributes to the enhancement of histamine-evoked catecholamine secretion by glucocorticoids. Glucocorticoids may play a physiological role in modulating the responsiveness of chromaffin cells to histamine and other stimuli.  相似文献   

6.
1. Uptake and binding of dexamethasone to glucocorticoid receptor has been studied in Morris hepatoma 7800 C1 cells in relation to its effect on cell growth and peroxisomal beta-oxidation. 2. Intact cells showed saturable, specific dexamethasone binding of limited capacity and Scatchard analysis revealed one single class of binding sites with equilibrium dissociation constant (Kd) of 0.24 nM similar to other glucocorticoid receptors. However, the binding capacity of 24 fmol/mg cell protein is less than 5% of previously reported values. 3. Uptake of [3H]dexamethasone by intact cells was temperature dependent giving a linear Arrhenius plot with a calculated energy of activation of 58.5 kJ mol-1 x degree-1. 4. Cytosol fractions had specific binding proteins for glucocorticoid hormones with sedimentation coefficient of ca 7S. No specific binding sites for [3H]dexamethasone was demonstrated in purified membrane fractions. 5. Dexamethasone and the synthetic fatty acid analogue tetradecylthio acetic acid (TTA) both inhibited the growth of the 7800 C1 cells and induced the peroxisomal acyl-CoA oxidase activity. A combination of the two compounds gave additive effects. Both these effects of dexamethasone and TTA were counteracted by insulin. 6. We conclude that dexamethasone induces growth inhibition and enzyme induction by binding to functional intracellular glucocorticoid receptors. The action of dexamethasone is consistent with a dissolution in the membrane from where it diffuses passively into the cell and binds to specific receptors in an energy dependent step. 6. The synergistic action of dexamethasone and TTA and the counteraction exerted by insulin are not due to changes in the dexamethasone receptor affinity or binding capacity.  相似文献   

7.
The spreading of the muscle proteins myosin and actomyosin depends both on the salt solution in which the proteins are dissolved and on the solution on which they are spread. The spreading is more complete the lower the concentration of the salt solution in which the proteins are dissolved and the higher the salt concentration of the solutions on which the proteins are spread. This effect seems to be due partially to the difference in density allowing the spread droplets a longer life on the surface, and partially to the effect of salt on the charge of the protein. A change in the pH of the substrate has a smaller effect than a change in the salt concentration. Heavy metals like Cu++ or Zn++, inhibit spreading almost completely. The dependence of spreading on these salts and on time was investigated in detail.The effect of the different salts was also compared with the effect of different phosphate compounds. It was noted that the above substances, including the different salts, phosphate compounds, and heavy metals, affect the mechanism of spreading but not films already spread. The viscosity of these fibrillar proteins was compared with other proteins in the monomolecular film state and in myosin an unusually high viscosity was found.  相似文献   

8.
9.
The regulation by glucocorticoids of phosphate transport in primary cultured chick renal cells was examined. Dexamethasone inhibited the Na+-dependent phosphate uptake system. Na+-independent phosphate uptake and Na+-dependent uptakes of alpha-methylglucoside and L-proline were unaffected. The mineralocorticoid aldosterone did not alter phosphate uptake. The inhibition of Na+-dependent phosphate uptake by dexamethasone was concentration-dependent, exhibited an induction period, was blocked by inhibitors of RNA and protein synthesis, and was rapidly reversed when the steroid was removed. Following reversal, the cells could respond a second time to the glucocorticoid. However, this time the response was rapid, could be evoked at least for 24 h after glucocorticoid withdrawal, and might be prevented by actinomycin D and cycloheximide. These findings demonstrate that glucocorticoids act on renal cells to modulate phosphate transport and suggest that the renal cell system provides an attractive model to examine the mechanism by which glucocorticoids control gene expression and regulate plasma membrane transport function.  相似文献   

10.
To investigate the possible use of electrophilic affinity labelling for the characterization of glucocorticoid receptors, different chemically reactive derivatives of deoxycorticosterone (deoxycorticosterone 21-mesylate and deoxycorticosterone 21-(1-imidazole) carboxylate), dexamethasone (dexamethasone 21-mesylate, dexamethasone 21-iodoacetate and dexamethasone 21-bromoacetate) and progesterone (21-chloro progesterone) were tested for their ability to bind irreversibly to the glucocorticoid receptor from goat lactating mammary gland. Using partially purified receptor, only one of the steroids tested, dexamethasone 21-mesylate (DXM-M) was found more effective than dexamethasone (DXM) in preventing exchange of radioactive dexamethasone in the receptor binding site. The affinity of DXM-M for the glucocorticoid receptor, measured by competitive binding assay, was 1/15 that of DXM. Polyacrylamide gel electrophoresis in sodium dodecyl sulphate of the [3H]-DXM-M labeled glucocorticoid receptor revealed a specific covalently radiolabeled fraction corresponding to an apparent molecular weight of 75,000 to 80,000. The biological activity of DXM-M was studied in RPMI 3460-clone 6 Syrian hamster melanoma cells, a cell line which is sensitive to growth inhibition by glucocorticoids. Like DXM, DXM-M inhibits the growth of RPMI 3460-clone 6 cells and it acts as a slowly reversible glucocorticoid agonist at concentrations which correlate with the affinity of DXM-M for the glucocorticoid receptor in vitro.  相似文献   

11.
The environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and the corticosteroid dexamethasone have potent effects on lymphocyte function, although the effects of the former have not been well characterized. In the present studies murine B cell maturation was used as a model system to examine and compare the effects of TCDD and dexamethasone on cell function. Immunosuppression by TCDD and dexamethasone is mediated by binding to specific intracellular R referred to as the Ah and glucocorticoid R, respectively. Although both compounds were comparable in their ability to inhibit antibody responses to the T-independent antigen TNP-LPS, the events responsible for suppression were found to be distinct. Dexamethasone, although affecting multiple stages of B cell maturation, had its primary effect very early, manifested by inhibition of the phosphoinositide signal transduction pathway. This was evidenced by a decrease in accumulation of inositol phosphate and surface Ia antigen expression as well as an inability to enter the cell cycle after stimulation with anti-Ig. In contrast, neither early signaling events nor proliferation were affected in B cells treated with TCDD. However, TCDD inhibited Ig secretion after stimulation of B cells with T cell-replacing factor, suggesting that TCDD modulates the differentiation of B cells into plasma cells. These differential results were confirmed by monitoring the expression of surface antigens that occur on B cells, including Ia, 7D4, and PC.2, during this maturational process. Whereas dexamethasone inhibited the expression of surface antigens that occur early in maturation (Ia and 7D4), TCDD blocked only the expression of the plasma cell marker PC.2. Although TCDD altered later stages of the B cell cycle, the presence of TCDD was required at the time of initial activation to be effective, suggesting that TCDD may interfere with early cell programming.  相似文献   

12.
We analyze the phenomenon of spreading of a Myxococcus xanthus bacterial colony on plates coated with nutrient. The bacteria spread by gliding on the surface. In the first few hours, cell growth is irrelevant to colony spread. In this case, bacteria spread through peninsular protrusions from the edge of the initial colony. We analyze the diffusion through the narrowing reticulum of cells on the surface mathematically and derive formulae for the spreading rates. On the time scale of tens of hours, effective diffusion of the bacteria, combined with cell division and growth, causes a constant linear increase in the colony's radius. Mathematical analysis and numerical solution of reaction-diffusion equations describing the bacterial and nutrient dynamics demonstrate that, in this regime, the spreading rate is proportional to the square root of both the effective diffusion coefficient and the nutrient concentration. The model predictions agree with the data on spreading rate dependence on the type of gliding motility.  相似文献   

13.
14.
Surface movements during the spreading of blood platelets   总被引:3,自引:0,他引:3  
When human blood platelets spread on a substratum they increase their surface area as much as 4-fold. We investigated the mechanism of spreading by light microscopy and by scanning and transmission electron microscopy. Contact of a platelet with a glass surface induces formation of thin extensions which spread out over the substratum. These extensions resemble the actin-containing microspikes and lammelipodia of tissue cells in culture and appear to be drawn from the peripheral cortical layer associated with the plasma membrane. If platelets are initially labeled on their external surface with cationic ferritin or lentil-conjugated gold particles and then allowed to spread, the labels are retained in the central region, or granulomere. Proteins released by the spreading platelet--fibronectin and fibrinogen--also remain in this central unspread region. Peripheral regions of spread platelet surface (hyalomere) were unlabeled following the above procedures but could be labeled with cationic ferritin or lentil-conjugated gold provided these were applied after spreading was completed. These markers are cleared with time from the periphery, moving centripetally to accumulate at the granulomere. We suggest, on the basis of these observations, that platelets spread onto a substratum by a closely similar mechanism to that used by cells such as fibroblasts. In both cases the spreading involves the peripheral actin cortex and is accompanied by a continual centripetal movement of surface components--a "membrane flow"--which continues even after spreading is completed.  相似文献   

15.
Fixation with glutaraldehyde (GA) and paraformaldehyde (PFA) preserved measles virus hemagglutinin at the surface of chronically infected cells. Cells fixed with PFA but not with GA exhibited hemadsorption with green monkey cells. PFA fixation, in contrast to GA fixation, also preserved the immunogenicity of measles virus hemolysin.These fixatives and the removal of the measles virus hemagglutinin from the cell surface by trypsin enabled studies of the appearance of the hemagglutinin at the surface membrane. Results obtained by immunofluorescence technique and by hemadsorption indicated that measles virus hemagglutinin appeared polarly at the cell membrane and then spread around the surface. This was substantiated by measurements of the immunofluorescence intensity at the single cell level per membrane unit and per cell, and by measuring the binding of iodinated immunoglobulins per 106 cells. The appearance was inhibited by sodium azide and cytochalasin B. The spreading was not inhibited by sodium azide, but was influenced by cytochalasin B. The spreading did not proceed at 4°C. On the basis of these findings, a hypothetical model for appearance and spreading of measles virus hemagglutinin was proposed.  相似文献   

16.
We studied the effects of different lectins on the adhesive properties of baby hamster kidney (BHK) cells. The purpose of these studies was to learn more about the cell surface receptors involved in cell adhesion. Three adhesive phenomena were analyzed: 1) the adhesion of BHK cells to lectin-coated substrata; 2) the effects of lectins on the adhesion of cells to substrata coated by plasma fibronectin (pFN); and 3) the effects of lectins on the binding of pFN-coated beads to cells. Initial experiments with fluorescein-conjugated lectins indicated that concanavalin A (Con A), ricinus communis agglutinin I (RCA I), and wheat germ agglutinin (WGA) bound to BHK cells but peanut agglutinin (PNA), soybean agglutinin (SBA), and ulex europaeus agglutinin I (UEA I) dod not bind. All three of the lectins which bound to the cells promoted cell spreading on lectin substrata, and the morphology of the spread cells was similar to that observed with cells spread on pFN substrata. Protease treatment of the cells, however, was found to inhibit cell spreading on pFN substrata or WGA substrata more than on Con A substrata or RCA I substrata. In the experiment of cells with Con A or WGA inhibited cell spreading on pFN substrata, but RCA I treatment had no effect. Finally, treatment of cells with WGA inhibited binding to cells of pFN beads, but neither Con A nor RCA I affected this interaction. These results indicate that the lectins modify cellular adhesion in different ways, probably by interacting with different surface receptors. The possibility that the pFN receptor is a WGA receptor is discussed.  相似文献   

17.
The influence of the glucocorticoid dexamethasone on the cAMP response to parathyroid hormone (PTH) and various agonists was studied in epithelial monolayers of opossum kidney (OK) cells. The incubation with dexamethasone for 72 hours led to a dose-dependent higher cAMP response to PTH or forskolin in intact cells as well as in digitonin-permeabilized cells. This effect did not appear to result from changes in phosphodiesterase (PDE) activity nor from alterations in cAMP efflux from the cells. Moreover, dexamethasone increased the formation of domes by OK cell epithelium. Thus, dexamethasone seems to promote a more differentiated renal epithelial phenotype as suggested by enhanced hormonal response.  相似文献   

18.
19.
We studied the uptake of leucine, phenylalanine, and the amino acid analog, 2-aminonorborane-2-carboxylic acid, by rat hepatoma cells in tissue culture. The uptake of these amino acids was partially mediated by a plasma membrane transport system similar to the L agency described in other cell types in that it does not require extracellular sodium and is subject to trans-stimulation. Initial rates of sodium-independent transport of these amino acids were calculated using mathematical transformations of the uptake time course curves. The glucocorticoid dexamethasone inhibits the activity of this transport system; the initial rates of sodium-independent uptake of leucine, phenylalanine, and 2-aminonorborane-2-carboxylic acid are decreased by approximately one-third (average = 30%, n = 19) after incubation of HTC cells with 0.1 microM dexamethasone. This inhibition requires at least 15 h, reaching a maximum at 24 h of exposure of the cells to the hormone. Dexamethasone has an asymmetrical effect on sodium-independent amino acid transport in that exposure of the cells to the hormone does not inhibit the rates of outflow of leucine or phenylalanine from preloaded cells into medium without sodium. Inhibition of uptake is blocked by 0.1 mM cycloheximide and 4 microM actinomycin D, indicating the need for continuous protein synthesis for dexamethasone action. Insulin, which is known to partially reverse the inhibitory effect of dexamethasone on the A amino acid transport system in HTC cells, does not alter the action of dexamethasone on the L system. Previous investigations have demonstrated inhibition by dexamethasone of at least two distinct sodium-dependent amino acid transport activities in HTC cells. The data presented here, showing inhibition by the glucocorticoid of a sodium-independent transport activity, indicate that the effect of the hormone is independent of the energy source of the amino acid transport systems affected.  相似文献   

20.
H Nawata  T Yanase  K Higuchi  K Kato  H Ibayashi 《Life sciences》1985,36(20):1957-1966
The bovine adrenal medulla was investigated regarding the presence of glucocorticoid binding protein and the increases in ornithine decarboxylase (ODC) activity and epinephrine and norepinephrine by dexamethasone. Scatchard analysis of specific cytosol [3H] dexamethasone-binding study indicated a single class of high affinity (kd, 35 +/- 5 nM) and limited binding sites (150 +/- 26 fmoles/mg protein). Competition studies of various steroids indicated a high affinity for dexamethasone and hydrocortisone. Sedimentation in sucrose density gradients revealed a 7.3 S binding peak in the cytosol. Dexamethasone caused an increase in ornithine decarboxylase (ODC) activity within 1 to 2 hours after which the norepinephrine and epinephrine contents increased 16 hours after the peak of ODC activity in a dose dependent manner of dexamethasone in bovine adrenal medullary chromaffin cells in primary monolayer culture. These data suggest that the bovine adrenal medulla is a target organ of glucocorticoid hormone and that norepinephrine and epinephrine syntheses are regulated by a glucocorticoid receptor-mediated mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号