首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Linear and cyclic analogues of cyclolinopeptide A (CLA) with two dipeptide segments (Val(5)-Pro(6) and Pro(6)-Pro(7)) replaced by their tetrazole derivatives were synthesized by the SPPS technique and cyclized using TBTU (O-(benzotriazol-1-yl)-1,1,3,3-tetramethyluronium tetrafluoroborate) reagent. The conformational properties of the c(Leu(1)-Ile(2)-Ile(3)-Leu(4)-Val(5)-Pro(6)-psi[CN(4)]-Ala(7)-Phe(8)-Phe(9)) were investigated by NMR and computational techniques. The overall solution structure of this cyclic peptide resembles that observed for the CLA in the solid state. These studies of cyclic tetrazole CLA analogue confirm that the 1,5-disubstituted tetrazole ring functions as an effective, well-tolerated cis-amide bond mimic in solution. The peptides were examined for their immunosuppressive activity in the humoral response test. For cyclic analogues the immunosuppressive activity, at low doses, is equal in magnitude to the activity presented by cyclosporin A and native CLA. The conformational and biological data seem indicate that the Pro-Pro-Phe-Phe moiety and the preservation of the CLA backbone conformation are important for immunosuppressive activity.  相似文献   

2.
Linear and cyclic cyclolinopeptide A (CLA) analogues containing alpha-hydroxymethylleucine (HmL) in positions 1, 4, and 1&4, and alpha-hydroxymethylvaline (HmV) in position 5, were synthesized by the solid-phase peptide strategy and cyclized with the 1-Ethyl-3-(3-dimethylaminopropyl)-carbodiimide/1-hydroxy-7-azabenzotriazole (EDC/HOAt) reagent. The peptides were examined for their immunosuppressive activity in the lymphocyte proliferation assays (LPA). Only HmL-containing peptides demonstrated at about 25% lower immunosuppressive activity, but they are four times more soluble in water solutions than the native CLA. It seems from the LPA results that peptide [(HmL4)CLA] is the most promising for further studies. This peptide was characterized in solution, at room temperature in CDCl3, and the conformation compared with that observed for CLA in the solid state.  相似文献   

3.
We have found that besides the known cyclolinopeptides A (CLA) and B (CLB), there is a new cyclic peptide in linseed mill cake that we have named CLX. Its composition is very similar to that of CLA, a cyclic peptide with a distinct immunosuppressive activity. The sequence of this peptide has been established as cyclo(PPFFILLX), where X is a non-proteinaceous amino acid, N-methyl-4-aminoproline. This amino acid substitutes for two amino acid residues of CLA, mimicking a dipeptide moiety with a nonplanar cis amide bond. The non-proteinaceous amino acid X may mimic a transition state of the peptide bond which exists in such processes as, e.g., PPIase-catalysed cis/trans amide-Pro bond isomerisation.  相似文献   

4.
Summary We have found that besides the known cyclolinopeptides A (CLA) and B (CLB), there is a new cyclic peptide in linseed mill cake that we have named CLX. Its composition is very similar to that of CLA, a cyclic peptide with a distinct immunosuppressive activity. The sequence of this peptide has been established ascyclo(PPFFILLX), where X is a non-proteinaceous amino acid,N-methyl-4-aminoproline. this amino acid substitutes for two amino acid residues of CLA, mimicking a dipeptide moiety with a nonplanarcis amide bond. The non-proteinaceous amino acid X may mimic a transition state of the peptide bond which exists in such processes as, e.g., PPIase-catalysedcis/trans amide-Pro bond isomerisation.  相似文献   

5.
Immune response suppressors are used in the medical praxis to prevent graft rejection after organ transplantation and in the therapy of some autoimmune diseases. As a continuation of our previous work searching for new, effective suppressors devoid of toxicity, we present the synthesis, conformational analysis, and biological activity of nonapeptides 1-6, analogs of naturally existing immunomodulatory peptide CLA. New CLA analogs were modified with (S)-beta(2)-iso-proline 7 or (S)-beta(3)-homo-proline 8, respectively. The conformational influence of the beta-iso-proline and beta-homo-proline building blocks was analyzed by NMR spectroscopy. Peptides 1-6 exist as a mixture of four isomers due to cis/trans isomerization of the Xxx-Pro peptide bond. The major isomers of peptides 1, 3, and 4 contain all peptide bonds of the trans geometry. The geometry of the proline-proline bond of the second populated isomer of peptides 3 and 4 is cis. The proline-proline peptide bond is cis for the major isomers of peptides 2, 5, and 6. The peptides were tested for their ability to suppress the proliferative response of mouse splenocytes to T- and B-cell mitogens and the secondary humoral immune response to sheep erythrocytes in vitro in parallel with a reference drug-cyclosporine A. The immunoregulatory actions of the peptides depended on the position and content of proline isomers and were, with some exceptions, strongly inhibitory at the highest dose tested (100 microg/ml). In addition, the peptides were practically devoid of toxicity at that dose. In conclusion, the replacement of Pro by beta-Pro may be useful for fine-tuning CLA immunosuppressive potency and undesirable toxicity.  相似文献   

6.
In connection with our discovery of a strong immunosuppressive activity of cyclolinopeptide A (CLA), we investigated immunosuppressive properties of antamanide and a number of its analogues, including symmetrical antamanide, and compared them with the activities of cyclosporin A and CLA. The peptides were investigated by using plaque forming cell (PFC), graft-versus-host (GvH), delayed type hypersensitivity (DTH), and autologous rosette formation cell (ARFC) tests. Antamanide and symmetrical antamanide exhibit an immunosuppressive activity lower than CLA. Linear antamanide fragments are also active. At higher concentrations of the latter peptides, toxic effects occur.  相似文献   

7.
CD and nmr techniques have been used to study, in acetonitrile solution, the ion-complexing capability of cyclolinopeptide A (CLA), a cyclic nonapeptide of sequence cyclo-(Pro-Pro-Phe-Phe-Leu-Ile-Ile-Leu-Val) endowed with remarkable cytoprotective ability in vitro, and the conformation of the Ba(2+)/CLA complex. At room temperature, CLA in acetonitrile shows a proton nmr spectrum characteristic of the coexistence of many different conformers in intermediate exchange. The backbone contains a cis Pro-Pro bond, with all other peptide bonds in the trans conformation. CLA binds Ba2+ more tightly than the other cations studied, namely K+, Na+, Mg2+, and Ca2+; CD data are indicative of the presence of both 1:2 (sandwich) and 1:1 (equimolar) type complexes, depending on the Ba2+ ion concentration, whereas nmr data are consistent with an equimolar form. The relevant conformational features of the equimolar Ba2+/CLA complex are that the backbone contains all trans peptide bonds, a type I 6----3 beta-turn and a 3----1 gamma-turn (or a distorted 3----9 beta-turn). The global shape of the complexed peptide can be described as a bowl, with the concave (polar) side hosting Ba2+ and the convex side predominantly apolar.  相似文献   

8.
Peptide cyclization is an important tool for overcoming the limitations of linear peptides as drugs. Backbone cyclization (BC) has advantages over side chain (SC) cyclization because it combines N-alkylation for extra peptide stability. However, the appropriate building blocks for BC are not yet commercially available. This problem can be overcome by preparing SC cyclic peptide analogs of the most active BC peptide using commercially available building blocks. We have recently developed BC peptides that inhibit the HIV-1 integrase enzyme (IN) activity and HIV-1 replication in infected cells. Here we used this system as a model for systematically comparing the BC and SC cyclization modes using biophysical, biochemical and structural methods. The most potent SC cyclic peptide was active almost as the BC peptide and inhibited IN activity in vitro and blocked IN activity in cells even after 6 days. We conclude that both cyclization types have their respective advantages: The BC peptide is more active and stable, probably due to the N-alkylation, while SC cyclic peptides are easier to synthesize. Due to the high costs and efforts involved in preparing BC peptides, SC may be a more approachable method in many cases. We suggest that both methods are interchangeable.  相似文献   

9.
Summary Cyclosporin A and C are new antifungal antibiotics fromTrichoderma polysporum (Link ex Pers.) Rifai. The metabolites are produced in submerged culture and are extracted therefrom by organic solvents. Cyclosporin A is a nonpolar cyclic peptide with a molecular weight of 1202.6. The cyclosporins exhibit a narrow spectrum of antifungal activity and in addition have immunosuppressive properties.  相似文献   

10.
This study is an attempt to develop a simple search method for lead peptide candidates, which include constrained structures in a recognized sequence, using the design of a competitive inhibitor for HMG-CoA reductase (HMGR). A structure-functional analysis of previously synthesized peptides proposes that a competitive inhibitory peptide can be designed by maintaining bioactive conformation in a recognized sequence. A conformational aspect of the structure-based approach was applied to the peptide design. By analysis of the projections obtained through a principle component analysis (PCA) for short linear and cyclic peptides, a head-to-tail peptide cycle is considered as a model for its linear analogy. It is proposed that activities of the linear peptides based on an identical amino acid sequence, which are obtained from a less flexible peptide cycle, would be relatively higher than those obtained from more flexible cyclic peptides. The design criterion was formulated in terms of a 'V' parameter, reflecting a relative deviation of an individual peptide cycle from an average statistical peptide cycle based on all optimized structures of the cyclic peptides in set. Twelve peptide cycles were selected for the peptide library. Comparing the calculated 'V' parameters, two cyclic peptides (GLPTGG and GFPTGG) were selected as lead cycles from the library. Based on these sequences, six linear peptides obtained by breaking the cycle at different positions were selected as lead peptide candidates. The linear GFPTGG peptide, showing the highest inhibitory activity against HMGR, increases the inhibitory potency nearly tenfold. Kinetic analysis reveals that the GFPTGG peptide is a competitive inhibitor of HMG-CoA with an equilibrium constant of inhibitor binding (K(i)) of 6.4 +/- 0.3 microM. Conformational data support a conformation of the designed peptides close to the bioactive conformation of the previously synthesized active peptides.  相似文献   

11.
12.
μ-Calpain is a calcium-dependent cysteine protease, which is activated by μM concentration of calcium in vitro. Disrupted intracellular calcium homeostasis leads to hyper-activation of μ-calpain. Hyper-activated μ-calpain enhances the accumulation of β-amyloid peptide by increasing the expression level of β-secretase (BACE1) and induces hyper-phosphorylation of tau along with the formation of neurofibrillary tangle by mediating p35 cleavage into p25, both of which are the major mechanisms of neurodegeneration in Alzheimer's disease (AD). Hence, inhibition of μ-calpain activity is very important in the treatment and prevention of AD. In this study, conjugated linoleic acid (CLA), an eighteen-carbon unsaturated fatty acid, was discovered as a μ-calpain-specific inhibitor. CLA showed neuroprotective effects against neurotoxins such as H2O2 and Aβ1–42 in SH-SY5Y cells, and inhibited Aβ oligomerization/fibrillation and Aβ-induced Zona Occludens-1 degradation. In addition, CLA decreased the levels of proapoptotic proteins, p35 conversion to p25 and tau phosphorylation. These findings implicate CLA as a new core structure for selective μ-calpain inhibitors with neuroprotective effects. CLA should be further evaluated for its potential use as an AD therapeutic agent.  相似文献   

13.
A solid state analysis of the cyclic octapeptide c(-Pro(1)-Pro-Phe-Phe-Ac(6)c-Ile-D-Ala-Val(8)-) (C8-CLA), containing the Pro-Pro-Phe-Phe sequence, followed by the bulky helicogenic C(alpha,alpha)-dialkylated 1-aminocyclohexane-1-carboxylic acid (Ac(6)c) residue and a D-Ala residue in position 7, has been carried out by x-ray diffraction.The crystals, grown from a DMSO solution, are monoclinic, space group P2(1) with a = 13.458(3) A, b = 19. 404(5) A, c = 21.508(4) A, and beta = 90.83(6) degrees, with two independent cyclic molecules in the asymmetric unit, two DMSO molecules, and three water molecules. The structure has been solved using the half and bake procedure by Sheldrick, and refined to final R1 and wR2 indices of 0.0613 and 0.1534 for 9867 reflections with I > 2sigma(I).This cyclic peptide, a deletion analogue of the naturally occurring cyclic nonapeptide cyclolinopeptide A [c(Pro-Pro-Phe-Phe-Leu-Ile-Ile-Leu-Val), CLA] has been designed to study the influence of the ring size reduction on the conformational behavior of CLA and more in general to obtain structural information on asymmetric cyclic octapeptides.The compound exhibits, in the solid state, a "banana-twisted" conformation with a cis peptide bond located between the two proline residues. Five intramolecular H bonds stabilize the structure: one type VIa beta-turn, two consecutive type III/I beta-turns, one gamma-turn, and one C(16) bend.The structure has also been compared with either the solution structure previously reported by us and obtained by nmr and computational analysis, and with solid state structural data reported in the literature on cyclic octapeptides.  相似文献   

14.
Peptide mimics of the Bowman-Birk inhibitor reactive site loop   总被引:1,自引:0,他引:1  
Bowman-Birk Inhibitors (BBIs) are small highly cross-linked proteins that typically display an almost symmetrical "double-headed" structure. Each "head" contains an independent proteinase binding domain. The realization that one BBI molecule could form a 1:1:1 complex with two enzymes led early workers to dissect this activity. Now, after three decades of research, it has been possible to isolate the antiproteinase activity as small ( approximately 11 residues), cyclic, synthetic peptides, which display most of the functional aspects of the protein. More recently, it has been found that these peptide fragments are not just a synthetic curiosity-a natural 14-residue cyclic peptide (SFTI-1), which too encapsulates the BBI inhibitory motif, is found to occur in sunflowers. This article reviews the properties of BBI-based peptides (including SFTI-1) and discusses the features that are important for inhibitory activity.  相似文献   

15.
We report the molecular basis for the differences in activity of cyclic and linear antimicrobial peptides. We iteratively performed atomistic molecular dynamics simulations and biophysical measurements to probe the interaction of a cyclic antimicrobial peptide and its inactive linear analogue with model membranes. We establish that, relative to the linear peptide, the cyclic one binds stronger to negatively charged membranes. We show that only the cyclic peptide folds at the membrane interface and adopts a β-sheet structure characterised by two turns. Subsequently, the cyclic peptide penetrates deeper into the bilayer while the linear peptide remains essentially at the surface. Finally, based on our comparative study, we propose a model characterising the mode of action of cyclic antimicrobial peptides. The results provide a chemical rationale for enhanced activity in certain cyclic antimicrobial peptides and can be used as a guideline for design of novel antimicrobial peptides.  相似文献   

16.
Depsidomycin is a cyclic heptadepsi‐peptide isolated from the cultured broth of Streptomyces lavendofoliae MI951‐62F2. It exhibits significant antimicrobial and immunosuppressive activity. The total synthesis of a depsidomycin analogue in which 1,2‐piperazine‐3‐carboxylic acid was substituted with proline is described. After several trials using different strategies, the desired depsidomycin analogue was obtained via stepwise synthesis starting by the amino acid ‘head’ and macrolactonization under Yamaguchi conditions. The cyclic depsipeptide was evaluated to have an minimum inhibitory concentration (MIC) of 4 µg/ml against H37RV and 16 µg/ml against MDR clinical strains of MTB (MDR‐MTB), while the linear precursor 8 also had MICs of 4 and 16 µg/ml for the susceptible and resistant strains, respectively. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

17.
This study presents an approach that can be used to search for lead peptide candidates, including unconstrained structures in a recognized sequence. This approach was performed using the design of a competitive inhibitor for 3-hydroxy-3-methylglutaryl CoA reductase (HMGR). In a previous design for constrained peptides, a head-to-tail cyclic structure of peptide was used as a model of linear analog in searches for lead peptides with a structure close to an active conformation. Analysis of the conformational space occupied by the peptides suggests that an analogical approach can be applied for finding a lead peptide with an unconstrained structure in a recognized sequence via modeling a cycle using fixed residues of the peptide backbone. Using the space obtained by an analysis of the bioactive conformations of statins, eight cyclic peptides were selected for a peptide library based on the YVAE sequence as a recognized motif. For each cycle, the four models were assessed according to the design criterion ("V" parameter) applied for constrained peptides. Three cyclic peptides (FGYVAE, FPYVAE, and FFYVAE) were selected as lead cycles from the library. The linear FGYVAE peptide (IC(50) = 0.4 microM) showed a 1200-fold increase the inhibitory activity compared to the first isolated LPYP peptide (IC(50) = 484 microM) from soybean. Experimental analysis of the modeled peptide structures confirms the appropriateness of the proposed approach for the modeling of active conformations of peptides.  相似文献   

18.
V J Hruby 《Life sciences》1982,31(3):189-199
Determining the relationships between conformation and biological activity in peptide hormones and neurotransmitters is an important goal of contemporary biology. A major difficulty in these studies is the conformational flexibility of most peptides and the high dependence of the conformations on environment. The question arises whether conformations determined in solution are relevant to those important to the peptide at the membrane receptor(s). One recent approach to overcome these difficulties has been the use of conformational constraints by covalent bonding of side chain groups of residues in the peptide. In this manner linear peptides are rendered cyclic, and cyclic peptides are further conformationally constrained either by ring contractions or by other conformational constraints. Biologically active peptides specifically designed by this approach have been found to possess several useful properties including: 1) greater conformational integrity; 2) increased agonist or antagonist potency; 3) prolonged biological activity; 4) increased enzymatic stability; and 5) increased specificity for a particular receptor. Careful applications of this approach have provided important new designs features for peptide structure-function studies, and new insights into peptide conformation-activity relationships for oxytocin, somatostatin, enkephalin, bradykinin, vasopressin, and other biologically active peptides.  相似文献   

19.
Cell‐penetrating peptides (CPPs) have the property to cross the plasma membrane and enhance its permeability. CPPs were successfully used to deliver numerous cargoes such as drugs, proteins, nucleic acids, imaging and radiotherapeutic agents, gold and magnetic nanoparticles, or liposomes inside cells. Although CPPs were intensively investigated over the past 20 years, the exact molecular mechanisms of translocation across membranes are still controversial and vary from passive to active mechanisms. LyP‐1 is a cyclic 9‐amino‐acids homing peptide that specifically binds to p32 receptors overexpressed in tumor cells. tLyP‐1 peptide is the linear truncated form of LyP‐1 and recognizes neuropilin (NRP) receptors expressed in glioma tumor tissue. Here, we investigate the interaction of the cyclic LyP‐1 peptide and linear truncated tLyP‐1 peptide with model plasma membrane in order to understand their passive, energy‐independent mechanism of uptake. The experiments reveal that internalization of tLyP‐1 peptides depends on membrane lipid composition. Inclusion of negatively charged phosphatidylserine (PS) or cone‐shaped phosphatidylethanolamine (PE) lipids in the composition of giant unilamellar vesicles facilitates the membrane adsorption and direct penetration but without inducing pore formation in membranes. In contrast, cyclic LyP‐1 peptide mostly accumulates on the membrane, with very low internalization, regardless of the lipid composition. Thus, the linear tLyP‐1 peptide has enhanced penetrating properties compared with the cyclic LyP‐1 peptide. Development of a mutant peptide containing higher number of arginine amino acids and preserving the homing properties of tLyP‐1 may be a solution for new permeable peptides that facilitate the internalization in cells and further the endosomal escape as well.  相似文献   

20.
Cyclic peptides are an attractive modality for the development of therapeutics and the identification of functional cyclic peptides that contribute to novel drug development. The peptide array is one of the optimization methods for peptide sequences and also useful to understand sequence–function relationship of peptides. Cell adherent cyclic NGR peptide which selectively binds to the aminopeptidase N (APN or CD13) is known as an attractive tumor marker. In this study, we designed and screened a library of different length and an amino acid substitution library to identify stronger cell adhesion peptides and to reveal that the factor of higher binding between CD13 and optimized cyclic peptides. Additionally, we designed and evaluated 192 peptide libraries using eight representative amino acids to reduce the size of the library. Through these optimization steps of cyclic peptides, we identified 23 peptides that showed significantly higher cell adhesion activity than cKCNGRC, which was previously reported as a cell adhesion cyclic peptide. Among them, cCRHNGRARC showed the highest activity, that is, 1.65 times higher activity than cKCNGRC. An analysis of sequence and functional data showed that the rules which show higher cell adhesion activity for the three basic cyclic peptides (cCX1HNGRHX2C, cCX1HNGRAX2C, and cCX1ANGRHX2C) are related with the position of His residues and cationic amino acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号