首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CD4(+)CD25(+) T regulatory cells (Tregs) play an essential role in maintaining immunologic homeostasis and preventing autoimmunity. Systemic lupus erythematosus (SLE) is a systemic autoimmune disease characterized by a loss of tolerance to nuclear components. We hypothesized that altered function of CD4(+)CD25(high) Tregs might play a role in the breakdown of immunologic self-tolerance in patients with SLE. In this study, we report a significant decrease in the suppressive function of CD4(+)CD25(high) Tregs from peripheral blood of patients with active SLE as compared with normal donors and patients with inactive SLE. Notably, CD4(+)CD25(high) Tregs isolated from patients with active SLE expressed reduced levels of FoxP3 mRNA and protein and poorly suppressed the proliferation and cytokine secretion of CD4(+) effector T cells in vitro. In contrast, the expression of FoxP3 mRNA and protein and in vitro suppression of the proliferation of CD4(+) effector T cells by Tregs isolated from inactive SLE patients, was comparable to that of normal individuals. In vitro activation of CD4(+)CD25(high) Tregs from patients with active SLE increased FoxP3 mRNA and protein expression and restored their suppressive function. These data are the first to demonstrate a reversible defect in CD4(+)CD25(high) Treg function in patients with active SLE, and suggest that strategies to enhance the function of these cells might benefit patients with this autoimmune disease.  相似文献   

2.
Sle1c is a sublocus of the NZM2410-derived Sle1 major lupus susceptibility locus. We have shown previously that Sle1c contributes to lupus pathogenesis by conferring increased CD4(+) T cell activation and increased susceptibility to chronic graft-versus-host disease (cGVHD), which mapped to the centromeric portion of the locus. In this study, we have refined the centromeric sublocus to a 675-kb interval, termed Sle1c2. Mice from recombinant congenic strains expressing Sle1c2 exhibited increased CD4(+) T cell intrinsic activation and cGVHD susceptibility, similar to mice with the parental Sle1c. In addition, B6.Sle1c2 mice displayed a robust expansion of IFN-γ-expressing T cells. NZB complementation studies showed that Sle1c2 expression exacerbated B cell activation, autoantibody production, and renal pathology, verifying that Sle1c2 contributes to lupus pathogenesis. The Sle1c2 interval contains two genes, only one of which, Esrrg, is expressed in T cells. B6.Sle1c2 CD4(+) T cells expressed less Esrrg than B6 CD4(+) T cells, and Esrrg expression was correlated negatively with CD4(+) T cell activation. Esrrg encodes an orphan nuclear receptor that regulates oxidative metabolism and mitochondrial functions. In accordance with reduced Esrrg expression, B6.Sle1c2 CD4(+) T cells present reduced mitochondrial mass and altered mitochondrial functions as well as altered metabolic pathway utilization when compared with B6 CD4(+) T cells. Taken together, we propose Esrrg as a novel lupus susceptibility gene regulating CD4(+) T cell function through their mitochondrial metabolism.  相似文献   

3.
Expression and immunological significance of IFN-gamma, a pivotal cytokine in murine lupus, have not been clearly demonstrated in human systemic lupus erythematosus (SLE). In the present study we investigated the expression of IFN-gamma in peripheral blood T cells from patients with SLE and its role in the production of the soluble B lymphocyte stimulator (sBLyS). Peripheral blood T cells from patients with SLE expressed significantly larger amounts of IFN-gamma in response to stimulation with anti-CD3 mAb plus anti-CD28 mAb than those from normal controls as shown by three analytical methods, including ELISA, flow cytometry, and quantitative RT-PCR. The ratio of IFN-gamma-producing T cells to effector memory T cells in CD3(+)CD4(+) and CD3(+)CD8(+) populations in patients with SLE was significantly higher than that of normal controls. The T-box expressed in T cells (T-bet) mRNA/GATA-binding protein-3 (GATA-3) mRNA ratio was significantly higher in patients with SLE than in normal controls. T cell culture supernatants from patients with SLE contained significantly higher sBLyS-inducing activity than normal controls; this was almost completely inhibited by the addition of anti-human IFN-gamma mAb. Percentages of BLyS-expressing peripheral blood monocytes in patients with SLE were significantly higher than those of normal controls. Monocytes from patients with SLE produced significantly larger amounts of sBLyS in response to IFN-gamma than those from normal controls. Taken together, these data strongly indicate that the overexpression of IFN-gamma in peripheral blood T cells contributes to the immunopathogenesis of SLE via the induction of sBLyS by monocytes/macrophages, which would promote B cell activation and maturation.  相似文献   

4.
To understand the mechanism of T cell help for IgG production in systemic lupus erythematosus (SLE) we investigated the response of CD4- and CD8-negative (double-negative (DN)) T cells because 1) DN T cells are present at unusually high frequency in patients with SLE and can induce pathogenic autoantibodies; 2) the DN T cell repertoire includes cells restricted by CD1 Ag-presenting molecules; and 3) CD1c is expressed on a population of circulating B cells. We derived DN T cell lines from SLE patients and healthy individuals. In the presence of CD1(+) APCs, DN T cell lines from SLE patients produced both IL-4 and IFN-gamma, whereas DN T cells from healthy donors produced IFN-gamma, but no IL-4. In general, cells from patients with highly active disease produced high levels of IFN-gamma; cells from those with little activity produced high IL-4. Coculture of CD1c-directly reactive T cells from healthy donors with CD1c(+) B cells elicited IgM Abs, but little or no IgG. In contrast, CD1c-directly reactive T cells from SLE patients induced isotype switching, with a striking increase in IgG production. Neutralizing Abs to CD1c inhibited the ability of DN T cells to induce IgG production from CD1c(+) B cells, further indicating that CD1c mediated the T and B cell interaction. IgG production was also inhibited by neutralizing Abs to IL-4, correlating with the cytokine pattern of DN T cells derived from these patients. The data suggest that CD1c-restricted T cells from SLE patients can provide help to CD1c(+) B cells for IgG production and could therefore promote pathogenic autoantibody responses in SLE.  相似文献   

5.
Humans and mice with systemic lupus erythematosus (SLE) and related autoimmune diseases have reduced numbers of NK T cells. An association between NK T cell deficiency and autoimmune disease has been identified. However, the mechanisms for reduction of NK T cell number in patients with SLE are unknown. In the present study we report that NK T cells from active SLE patients are highly sensitive to anti-CD95-induced apoptosis compared with those from normal subjects and inactive SLE patients. CD226 expression is deficient on NK T cells from active SLE patients. The expression of one antiapoptotic member protein, survivin, is found to be selectively deficient in freshly isolated NK T cells from active SLE patients. CD226 preactivation significantly up-regulates survivin expression and activation, which can rescue active SLE NK T cells from anti-CD95-induced apoptosis. In transfected COS7 cells, we confirm that anti-CD95-mediated death signals are inhibited by activation of the CD226 pathway through stabilization of caspase-8 and caspase-3 and through activation of survivin. We therefore conclude that deficient expression of CD226 and survivin in NK T cells from active SLE is a molecular base of high sensitivity of the cells to anti-CD95-induced apoptosis. These observations offer a potential explanation for high apoptotic sensitivity of NK T cells from active SLE, and provide a new insight into the mechanism of reduction of NK T cell number in SLE and understanding the association between NK T cell deficiency and autoimmune diseases.  相似文献   

6.
The expression of the collagen receptor alpha(1)beta(1) integrin (VLA-1) on CD4(+) T cells is largely restricted to CCR7(-)CD45RO(+) cells that localize to inflamed tissues. Moreover, neutralizing alpha(1) integrin, in vivo, has been shown to compromise cell-mediated immunity. Our current study shows that the expression of VLA-1 on human CD4(+) T cells is restricted to conventional effectors. In contrast, Foxp3(+) T regulatory cells (Tregs) do not express this receptor. Moreover, Foxp3 or VLA-1 expression remained a mutually exclusive event in CD4(+) T cells even upon polyclonal anti-CD3-induced activation. Because TNFalpha blockade ameliorates certain T cell-dependent autoimmune disorders in humans, we investigated, in vitro, whether neutralizing TNFalpha affected the balance between the proinflammatory VLA-1(+) effectors and the counteracting Tregs. We found that anti-CD3 stimulation of freshly isolated PBL from healthy individuals, coupled with continuous TNFalpha blockade, inhibited the typical activation-dependent generation of CD4(+)VLA-1(+) Th1 cells. In contrast, it augmented the outgrowth of VLA-1(neg/dim)CD25(high) and Foxp3(+)CD4(+) T cells. Indeed, repeated anti-CD3 stimulation coupled with TNFalpha blockade generated CD4(+) T cell lines enriched for VLA-1(-)Foxp3(+) Tregs. Importantly, these CD4(+) T cells displayed potent suppressive functions toward autologous CD4(+) PBL, including the suppression of the activation-dependent induction of VLA-1(+) effectors. Thus, we propose a novel mechanism by which anti-TNFalpha therapy may restore self-tolerance, by shifting the balance between VLA-1(+) effectors and Foxp3(+) Tregs, during immune activation, in favor of the latter suppressor cell population.  相似文献   

7.
Alteration of T cell suppression function has been recognized in patients with systemic lupus erythematosus (SLE). Recently, CD8(+) T suppressor lymphocytes (CD8(+) Ts) have been generated in vitro by incubating purified CD8(+) T cells with IL-2 and GM-CSF. Using this method, we generated CD8(+) Ts from patients affected by SLE. No major differences were found in the CD8(+) Ts phenotype between SLE patients and healthy subjects. CD8(+) Ts from SLE patients with active disease did not inhibit the anti-CD3 mAb-induced proliferation of autologous PBMC, whereas CD8(+) Ts from SLE patients in remission exerted an inhibitory activity comparable to normal subjects. The inhibitory effect of CD8(+) Ts cells was neither mediated by cytotoxic activity nor by apoptosis induction. Two cytokines, IFN-gamma and IL-6, were found to be responsible for the function of CD8(+) TS: In fact, counteraction of CD8(+) Ts suppression activity was obtained by blocking IFN-gamma with a specific Ab or by inhibiting CD8(+) Ts-mediated IL-6 secretion by an antisense oligonucleotide. Interestingly, CD8(+) Ts from SLE patients showed a peculiar cytokine pattern characterized by an impaired secretion of IL-6 and an increased secretion of IL-12. Thus, it appears that an altered balance between inhibitory (IL-6) and stimulatory (IL-12) cytokines might be responsible for the functional impairment of CD8(+) Ts in SLE patients.  相似文献   

8.
Pan X  Yuan X  Zheng Y  Wang W  Shan J  Lin F  Jiang G  Yang YH  Wang D  Xu D  Shen L 《PloS one》2012,7(4):e34662
BACKGROUND: The role of naturally occurring regulatory T cells (Treg) in the control of the development of systemic lupus erythematosus (SLE) has not been well defined. Therefore, we dissect the phenotypically heterogeneous CD4(+)FoxP3(+) T cells into subpopulations during the dynamic SLE development. METHODLOGY/PRINCIPAL FINDINGS: To evaluate the proliferative and suppressive capacities of different CD4(+) T cell subgroups between active SLE patients and healthy donors, we employed CD45RA and CD25 as surface markers and carboxyfluorescein diacetatesuccinimidyl ester (CFSE) dilution assay. In addition, multiplex cytokines expression in active SLE patients was assessed using Luminex assay. Here, we showed a significant increase in the frequency of CD45RA(+)FoxP3(low) naive Treg cells (nTreg cells) and CD45RA(-)FoxP3(low) (non-Treg) cells in patients with active SLE. In active SLE patients, the increased proportions of CD45RA(+)FoxP3(low) nTreg cells were positively correlated with the disease based on SLE disease activity index (SLEDAI) and the status of serum anti-dsDNA antibodies. We found that the surface marker combination of CD25(+)CD45RA(+) can be used to defined CD45RA(+)FoxP3(low) nTreg cells for functional assays, wherein nTreg cells from active SLE patients demonstrated defective suppression function. A significant correlation was observed between inflammatory cytokines, such as IL-6, IL-12 and TNFα, and the frequency of nTreg cells. Furthermore, the CD45RA(+)FoxP3(low) nTreg cell subset increased when cultured with SLE serum compared to healthy donor serum, suggesting that the elevated inflammatory cytokines of SLE serum may promote nTreg cell proliferation/expansion. CONCLUSIONS/SIGNIFICANCE: Our results indicate that impaired numbers of functional CD45RA(+)FoxP3(low) naive Treg cell and CD45RA(-)FoxP3(low) non-suppressive T cell subsets in inflammatory conditions may contribute to SLE development. Therefore, analysis of subsets of FoxP3(+) T cells, using a combination of FoxP3, CD25 and CD45RA, rather than whole FoxP3(+) T cells, will help us to better understand the pathogenesis of SLE and may lead to the development of new therapeutic strategies.  相似文献   

9.
Polyclonal B cell activation is a well-described feature of systemic lupus erythematosus (SLE), but the immune mechanisms leading to this activation are unclear. To gain insight into these processes, we extensively characterized the activated peripheral blood B cell populations in SLE. PBMC from lupus patients and healthy controls were stained with various combinations of conjugated Ab to identify distinct peripheral B cell subsets, and activation was assessed by measurement of forward scatter and CD80 or CD86 expression using flow cytometry. SLE patients had altered proportions of several B cell subsets, many of which demonstrated increased activation as assessed by forward scatter. This activation occurred at an early developmental stage, as B cells in the transitional (T2) stage were already significantly larger than those seen in controls. Increased proportions of CD80- or CD86-expressing cells were also seen in multiple B cell subsets, with the most striking differences observed in the naive CD27-CD23+ population. Within the CD23+ subset, increased costimulatory molecule expression was most pronounced in an IgD+IgMlow population, suggesting that activation follows Ag engagement. Although controls also had IgD+IgMlowCD23+ cells, they were reduced in number and not activated. Thus, there is an altered response to Ig receptor engagement with self-Ags in lupus.  相似文献   

10.
Altered T cell function in systemic lupus erythematosus (SLE) is determined by various molecular and cellular abnormalities, including increased IL-17 production. Recent evidence suggests a crucial role for signaling lymphocyte activation molecules (SLAMs) in the expression of autoimmunity. In this study, we demonstrate that SLAMF3 and SLAMF6 expression is increased on the surface of SLE T cells compared with normal cells. SLAM coengagement with CD3 under Th17 polarizing conditions results in increased IL-17 production. SLAMF3 and SLAMF6 T cell surface expression and IL-17 levels significantly correlate with disease activity in SLE patients. Both naive and memory CD4(+) T cells produce more IL-17 in response to SLAM costimulation as compared with CD28 costimulation. In naive CD4(+) cells, IL-17 production after CD28 costimulation peaks on day 3, whereas costimulation with anti-SLAMF3 and anti-SLAMF6 Abs results in a prolonged and yet increasing production during 6 d. Unlike costimulation with anti-CD28, SLAM costimulation requires the presence of the adaptor molecule SLAM-associated protein. Thus, engagement of SLAMF3 and SLAMF6 along with Ag-mediated CD3/TCR stimulation represents an important source of IL-17 production, and disruption of this interaction with decoy receptors or blocking Abs should mitigate disease expression in SLE and other autoimmune conditions.  相似文献   

11.
12.
Infection by the human immunodeficiency virus (HIV) is characterized by functional impairment and chronic activation of T lymphocytes, the causes of which are largely unexplained. We cultured peripheral blood mononuclear cells (PBMC) from HIV-uninfected donors in the presence or absence of HIV. HIV exposure increased expression of the activation markers CD69 and CD38 on CD4 and CD8 T cells. IFN-alpha/beta, produced by HIV-activated plasmacytoid dendritic cells (pDC), was necessary and sufficient for CD69 and CD38 upregulation, as the HIV-induced effect was inhibited by blockade of IFN-alpha/beta receptor and mimicked by recombinant IFN-alpha/beta. T cells from HIV-exposed PBMC showed reduced proliferation after T cell receptor stimulation, partially prevented by 1-methyl tryptophan, a competitive inhibitor of the immunesuppressive enzyme indoleamine (2,3)-dioxygenase (IDO), expressed by HIV-activated pDC. HIV-induced IDO inhibited CD4 T cell proliferation by cell cycle arrest in G1/S, and prevented CD8 T cell from entering the cell cycle by downmodulating the costimulatory receptor CD28. Finally, the expression of CHOP, a marker of the stress response activated by IDO, was upregulated by HIV in T cells in vitro and is increased in T cells from HIV-infected patients. Our data provide an in vitro model for HIV-induced T cell dysregulation and support the hypothesis that activation of pDC concomitantly contribute to phenotypic T cell activation and inhibition of T cell proliferative capacity during HIV infection.  相似文献   

13.
In the present study we evaluated the role of IFN-alpha in the generation of dendritic cells (IFN-DCs) with priming activity on CD8(+) T lymphocytes directed against human tumor Ags. A 3-day treatment of monocytes, obtained as adherent PBMCs from HLA-A*0201(+) healthy donors, with IFN-alpha and GM-CSF led to the differentiation of DCs displaying a semimature phenotype, but promptly inducing CD8(+) T cell responses after one in vitro sensitization with peptides derived from melanoma (gp100(209-217) and MART-1/Melan-A(27-35)) and adenocarcinoma (CEA(605-613)) Ags. However, these features were lost when IFN-DCs were generated from immunosorted CD14(+) monocytes. The ability of adherent PBMCs to differentiate into IFN-DCs expressing higher levels of costimulatory molecules and exerting efficient T cell priming capacity was associated with the presence of contaminating NK cells, which underwent phenotypic and functional activation upon IFN-alpha treatment. NK cell boost appeared to be mediated by both direct and indirect (i.e., mediated by IFN-DCs) mechanisms. Experiments performed to prove the role of contaminating NK cells in DC differentiation showed that IFN-DCs generated in the absence of NK were phenotypically less mature and could not efficiently prime antitumor CD8(+) lymphocytes. Reciprocally, IFN-DCs raised from immunosorted CD14(+) monocytes regained their T cell priming activity when NK cells were added to the culture before IFN-alpha and GM-CSF treatment. Together, our data suggest that the ability of IFN-DCs to efficiently prime anti-tumor CD8(+) T lymphocytes relied mostly on the positive cross-talk occurring between DCs and NK cells upon stimulation with IFN-alpha.  相似文献   

14.
We investigated the capacity of CD25(+) T regulatory cells (Treg) to modulate T cell responses to nickel, a common cause of allergic contact dermatitis. CD4(+) T cells isolated from the peripheral blood of six healthy, nonallergic individuals showed a limited capacity to proliferate in response to nickel in vitro, but responsiveness was strongly augmented (mean increment +/- SD, 240 +/- 60%) when cells were depleted of CD25(+) Treg. Although CD25(+) Treg were anergic to nickel, a small percentage up-regulated membrane CTLA-4 upon nickel exposure. CD25(+) Treg strongly and dose-dependently inhibited nickel-specific activation of CD25(-) T lymphocytes in coculture experiments in a cytokine-independent, but cell-to-cell contact-dependent, manner. Approximately 30% of circulating CD25(+) Treg expressed the cutaneous lymphocyte-associated Ag (CLA), and CLA(+)CD25(+) Treg were more efficient than CLA(-)CD25(+) cells in suppressing nickel responsiveness of CD25(-) T cells. The site of a negative patch test in response to nickel showed an infiltrate of CD4(+)CLA(+) cells and CD25(+) cells, which accounted for approximately 20% of the total T cells isolated from the tissue. Skin-derived T cells suppressed nickel-specific responses of peripheral blood CD25(-) T cells. In addition, 60 +/- 14% of peripheral blood CD25(+) Treg expressed the chemokine receptor CCR7 and strongly inhibited naive T cell activation in response to nickel. Finally, CD25(+) T cells isolated from peripheral blood of nickel-allergic patients showed a limited or absent capacity to suppress metal-specific CD4(+) and CD8(+) T cell responses. The results indicates that in healthy individuals CD25(+) Treg can control the activation of both naive and effector nickel-specific T cells.  相似文献   

15.
The putative counterparts of human plasmacytoid pre-dendritic cells (pDCs) have been described in vivo in mouse models and very recently in an in vitro culture system. In this study, we report that large numbers of bone marrow-derived murine CD11c(+)B220(+) pDCs can be generated with Flt3 ligand (FL) as the sole exogenous differentiation/growth factor and that pDC generation is regulated in vivo by FL because FL-deficient mice showed a major reduction in splenic pDC numbers. We extensively analyzed bone marrow-derived CD11c(+)B220(+) pDCs and described their immature APC phenotype based on MHC class II, activation markers, and chemokine receptor level of expression. CD11c(+)B220(+) pDCs showed a nonoverlapping Toll-like receptor pattern of expression distinct from that of classical CD11c(+)B220(-) dendritic cells and were poor T cell stimulators. Stimulation of CD11c(+)B220(+) pDCs with oligodeoxynucleotides containing certain CpG motifs plus CD40 ligand plus GM-CSF led to increased MHC class II, CD80, CD86, and CD8alpha expression levels, to a switch in chemokine receptor expression that affected their migration, to IFN-alpha and IL-12 secretion, and to the acquisition of priming capacities for both CD4(+) and CD8(+) OVA-specific TCR-transgenic naive T cells. Thus, the in vitro generation of murine pDCs may serve as a useful tool to further investigate pDC biology as well as the potential role of these cells in viral immunity and other settings.  相似文献   

16.
Immune complexes (ICs) play a pivotal role in causing inflammation in systemic lupus erythematosus (SLE). Yet, it remains unclear what the dominant blood cell type(s) and inflammation-related gene programs stimulated by lupus ICs are. To address these questions, we exposed normal human PBMCs or CD14(+) isolated monocytes to SLE ICs in the presence or absence of C1q and performed microarray analysis and other tests for cell activation. By microarray analysis, we identified genes and pathways regulated by SLE ICs that are both type I IFN dependent and independent. We also found that C1q-containing ICs markedly reduced expression of the majority of IFN-response genes and also influenced the expression of multiple other genes induced by SLE ICs. Surprisingly, IC activation of isolated CD14(+) monocytes did not upregulate CD40 and CD86 and only modestly stimulated inflammatory gene expression. However, when monocyte subsets were purified and analyzed separately, the low-abundance CD14(dim) ("patrolling") subpopulation was more responsive to ICs. These observations demonstrate the importance of plasmacytoid dendritic cells, CD14(dim) monocytes, and C1q as key regulators of inflammatory properties of ICs and identify many pathways through which they act.  相似文献   

17.
EBV infection is more common in patients with systemic lupus erythematosus (SLE) than in control subjects, suggesting that this virus plays an etiologic role in disease and/or that patients with lupus have impaired EBV-specific immune responses. In the current report we assessed immune responsiveness to EBV in patients with SLE and healthy controls, determining virus-specific T cell responses and EBV viral loads using whole blood recall assays, HLA-A2 tetramers, and real-time quantitative PCR. Patients with SLE had an approximately 40-fold increase in EBV viral loads compared with controls, a finding not explained by disease activity or immunosuppressive medications. The frequency of EBV-specific CD69+ CD4+ T cells producing IFN-gamma was higher in patients with SLE than in controls. By contrast, the frequency of EBV-specific CD69+ CD8+ T cells producing IFN-gamma in patients with SLE appeared lower than that in healthy controls, although this difference was not statistically significant. These findings suggest a role for CD4+ T cells in controlling, and a possible defect in CD8+ T cells in regulating, increased viral loads in lupus. These ideas were supported by correlations between viral loads and EBV-specific T cell responses in lupus patients. EBV viral loads were inversely correlated with the frequency of EBV-specific CD69+ CD4+ T cells producing IFN-gamma and were positively correlated with the frequencies of CD69+ CD8+ T cells producing IFN-gamma and with EBV-specific, HLA-A2 tetramer-positive CD8+ T cells. These results demonstrate that patients with SLE have defective control of latent EBV infection that probably stems from altered T cell responses against EBV.  相似文献   

18.
Engagement of the CD3/T cell receptor complex in systemic lupus erythematosus (SLE) T cells involves Syk rather than the zeta-associated protein. Because Syk is being considered as a therapeutic target we asked whether Syk is central to the multiple aberrantly modulated molecules in SLE T cells. Using a gene expression array, we demonstrate that forced expression of Syk in normal T cells reproduces most of the aberrantly expressed molecules whereas silencing of Syk in SLE T cells normalizes the expression of most abnormally expressed molecules. Protein along with gene expression modulation for select molecules was confirmed. Specifically, levels of cytokine IL-21, cell surface receptor CD44, and intracellular molecules PP2A and OAS2 increased following Syk overexpression in normal T cells and decreased after Syk silencing in SLE T cells. Our results demonstrate that levels of Syk affect the expression of a number of enzymes, cytokines and receptors that play a key role in the development of disease pathogenesis in SLE and provide support for therapeutic targeting in SLE patients.  相似文献   

19.
Systemic lupus erythematosus (SLE) is characterized by the production of a wide array of autoantibodies and dysregulation of B cell function. The leukocyte associated Immunoglobulin (Ig)-like receptor (LAIR)1 is a transmembrane molecule belonging to Ig superfamily which binds to different types of collagen. Herein, we have determined the expression and function of LAIR1 on B lymphocyte from SLE patients. LAIR1 expression in peripheral blood B lymphocytes from 54 SLE, 24 mixed connective tissue disease (MCTD), 20 systemic sclerosis (SSc) patients, 14 rheumatoid arthritis (RA) and 40 sex and age matched healthy donors (HD) have been analyzed by immunofluorescence. The effect of LAIR1 ligation by specific monoclonal antibodies, collagen or collagen producing mesenchymal stromal cells from reactive lymph nodes or bone marrow on Ig production by pokeweed mitogen and B cell receptor (BCR)-mediated NF-kB activation was assessed by ELISA and TransAM assay. The percentage of CD20(+) B lymphocytes lacking or showing reduced expression of LAIR1 was markedly increased in SLE and MCTD but not in SSc or RA patients compared to HD. The downregulation of LAIR1 expression was not dependent on corticosteroid therapy. Interestingly, LAIR1 engagement by collagen or collagen-producing mesenchymal stromal cells in SLE patients with low LAIR1 expression on B cells delivered a lower inhibiting signal on Ig production. In addition, NF-kB p65 subunit activation upon BCR and LAIR1 co-engagement was less inhibited in SLE patients than in HD. Our findings indicate defective LAIR1 expression and function in SLE B lymphocytes, possible contributing to an altered control of B lymphocytes behavior.  相似文献   

20.
T cells isolated from patients with systemic lupus erythematosus (SLE) express low levels of CD3zeta-chain, a critical molecule involved in TCR-mediated signaling, but the involved mechanisms are not fully understood. In this study we examined caspase-3 as a candidate for cleaving CD3zeta in SLE T cells. We demonstrate that SLE T cells display increased expression and activity of caspase-3. Treatment of SLE T cells with the caspase-3 inhibitor Z-Asp-Glu-Val-Asp-FMK reduced proteolysis of CD3zeta and enhanced its expression. In addition, Z-Asp-Glu-Val-Asp-FMK treatment increased the association of CD3zeta with lipid rafts and simultaneously reversed the abnormal lipid raft preclustering, heightened TCR-induced calcium responses, and reduced the expression of FcRgamma-chain exclusively in SLE T cells. We conclude that caspase-3 inhibitors can normalize SLE T cell function by limiting the excessive digestion of CD3zeta-chain and suggest that such molecules can be considered in the treatment of this disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号