首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Cam River mouth (Haiphong Province) is one of the main river mouths of the Red River System, which is one of the most important water resources in Northern Vietnam. Over the past 50 years, the strong socio-economic development in the area has caused a considerable contamination with heavy metals (Co, Cr, Cu, Mn, Ni, Pb, and Zn) and arsenic. In this study, the vertical and horizontal distributions of heavy metals and arsenic in sediments from the Cam River mouth were investigated. In addition, the history, origin, and degree of contamination were assessed. Normalized (with respect to Al) heavy metal and arsenic concentrations in sediment cores and absolute dates obtained from the 137Cs analysis were used to reconstruct the pollution history of the river mouth. As, Cu, Mn, Pb, and Zn concentrations increase rapidly by approximately two times or more from 1954 to 1975, and then remain nearly unchanged from 1975 until 2008, whereas Co, Cr, and Ni concentrations slightly increase from 1954 until 2008. In addition, background values for heavy metals and arsenic have also been determined with regard to the period before 1954. In the study area, Co, Cr, Cu, Ni, Mn, and Zn are evaluated as minorly enriched, whereas As and Pb are classified as moderately enriched. Generally, the anthropogenic activities in the Haiphong harbor and industrial zone locally contribute to the contamination by heavy metals and arsenic in the Cam River mouth.  相似文献   

2.
A total of 455 agricultural soil samples from four nonferrous mines/smelting sites in Shaoguan City, China, were investigated for concentrations of 10 heavy metals (As, Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb, and Zn). The mean concentrations of the metals were 72.4, 5.16, 13.3, 54.8, 84.5, 1.52, 425, 28.2, 529, and 722 mg kg?1, respectively. The values for As, Cd, Hg, Pb, and Zn were more than 8 and 1.5 times higher than their background values in this region and the limit values of Grade II soil quality standard in China, respectively. Estimated ecological risks based on contamination factors and potential ecological risk factors were also high or very high for As, Cd, Hg, and Pb. Multivariate analysis (Pearson's correlation analysis, hierarchical cluster analysis, and principal component analysis) strongly implied three distinct groups; i.e., As/Cu/Hg/Zn, Co/Cr/Mn/Ni, and Cd/Pb. Local anomalies for As, Cu, Hg, and Zn by a probably anthropogenic source (identified as mining activity), Co, Cr, Mn, and Ni by natural contribution, and a mixed source for Cd and Pb, were identified. This is one of the few studies with a focus on potential sources of heavy metals in agricultural topsoil around mining/smelting sites, providing evidence for establishing priorities in the reduction of ecological risks posed by heavy metals in Southern China and elsewhere.  相似文献   

3.
Heavy metal contamination of agricultural soils resulting from rapid industrialization and urbanization is of great concern because of potential health risk due to dietary intake of contaminated vegetables. The present study aims to evaluate the status of heavy metals contamination of agricultural soils and food crops around an urban-industrial region in India. Transfer factor values of Cu, Cr, Pb, Cd, Zn, and Ni from soil to vegetable was estimated. The mean heavy metal concentrations (mg/kg) in agricultural soils (Cu: 17.8, Cr: 27.3, Pb: 29.8, Cd: 0.43, Zn: 87, Mn: 306.6, Fe: 16984, and Ni: 53.8) were within allowable concentrations for Indian agricultural soil. The concentrations of Pb, Cd, Zn, and Ni in crops/vegetables exceeded the World Health Organization/Food and Agriculture Organization safe limits. Relative orders of transfer of metals from soil to edible parts of the crops/vegetables were Cd > Pb > Ni > Zn > Cu > Cr. The enrichment factors of heavy metals in soil indicated minor to moderately severe enrichment for Pb, Cd, and Ni; minor to moderate enrichment for Zn; no enrichment to minor enrichment for Mn; and no enrichment to moderate enrichment for Cu at different sites. Ecological risk index of soil showed considerable contamination in one of the wastewater irrigated sites.  相似文献   

4.
In this study, a comprehensive assessment of soil heavy metal (HMs) pollution in the Yellow River Delta National Nature Reserve (YRDNNR) was conducted. Spatial distributions, chemical fractions, and sources of eight HMs (Cu, Zn, Pb, Cr, Cd, Fe, Mn, and Ni) in 46 soil samples in the studied region were analyzed. In addition, the potential risks of the HMs were evaluated. The results showed that the mean concentrations of Cu, Zn, Pb, Cr, Cd, Fe, Mn, and Ni were 19.4, 65.2, 38.4, 55.9, 0.078, 41546.5, 510.3, and 27.5 mg kg?1, respectively. It indicates that the concentrations of most HMs, with exception of Pb and Fe, in samples were similar to the background value of soil in China. Principal component analysis results showed that the HMs originated mainly from natural sources, but Pb pollution in the studied area was significantly caused by anthropogenic activities. In addition, Ecological risk assessment statistical analysis indicates that the HM contamination level in YRDNNR ranged from low to moderately polluted, however, the environmental risk due to Mn and Pb contamination was high.  相似文献   

5.
Concentrations of Pb, Zn, Cd, Ni, Cu, Cr, and Mn were determined to assess the impact of automobiles on heavy metal contamination of roadside soil. Soil samples at four polluted sites and a control site were collected at a depth of 0, 2, 5, 10, 15, 20, 30?cm. A comparison of elemental levels between polluted and control sites exhibited exceptionally higher concentrations at the former sites. The Pb levels in polluted sites varied from 70 to 280.5?µgg?1and it rapidly decreased with depth. Similarly, mean concentrations of Zn, Cd, Ni, Cu, Cr, and Mn were significantly higher at polluted sites and followed a decreasing trend with the increase in depth. Correlation coefficients between heavy metals and traffic density were positively significant except for nickel. Profile samples showed that Pb, Zn, Cd, Cu, and Mn were largely concentrated in the top 5?cm confirming airborne contamination. The vertical movement and partitioning of metals, except Ni and Cr, exhibited predominant association with soil pH and organic carbon. The results have been presented using Heavy Metal Index.  相似文献   

6.
Biomarkers of oxidative stress such as catalase (CAT), glutathione S-transferase (GST), glutathione reductase (GR) activity, and malondialdehyde and reduced glutathione content, as well as heavy metal concentrations (HM: Pb, V, Cr, Mn, Co, Ni, Cu, Zn, and Cd), were studied in Dreissena polymorpha tissues. Mussels were collected on three sites located on the Rybinskoe Reservoir different in levels of anthropogenic pressure: the most polluted sites were 1 and 2 and site 3 was relatively clean. Mussels from sites 1 and 2 had higher concentrations of HM (Pb, V, Cr, Mn, Ni, Cu, and Mn) and their response to the pollutant action was manifested in increased processes of lipid peroxidation (LPO), the activation of CAT, and elevated level of GHS.  相似文献   

7.
The issue of heavy metal pollution is of high concern due to its potential health risks and detrimental effects on human beings, animals, and plants. In this study, farmland soil samples from 79 sampling sites were collected in Karashahar–Baghrash oasis, northwest China, and the contents of eight heavy metal elements (As, Cd, Cr, Cu, Mn, Ni, Pb, and Zn) were determined by standard methods. The spatial distribution, pollution, and ecological risks of heavy metals were analyzed based on Geographical Information System (GIS) technology, contamination factor (CF), pollution load index (PLI), and potential ecological risk index (RI). Results indicated that: (1) The average contents of Cd, Cr, Ni, Pb, and Zn exceeded the background values of irrigation soils of Xinjiang by 54.0, 1.34, 1.39, 3.44, and 5.01 times, respectively. The average contents of Cd exceeded the national standard of China by 10.80 times; (2) The pollution order of CF was ranked as Cd > Zn > Pb > Ni > Cr > Cu > As > Mn, and the ecological risk order of Eri was ranked as Cd > Ni > As > Cu > Ni > Pb > Cr > Zn. The average PLI of the study area showed heavy pollution level, and the average RI of the study area fell into considerable risk; (3) The moderately polluted areas with moderate potential ecological risks distributed in the northern parts, whereas heavily polluted areas with considerable potential ecological risks distributed in the southern parts of the study area; (4) Cr, Cu, and Mn of farmland soils were mainly originated from natural factors. Cd, Ni, and Pb were mainly originated from anthropogenic factors. As and Zn may be associated with both natural and anthropogenic factors. Cd contributed most to the PLI and RI of the farmland soils in the study area.  相似文献   

8.
Whole Antarctic krill, Euphausia superba collected along the Western Antarctic Peninsula, were analyzed for 14 elements. Average element abundances (in parentheses) in g/g, in descending order, were as follows: P(9940), Cu (80.5), Zn (43.5), Fe (28.0), Se (5.80), Ba (3.78), Mn (1.98), As (1.92), Ag (1.71), Ni (0.54), Cr (0.30), Cd (0.29), Pb (0.22), and Hg (0.025). Inverse relationships were found between krill length and Hg concentration as well as between As and P levels. A geographic trend of increasing Mn and P levels from southwest to northeast along the Antarctic Peninsula was Sound. Results were compared to earlier data for evidence of metal concentration changes due to anthropogenic activity over the last 15 years.  相似文献   

9.
Abstract

Kolkata wetlands are the largest sewage fed wetlands in the world. They have been used for aquaculture since 1960. Geochemical distribution of heavy metals (Cr, Cu, Mn, Fe, Zn, Pb, Ni and Al) has been studied in surface sediments using single and sequential extractions techniques. The metal concentrations in sediments were in the following order: Fe>Al> Mn>Zn>Cu> Pb>Cr> Ni, and the average concentrations were 29 μg g?1, 54 μg g?1, 328 μg g?1, 32747 μg g?1, 169 μg g?1, 38 μg g?1, 25 μg g?1 and 23371 μg g?1 dry weights for Cr, Cu, Mn, Fe, Zn, Pb, Ni and Al, respectively. Water-soluble percentages of the trace elements are quite low (<0.01–3.75%) but in the presence of chelating agents in the sediments increase the bioavailability of trace elements (2–58%). About 40% of trace elements are in the stable form as a residual fraction of the sediment and more than 50% (nonresidual fraction) metal contamination of the Kolkata wetland sediments were from anthropogenic inputs. The contamination risks of Cr, Mn, Zn, Pb, and Ni are high as their potential availabilities are 70.96%, 58.01%, 63.13%, 55.62%, and 52.15% respectively. The mean concentration of most of the heavy metals in sediments does not exceed the recommended reference values. Zinc and lead concentrations were greater than background level and Interim Sediment Quality Guidelines but lower than Probable Effect Level. Therefore a regular program for monitoring the distribution of heavy metals in water, sediments and biota should be imposed on sewage fed fish ponds of the Kolkata wetland ecosystem.  相似文献   

10.
Karachi is one of the most populated urban agglomerations in the world. No categorical study has yet discussed the geochemical baseline concentrations of metals in the urban soil of Karachi. The main objectives of this study were to establish geochemical baseline values and to assess the pollution status of different heavy metals. Geochemical baseline concentrations of heavy metals were estimated using the cumulative frequency distribution (CDF) curves. The estimated baseline concentrations of Pb, Cr, Cu, Zn and Fe were 56.23, 12.9, 36.31, 123.03 and 11,776 mg kg−1, respectively. The pollution status of heavy metals in urban soils was evaluated using different quantitative indices (enrichment factor–EF, Geo-accumulation Index–Igeo, and pollution index–PI). Enrichments factors of the selected heavy metals determined by using Fe as a normalizer showed that metal contamination was the product of anthropogenic activities. The urban soils of Karachi were found to have a moderate to moderately severe enrichment with Pb, whereas Cr and Cu has moderate and Zn has minor enrichment. Igeo results indicated moderate soil contamination by Pb at some of the sampling locations. PI for Pb, Cr, Cu and Zn was found in the range of 0.04–3.42, 0.19–1.55, 0.27–2.45 and 0.32–1.57, respectively. Large variations in PI values of Pb revealed that soil in those areas of the city which are influenced by intensive anthropogenic activities have exceptionally high concentrations of Pb. The findings of this study would contribute to the environmental database of the soil of the region and would also facilitate both at the local and the international scales, in a more accurate global environmental monitoring, which will eventually facilitate the development of management and remediation strategies for heavy metal contaminated urban soil.  相似文献   

11.
南京城市土壤重金属含量及其影响因素   总被引:82,自引:5,他引:77  
研究了南京城市土壤重金属含量、来源及其与土壤性质的关系。结果表明,南京城市土壤中,Fe、Ni、Co、V污染不明显,但受到了不同程度的Mn、Cr、Cu、Zn、Pb污染,其中:Pb污染非常严重;重金属在土壤剖面分布没有规律性;Fe、Ni、Co、V元素主要来源于原土壤物质,Cu、Zn、Pb、Cr元素主要来源于人为输入,Mn可能在不同的土壤中来源不同;Fe、Cr、Ni、Co、V元素含量之间均呈极显著正相关,Cu、Zn、Pb、Cr元素含量之间均呈极显著正相关。Fe、Co、V、Ni含量与粘粒含量、CEC呈极显著正相关;Cu、Zn、Pb含量与粘粒含量呈极显著负相关;Cu、Zn、Pb、Cr含量与有机碳呈极显著正相关,Pb含量与pH呈极显著正相关。  相似文献   

12.
Abstract

A total of 83 dust samples were collected from the streets of Urumqi city in NW China and analyzed for the concentrations of As, Cd, Cr, Cu, Hg, Mn, Ni, Pb, and Zn elements. The spatial distribution, contamination levels, main sources, and potential health risks of these trace elements were determined based on geostatistical analysis, geo-accumulation index, multivariate analysis, and the health risk assessment model introduced by the USEPA, respectively. The obtained results indicate that the average concentrations of Cd, Cr, Cu, Hg, Ni, Pb, and Zn exceed the corresponding background values determined in Xinjiang soils by factors of 2.0, 1.35, 1.38, 8.24, 1.28, 2.09, and 3.26, respectively. The spatial distribution patterns of the nine trace elements in street dust were found to be substantially heterogeneous, and the contamination level decreased in the following order: Hg?>?Zn?>?Pb?>?Cd?>?Cr?>?Cu?>?As?>?Ni?>?Mn. Based on the identified concentrations, the collected dust samples were found to be moderately polluted by Hg, and not polluted by As, Cr, Cu, Mn, and Ni. The remaining elements, Cd, Pb, and Zn lie on the borderline between non-pollution and moderate pollution levels. Furthermore, it was shown that Mn and Zn in street dusts originate from both, natural and anthropogenic sources, while As, Cd, Cr, Cu, Hg, Ni, and Pb are mainly produced by anthropogenic sources. Overall, the carcinogenic and non-carcinogenic health risks of the analyzed elements, instigated primarily by oral ingestion of street dusts, were found to be within the acceptable range for both, children and adults. As and Cr are the main non-carcinogenic elements, whereas Cr is the major carcinogenic element among the investigated dust-bound metals in the study area.  相似文献   

13.
In recent years, heavy metal contamination in suburban vegetable soils calls for significant concerns due to the rapid urbanization and industrialization. In present study, 110 suburban vegetable soil samples from Yanbian, Northeast China, were collected. Concentration characteristics, pollution level, health risk, and source identification were evaluated by using different quantitative indices. Concentrations of Pb, Cr, Cu, Ni, Zn, Cd, and As in suburban soils were measured. Mean concentrations of Pb, Cr, Cu, Ni, Zn Cd, and As were 34.9 ± 10.5, 73.5 ± 44.4, 29.6 ± 19.4, 23.4 ± 12.0, 88.5 ± 26.7, 0.16 ± 0.16, and 9.24 ± 3.79 mg/kg, which were showed significantly higher than corresponding background values of Jilin province, respectively. The soils were moderately heavy polluted by Cu and Cd based on the results of geo-accumulated index and pollution indices. The pollution load index indicated that almost all of the study area were middle or heavy polluted, especially in Antu County and Helong City. Children in Yanbian may pose non-carcinogenic and carcinogenic risks with the major exposure pathway of ingestion. Principle component analysis results suggested that Pb, Cu, Zn, and Cd were mainly associated with agricultural activities, Ni and Cr were defined as combined source (lithogenic and anthropogenic), and As was tended to be from excessive application of pesticides and industrial activities.  相似文献   

14.
The purpose of this study was to investigate the total and available concentrations of Pb, Cr, Cu, Ni, and Zn in the vegetable soils from the outskirts of a heavy industry city, Northeast China, and to assess the sources of heavy metals and their availability. The average concentrations of Pb, Cu, and Zn were significantly higher than their background values of Changchun topsoil. Principal component analysis, cluster analysis, and geostatistical analysis results suggested that Pb, Cu, and Zn were consistently from anthropogenic sources, while Cr and Ni were from natural sources with low concentrations. Kriging results showed that several hotspots of high metal concentration were identified by the geochemical maps and caused by different environmental factors. Although the available (ethylene-diamine-tetraacetic acid-extractable) fractions showed much lower values than total concentrations of metals, Pb and Cu had relatively high ARa (average availability ratio of metals) values. Our findings show that most of the studied metals had accumulated to some extent in vegetable soils and several hotspots of high metal concentration appeared at the peri-urban of Changchun. The concentrations of some metals in peri-urban vegetable soils have been largely affected by anthropogenic activities. Appropriate measures should be taken to effectively control heavy metal levels in vegetable soils and thus protect human health.  相似文献   

15.
为了了解不同土壤重金属浓度梯度及污染梯度下香樟不同器官的富集特征,测定了香樟树叶、树枝、树干和根际土壤中6种重金属元素(Cu、Zn、Pb、Cr、Mn、Ni)的含量.结果表明: 香樟地上部分重金属含量因器官、元素种类、根际土壤重金属浓度的不同而存在差异.香樟树叶和树枝重金属含量的大小顺序均为:Mn>Zn>Cu>Cr>Pb>Ni,树干重金属含量为:Mn>Zn>Cr>Pb>Ni>Cu.树叶对Mn的富集系数较高,为2.409;树干对Ni的富集系数较高,分别为树叶、树枝的8.6和17倍,且在不同土壤重金属浓度梯度下,香樟树干对Cu、Zn、Pb、Cr、Ni的富集系数均明显高于其他器官.香樟地上部分器官对Cu、Zn、Pb、Cr、Mn、Ni 6种重金属元素的综合富集能力大小顺序为:树叶>树干>树枝.随着土壤重金属污染等级的增加,香樟地上部分各器官的富集系数均逐渐降低.研究区域平均胸径为22 cm的单株香樟对重金属元素富集效能的大小顺序为:树叶>树干>树枝,其中树干对Cu、Zn、Pb、Cr、Ni的积累量均显著高于树叶和树枝.表明香樟对6种重金属元素均有一定的富集能力,并且树干对Pb和Ni的富集效能明显,分别占地上部分总积累量的82.7%和91.9%,能很好地富集并稳固土壤中的Pb和Ni,可作为修复治理土壤重金属污染的备选树种.  相似文献   

16.
行道树毛白杨树干中重金属元素分布   总被引:3,自引:1,他引:2  
王荣芬  邱尔发  唐丽清 《生态学报》2014,34(15):4212-4222
采用电感耦合等离子体发射光谱法(ICP),测定分析首都机场高速公路旁毛白杨(Populus tomentosa Carr.)树干中Pb、Cd、Cr、Cu、Zn、Ni和Mn 7种重金属元素的含量及积累量,比较分析树干不同组织、不同方位、不同龄级年轮重金属含量差异及与交通量、关键气候因子的相关性。结果表明:树干木质部中各重金属平均含量由大到小依次为Zn、Cu、Cr、Mn、Ni、Pb、Cd,树皮中依次为Zn、Mn、Cr、Pb、Cu、Cd、Ni,树皮中各重金属元素的含量明显高于木质部;同一树干木质部中,各重金属元素在不同方位的分布有所差异,其中,靠近车道一侧的各重金属元素含量均高于背离车道一侧,南北向比较中,Ni、Zn为南侧含量高于北侧,其他5种重金属元素均为北侧高于南侧;以5a为一个龄级将年轮划分为5个龄组,各龄级年轮中重金属含量随时间的变化趋势各异,其中Pb、Cd、Cu、Zn总体呈递减趋势,且与年降水量、最低气温、日照时数、雨天日数和大风日数呈正相关趋势,与年平均气温和最高气温呈负相关趋势;各元素在毛白杨树干木质部中的积累量表现为ZnCrCuMnPbNiCd。  相似文献   

17.
Water and muscle tissue samples from two morphotypes of the African large barb Labeobarbus intermedius collected from three sites in Lake Hawassa in 2012–2013 were analysed for eight heavy metals, including Cd, Co, Cr, Cu, Mn, Ni, Pb and Zn. Five metals (Cr, Cu, Mn, Ni and Zn) were detected in fish muscle samples, whereas only Cr, Cu and Ni were detected in water samples. Of the five metals detected in the muscle samples, Cu and Zn were present in higher concentrations in the golden morphotype, whereas Cr, Mn and Ni were found in higher concentrations in the silver morphotype. Bioaccumulation factor (BAF) values indicated that Cr, Cu and Ni have a tendency to accumulate in fish muscle in amounts exceeding those in water. In both morphotypes the highest concentrations of Zn and Mn were detected at the Hospital site, whereas the concentrations of Cr, Cu and Ni were highest at the Tikur Wuha site. Chromium, Cu and Ni concentrations recorded in fish muscle at all sampling sites exceeded the safe limits recommended by FAO/WHO and UNESCO, suggesting that water and fish from Lake Hawassa are contaminated with heavy metals originating from factories, a hospital and agricultural activities in proximity to the lake.  相似文献   

18.
This research was conducted to assess heavy metal contamination in the environment and within Oryza sativa. The translocation factors (TFs) and bioaccumulation factors (BAFs) for heavy metals in O. sativa and estimated daily intake (EDI) and health risk index (HRI) were measured. The samples were analyzed for heavy metals using inductively coupled plasma optical emission spectrometry (ICP-OES). Pb and Cr concentrations in water samples within and near the electronic-waste dumping area exceeded water quality standards for surface water sources from the Pollution Control Department in the Ministry of Natural Resources and Environment of Thailand (PCD). The Pb concentration in soil samples within the area also exceeded soil quality standards for habitat and agriculture from PCD. Most of the metals were highly concentrated in roots, except for Mn which has the highest concentration in leaves. Pb concentrations in rice grains exceeded the FAO/WHO standard (0.2 mg/kg). The average TF values for heavy metals from the soil to roots, roots to stems, stems to leaves, and stems to grains were Mn > Pb > Ni > Cr, Mn > Cr > Ni > Pb, Ni > Pb > Mn > Cr, and Pb > Ni > Cr > Mn, respectively. The average BAF values in O. sativa were Mn > Ni > Pb > Cr. The EDI for Cr, Pb, Mn, and Ni via O. sativa consumption were 6.19, 6.02, 370.57, and 3.80 µg/kg/day, respectively. The HRI for Cr, Pb, Mn, and Ni via O. sativa consumption were 0.30, 1.50, 2.60, and 0.002, respectively.  相似文献   

19.
为探索刺楸对受污染土壤重金属的富集和修复效应, 以南京栖霞山的乡土树种刺楸及其根际周边土壤为研究对象, 截取其根基部年轮盘及根际土壤样本, 采用ICP-AES法测定年轮及土壤样本中重金属(Cu、Cd、Cr、Mn、Ni、Pb、Zn)元素含量。结果表明: 栖霞山样地中的土壤受Mn、Pb和Zn污染最为严重, 存在Cu、Cd、Mn、Pb、Zn元素的高度复合污染, Cd、Cr、Cu、Ni、Zn在土壤和年轮中存在相关性, Mn和Pb则没有表现出明显的相关性; 刺楸修复受Cd、Mn、Pb、Zn污染的土壤效果并不显著, 更适用于Cr、Cu、Ni污染的土壤修复; 鉴于Cu元素含量变化特征, 刺楸也可以作为反映当地污染历史的记录载体; 刺楸年轮中的重金属元素之间存在交互作用, 其中Cd与Zn元素含量高度相关(r=0.984, p<0.01), 在刺楸年轮吸收重金属元素的过程中, Cu与Cd、Cr、Mn、Zn元素具有协同作用, Mn元素对其他元素有一定的拮抗作用。  相似文献   

20.
于2011年8月采集了珠江口桂山岛海域12个站点的表层沉积物, 对沉积物中重金属的含量进行了测定。结果表明, 桂山岛沉积物中重金属含量与国内外港湾相比属于中等水平, Pb、Cr、Ni、Cu、Zn、Mn平均含量分别为40.06、31.29、14.17、30.67、100.18、599.76 mg/kg。富集系数法和 Hakanson潜在生态风险指数法评价表明:桂山岛沉积物各重金属元素的富集顺序为Cu﹥Pb﹥Zn﹥Mn﹥Cr﹥Ni, 其中Cu、Pb、Zn和Mn富集系数大于1;该海域重金属潜在生态风险总体上处于低水平, 从空间上看, S11危害最为严重。进一步通过主成分分析研究沉积物中重金属的来源, 发现前2个主成分贡献率分别为44.38%、42.61%, 表明重金属主要有2个来源:工业和生活污水排放、岩石的自然风化与侵蚀过程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号