首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effects of pretreatment with caffeine on Ca2+ release induced by caffeine, thymol, quercetin, or p-chloromercuriphenylsulfonic acid (pCMPS) from the heavy fraction of sarcoplasmic reticulum (SR) were studied and compared with those effects on caffeine contracture and tetanus tension in single fibers of frog skeletal muscle. Caffeine (1-5 mM) did induce transient Ca2+ release from SR vesicles, but subsequent further addition of caffeine (10 mM, final concentration) induced little Ca2+ release. Ca2+ release induced by thymol, quercetin, or pCMPS was also inhibited by pretreatment with caffeine. In single muscle fibers, pretreatment with caffeine (1-5 mM) partially reduced the contracture induced by 10 mM caffeine. However, tetanus tension was almost maximally induced by electrical stimulus in caffeine-treated fibers. These results indicate that SR, which becomes less sensitive to caffeine, thymol, quercetin, or pCMPS by pretreatment with caffeine, can still respond to a physiological signal transmitted from transverse tubules.  相似文献   

2.
Sarcoplasmic reticulum (SR) terminal cisternae (TC) of frog (Rana esculenta) fast-twitch skeletal muscle have been purified by isopycnic sucrose density gradient centrifugation. Biochemical characteristics and Ca2+ release properties have been investigated and compared to those of the homologous fraction of rabbit skeletal muscle TC. The frog SR fraction obtained at the 38/45% sucrose interface appears to be derived from the terminal cisternae region as judged by: (a) thin section electron microscopy showing vesicles containing electron opaque material and squarelike (feet) projections at the outer surface; (b) protein composition (Ca2+-ATPase, calsequestrin, and high Mr proteins); (c) Ca2+ fluxes properties. The content of calsequestrin was higher in frog TC by 50% and the Ca2+ binding capacity (624 or 45 nmol of Ca2+/mg of TC protein, depending upon experimental conditions) was 3-4 times that of rabbit TC. Species-specific antigenic differences were found between junctional SR proteins of frog and rabbit TC. After active Ca2+ preloading in the presence of pyrophosphate (Palade, P. (1987) J. Biol. Chem. 262, 6135-6141), caffeine and doxorubicin elicited Ca2+ release from either TC fraction but with much faster rates in frog TC than in rabbit TC (14 versus 3 mumol of Ca2+/min/mg of protein). The present results provide new evidence for the existence of marked differences in Ca2+ release properties between TC of amphibian and mammalian fast-twitch muscle. Higher Ca2+ binding capacity and faster release rates in frog TC might compensate for the comparably greater diffusion distance being covered by the released Ca2+ from the Z-line to the actomyosin cross-bridges in the A-I overlap region.  相似文献   

3.
Caffeine contracture in the cultured chick myotube   总被引:1,自引:0,他引:1  
A possible function of Ca store site in cultured chick myotubes was examined by recording contraction of the myotube with special reference to the effect of caffeine. Caffeine at low concentrations (below 1 mM), applied focally on the myotube through a micropipette with a pressure pulse, elicited focal contraction without membrane potential changes. Procaine inhibited the caffeine contracture. Deuterium oxide also inhibited the caffeine contracture at low concentrations, but enhanced the maximal contracture. These observations are similar to those in the mature frog muscle fiber in which the sarcoplasmic reticulum (SR) is a main site of caffeine action. On the basis of these similarities, it was considered that caffeine acts on SR to elicit contracture in the myotube. The ability of SR to accumulate and release Ca ion seemed to be low, because caffeine contracture decreased or disappeared in a Ca-free solution in many myotubes.  相似文献   

4.
The purpose of this investigation was to determine the effects of reduced pH on Ca(2+)-induced Ca2+ release (CICR) from skeletal muscle sarcoplasmic reticulum (SR). Frog semitendinosus fiber bundles (1-3/bundle) were chemically skinned via saponin treatment (50 micrograms/mL, 20 min), which removes the sarcolemma and leaves the SR functional. The SR was first depleted of Ca2+ then loaded for 2 min at pCa (log free Ca2+ concentration) 6.6. CICR was then evoked by exposing the fibers to pCa 5-7 for 5-60 s. CICR was evoked both in the absence of ATP and Mg2+ and in the presence of beta, gamma-methyleneadenosine-5'-triphosphate (AMPPCP, a nonhydrolyzable form of ATP) and Mg2+. Ca2+ remaining in the SR was then assayed via caffeine (25 mM) contracture. In all cases, CICR evoked at pH 6.5 resulted in larger caffeine contractures than that evoked at 7.0, suggesting that more Ca2+ was released during CICR at the higher pH. Accordingly, rate constants for CICR were significantly greater at pH 7.0 than at pH 6.5. These results indicate that reduced pH depresses CICR from skeletal muscle SR.  相似文献   

5.
At concentrations between 1 to 10 mM, caffeine reduced the Ca-accumulating capacity of fragmented reticulum obtained from frog and rabbit muscle. With 8 mM caffeine enough Ca was released from frog reticulum to account for the force of the contracture. Caffeine did not affect all reticulum membranes equally. The fraction which was spun down at 2000 g was more sensitive than the lighter fractions. The percentage of the total accumulated Ca released by caffeine decreased with decreasing Ca content of the reticulum. In parallel with their known effects on the caffeine contracture, a drop in temperature increased the caffeine-induced Ca release while procaine inhibited it. Caffeine also inhibited the rate of Ca uptake, which may in part account for the prolongation of the active state caused by caffeine.  相似文献   

6.
In cardiac muscle, excitation-contraction (E-C) coupling is determined by the ability of the sarcoplasmic reticulum (SR) to store and release Ca(2+). It has been hypothesized that the Ca(2+) sequestration and release mechanisms might be functionally linked to optimize the E-C coupling process. To explore the relationships between the loading status of the SR and functional state of the Ca(2+) release mechanism, we examined the effects of changes in SR Ca(2+) content on spontaneous Ca(2+) sparks in saponin-permeabilized and patch-clamped rat ventricular myocytes. SR Ca(2+) content was manipulated by pharmacologically altering the capacities of either Ca(2+) uptake or leak. Ca(2+) sparks were recorded using a confocal microscope and Fluo-3 and were quantified considering missed events. SR Ca(2+) content was assessed by application of caffeine. Exposure of permeabilized cells to anti-phospholamban antibodies elevated the SR Ca(2+) content and increased the frequency of sparks. Suppression of the SR Ca(2+) pump by thapsigargin lowered [Ca(2+)](SR) and reduced the frequency of sparks. The ryanodine receptor (RyR) blockers tetracaine and Mg(2+) transiently suppressed the frequency of sparks. Upon washout of the drugs, sparking activity transiently overshot control levels. Low doses of caffeine transiently potentiated sparking activity upon application and transiently depressed the sparks upon removal. In patch-clamped cardiac myocytes, exposure to caffeine produced only a transient increase in the probability of sparks induced by depolarization. We interpret these results in terms of a novel dynamic control scheme for SR Ca(2+) cycling. A central element of this scheme is a luminal Ca(2+) sensor that links the functional activity of RyRs to the loading state of the SR, allowing cells to auto-regulate the size and functional state of their SR Ca(2+) pool. These results are important for understanding the regulation of intracellular Ca(2+) release and contractility in cardiac muscle.  相似文献   

7.
A comparative pharmacological analysis of relative contributions of different signal transduction pathways in the activation of contraction (excitation-contraction coupling, ECC) in intact fast striated muscles of frog and lamprey was performed. It was found that the major mechanism responsible for the ECC in muscles of both animals is Ca2+ release from the sarcoplasmic reticulum through the ryanodine-sensitive channels. However, the ECC in lamprey muscle displays some important differences in the units of electromechanical coupling, which precede the calcium release from sarcoplasmic reticulum. The maximum contraction force in frog muscle develops during caffeine-induced contracture, which indicates that all Ca2+ stored in sarcoplasmic reticulum is released through ryanodine-sensitive channels. In contrast, in lamprey muscle, the maximum force develops not in response to high caffeine concentration, but in response to repetitive electrical stimulation. Hence, in addition to stores liberated by ryanodine-sensitive channels, some other sources of calcium ions should exist, which contribute to the contraction activation. A source of this additional Ca2+ ions can be external medium, because acetylcholine contracture is abolished in a calcium-free medium. In frog muscle, the acetylcholine contracture was abolished in a Na(+)-free solution. It was concluded that in frog muscle ECC can be triggered by changes in the transmembrane potential (depolarization-induced calcium release), while in lamprey muscle the entry of calcium ions into myoplasm as the trigger in ECC (calcium-induced calcium release). The lamprey muscle was found to be more resistant to tetrodotoxin and tetracaine, which is indicative of a role in the activation of contraction of tetrodotoxin-resistant Na+ and/or Ca2+ channels. It was concluded, that ECC mechanism in striated muscles of low vertebrates is not limited by the generally accepted scheme of depolarization-induced calcium release but can include some other schemes, which require the Ca2+ influx into the cell.  相似文献   

8.
The reduced release of Ca2+ from sarcoplasmic reticulum (SR) is considered a major determinant of muscle fatigue. In the present study, we investigated whether the presence of dantrolene, an established inhibitor of SR Ca2+ release, or caffeine, a drug facilitating SR Ca2+ release, modifies muscle fatigue development. Accordingly, the effects of Ca2+ release modulators were analyzed in vitro in mouse fast-twitch [extensor digitorum longus (EDL)] and slow-twitch (soleus) muscles, fatigued by repeated short tetani (40 Hz for 300 ms, 0.5 s(-1) in soleus and 60 Hz for 300 ms, 0.3 s(-1) in EDL, for 6 min). Caffeine produced a substantial increase of tetanic tension of both EDL and soleus muscles, whereas dantrolene decreased tetanic tension only in EDL muscle. In both EDL and soleus muscles, 5 microM dantrolene did not affect fatigue development, whereas 20 microM dantrolene produced a positive staircase during the first 3 min of stimulation in EDL muscle and a slowing of fatigue development in soleus muscle. The development of the positive staircase was abolished by the addition of 15 microM ML-7, a selective inhibitor of myosin light chain kinase. On the other hand, caffeine caused a larger and faster loss of tension in both EDL and soleus muscles. The results seem to indicate that the changes in fatigue profile induced by caffeine or dantrolene are mainly due to the changes in the initial tetanic tension caused by the drugs, with the resulting changes in the level of contraction-dependent factors of fatigue, rather than to changes in the SR Ca2+ release during fatigue development.  相似文献   

9.
Quinine and caffeine effects on 45Ca movements in frog sartorius muscle   总被引:5,自引:1,他引:4  
1 mM caffeine, which produces only twitch potentiation and not contracture in frog sartorius muscle, increases both the uptake and release of 45Ca in this muscle by about 50 %, thus acting like higher, contracture-producing concentrations but less intensely. Quinine increases the rate of release of 45Ca from frog sartorius but not from the Achilles tendon. The thresholds for the quinine effect on 45Ca release and contracture tension are about 0.1 and 0.5 mM, respectively, at pH 7.1. Quinine (2 mM) also doubles the uptake of 45Ca by normally polarized muscle. However, there are variable effects of quinine upon 45Ca uptake in potassium-depolarized muscle. Quinine (2 mM), increases the Ca, Na, and water content of muscle while decreasing the K content. Both caffeine (1 mM) and quinine (2 mM) act to release 45Ca from muscles that have been washed in Ringer''s solution from which Ca was omitted and to which EDTA (5 mM) was added. These results, correlated with those of others, indicate that a basic effect of caffeine and quinine on muscle is to directly release activator Ca2+ from the sarcoplasmic reticulum in proportion to the drug concentration. The drugs may also enhance the depolarization-induced Ca release caused by extra K+ or an action potential. In respect to the myoplasmic Ca2+ released by direct action of the drugs, a relatively high concentration is required to activate even only threshold contracture, but a much lower concentration, added to that released during excitation-contraction coupling, is associated with the condition causing considerable twitch potentiation.  相似文献   

10.
Myoplasmic free calcium transients delta [Ca2+] were monitored with the calcium indicators antipyrylazo III and fura-2 in voltage clamped cut frog skeletal muscle fibers, in the presence and absence of 0.5 mM caffeine. Without caffeine delta [Ca2+] began to decline within a few milliseconds of fiber repolarization for pulses of all durations. In caffeine delta [Ca2+] continued to rise for 10-60 ms after 10 or 20 ms depolarizing pulses, indicating that the release of calcium from the sarcoplasmic reticulum (SR) continued well after repolarization of transverse tubular (TT) membranes in the presence of caffeine. Caffeine also increased the peak amplitude of delta [Ca2+] for all pulses and slowed the decline of delta [Ca2+] after pulses of all durations. The rate of calcium release from the SR calculated from delta [Ca2+] showed that for 10 ms pulses in caffeine release did not turn off abruptly on repolarization but instead declined to zero with a time constant essentially the same as the time constant for inactivation of SR calcium release during depolarizing pulses in the presence or absence of caffeine. The observed loss of TT membrane potential control of SR calcium release in the presence of caffeine suggests the appearance of a significant component of cytosolic Ca2+-induced calcium release in caffeine.  相似文献   

11.
Major questions in excitation--contraction coupling of fast skeletal muscle concern the mechanism of signal transmission between sarcolemma and sarcoplasmic reticulum (SR), the mechanism of SR Ca release, and operation of the SR active transport system during excitation. Intracellular Ca movement can be studied in skinned muscle fibers with more direct control, analysis of 45Ca flux, and simultaneous isometric force measurements. Ca release can be stimulated by bath Ca2+ itself, ionic "depolarization," Mg2+ reduction, or caffeine. The effectiveness of bath Ca2+ has suggested a possible role for Ca2+ in physiological release, but this response is difficult to analyze and evaluate. Related evidence emerged from analysis of other responses: with all agents studied, stimulation of 45Ca efflux is highly Ca2+-dependent. The presence of a Ca chelator prevents detectable stimulation by ionic "depolarization" or Mg2+ reduction and inhibits the potent caffeine stimulus; inhibition is graded with chelator concentration and caffeine concentration, and is synergistic with inhibition by increased Mg2+. The results indicate that a Ca2+-dependent pathway mediates most or all of stimulated 45Ca efflux in skinned fibers, and has properties compatible with a function in physiological Ca release.  相似文献   

12.
The sarcoplasmic reticulum (SR) of cardiac myocytes loses Ca during rest. In the present study, we estimated the rest-dependent unidirectional Ca efflux from the SR in intact rabbit and rat ventricular myocytes. We determined the time course of depletion of the SR Ca content (assessed as the amount of Ca released by caffeine) after inhibition of the SR Ca-ATPase by thapsigargin. Before rest intervals in Na-containing, Ca-free solution, a 3-min preperfusion with 0Na,0Ca solution was performed to deplete Nai but keep the SR Ca content constant. The decrease in Nai should stimulate Ca efflux via Na/Ca exchange when Nao is reintroduced. Thapsigargin treatment was limited to the last 2 min of preperfusion with 0Na,0Ca solution to minimize SR Ca loss before addition of Na, while attaining complete block of the SR Ca pump. Total SR Ca content was estimated from the [Ca]i transient evoked by caffeine, taking into account passive cellular Ca buffering. The time constants for SR Ca loss after thapsigargin were 385 and 355 s, whereas the pre-rest SR Ca content was estimated to be 106 and 114 microM (mumol/l nonmitochondrial cell volume) in rabbit and rat myocytes, respectively. The unidirectional Ca efflux from the SR was similar in the two cell types (rabbit: 0.27 microM s-1; rat: 0.32 microM s-1). These values are also comparable with that estimated from elementary Ca release events ("Ca sparks," 0.2-0.8 microM s-1). Thus, resting leak of Ca from SR may be primarily via occasional openings of SR Ca release channels.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Impaired calcium release during fatigue.   总被引:1,自引:0,他引:1  
Impaired calcium release from the sarcoplasmic reticulum (SR) has been identified as a contributor to fatigue in isolated skeletal muscle fibers. The functional importance of this phenomenon can be quantified by the use of agents, such as caffeine, which can increase SR Ca(2+) release during fatigue. A number of possible mechanisms for impaired calcium release have been proposed. These include reduction in the amplitude of the action potential, potentially caused by extracellular K(+) accumulation, which may reduce voltage sensor activation but is counteracted by a number of mechanisms in intact animals. Reduced effectiveness of SR Ca(2+) channel opening is caused by the fall in intracellular ATP and the rise in Mg(2+) concentrations that occur during fatigue. Reduced Ca(2+) available for release within the SR can occur if inorganic phosphate enters the SR and precipitates with Ca(2+). Further progress requires the development of methods that can identify impaired SR Ca(2+) release in intact, blood-perfused muscles and that can distinguish between the various mechanisms proposed.  相似文献   

14.
DP4 is a 36-residue synthetic peptide that corresponds to the Leu(2442)-Pro(2477) region of RyR1 that contains the reported malignant hyperthermia (MH) mutation site. It has been proposed that DP4 disrupts the normal interdomain interactions that stabilize the closed state of the Ca(2)+ release channel (Yamamoto, T., R. El-Hayek, and N. Ikemoto. 2000. J. Biol. Chem. 275:11618-11625). We have investigated the effects of DP4 on local SR Ca(2)+ release events (Ca(2)+ sparks) in saponin-permeabilized frog skeletal muscle fibers using laser scanning confocal microscopy (line-scan mode, 2 ms/line), as well as the effects of DP4 on frog SR vesicles and frog single RyR Ca(2)+ release channels reconstituted in planar lipid bilayers. DP4 caused a significant increase in Ca(2)+ spark frequency in muscle fibers. However, the mean values of the amplitude, rise time, spatial half width, and temporal half duration of the Ca(2)+ sparks, as well as the distribution of these parameters, remained essentially unchanged in the presence of DP4. Thus, DP4 increased the opening rate, but not the open time of the RyR Ca(2)+ release channel(s) generating the sparks. DP4 also increased [(3)H]ryanodine binding to SR vesicles isolated from frog and mammalian skeletal muscle, and increased the open probability of frog RyR Ca(2)+ release channels reconstituted in bilayers, without changing the amplitude of the current through those channels. However, unlike in Ca(2)+ spark experiments, DP4 produced a pronounced increase in the open time of channels in bilayers. The same peptide with an Arg(17) to Cys(17) replacement (DP4mut), which corresponds to the Arg(2458)-to-Cys(2458) mutation in MH, did not produce a significant effect on RyR activation in muscle fibers, bilayers, or SR vesicles. Mg(2)+ dependence experiments conducted with permeabilized muscle fibers indicate that DP4 preferentially binds to partially Mg(2)+-free RyR(s), thus promoting channel opening and production of Ca(2)+ sparks.  相似文献   

15.
The caffeine-sensitive Ca2+ release pathway in skeletal muscle was identified and characterized by studying the release of 45Ca2+ from heavy sarcoplasmic reticulum (SR) vesicles and by incorporating the vesicles or the purified Ca2+ release channel protein complex into planar lipid bilayers. First-order rate constants for 45Ca2+ efflux of 1 s-1 were obtained in the presence of 1-10 microM free Ca2+ or 2 X 10(-9) M free Ca2+ plus 20 mM caffeine. Caffeine- and Ca2+-induced 45Ca2+ release were potentiated by ATP and Mg.ATP, and were both inhibited by Mg2+. Dimethylxanthines were similarly (3,9-dimethylxanthine) or more (1,7-, 1,3-, and 3,7-dimethylxanthine) effective than caffeine in increasing the 45Ca2+ efflux rate. 1,9-Dimethylxanthine and 1,3-dimethyluracil (which lacks the imidazole ring) did not appreciably stimulate 45Ca2+ efflux. Recordings of calcium ion currents through single channels showed that the Ca2+- and ATP-gated SR Ca2+ release channel is activated by addition of caffeine to the cis (cytoplasmic) and not the trans (lumenal) side of the channel in the bilayer. The single channel measurements further revealed that caffeine activated Ca2+ release by increasing the number and duration of open channel events without a change of unit conductance (107 pS in 50 mM Ca2+ trans). These results suggest that caffeine exerts its Ca2+ releasing effects in muscle by activating the high-conductance, ligand-gated Ca2+ release channel of sarcoplasmic reticulum.  相似文献   

16.
The anthraquinones, doxorubicin, mitoxantrone, daunorubicin and rubidazone are shown to be potent stimulators of Ca2+ release from skeletal muscle sarcoplasmic reticulum (SR) vesicles and to trigger transient contractions in chemically skinned psoas muscle fibers. These effects of anthraquinones are the direct consequence of their specific interaction with the [3H] ryanodine receptor complex, which constitutes the Ca2+ release channel from the triadic junction. In the presence of adenine nucleotides and physiological Mg2+ concentrations (approximately 1.0 mM), channel activation by doxorubicin and daunorubicin exhibits a sharp dependence on submicromolar Ca2+ which is accompanied by a selective, dose-dependent increase in the apparent affinity of the ryanodine binding sites for Ca2+, in a manner similar to that previously reported with caffeine. Unlike caffeine, however, anthraquinones increase [3H]ryanodine receptor occupancy to the level observed in the presence of adenine nucleotides. A strong interaction between the anthraquinone and the caffeine binding sites on the Ca2+ release channel is also observed when monitoring Ca2+ fluxes across the SR. Millimolar caffeine both inhibits anthraquinone-stimulated Ca2+ release, and reduces anthraquinone-stimulated [3H]ryanodine receptor occupancy, without changing the effective binding constant of the anthraquinone for its binding site. The degree of cooperativity for daunorubicin activation of Ca2+ release from SR also increases in the presence of caffeine. These results demonstrate that the mechanism by which anthraquinones stimulate Ca2+ release is caused by a direct interaction with the [3H]ryanodine receptor complex, and by sensitization of the Ca2+ activator site for Ca2+.  相似文献   

17.
M Fill  E Stefani    T E Nelson 《Biophysical journal》1991,59(5):1085-1090
Single sarcoplasmic reticulum (SR) Ca2+ release channels were reconstituted from normal and malignant hyperthermic (MH) human skeletal muscle biopsies (2-5 g samples). Conduction, gating properties, and myoplasmic Ca2+ dependence of human SR Ca2+ release channels were similar to those in other species (rabbit, pig). The MH diagnostic procedure distinguishes three phenotypes (normal, MH-equivocal, and MH-susceptible) on the basis of muscle contracture sensitivity to caffeine and/or halothane. Single channel studies reveal that human MH muscles (both MH phenotypes) contain SR Ca2+ release channels with abnormally greater caffeine sensitivity. Muscles from MH-equivocal and MH-susceptible patients appear to contain channels with the same abnormality. Further, our data (n = 115, 21 channels, 11 patients) reveals that human MH muscles (both phenotypes) may contain two populations of SR Ca2+ release channels, possibly corresponding to normal and abnormal isoforms. Thus, whole cell phenotypic variation (MH-equivocal vs. MH-susceptible) arises in muscles containing channels with similar caffeine sensitivity suggesting that human MH does not arise from a single defect. These results have important ramifications concerning (a) correlation of functional and genetic MH studies, (b) identification of other, yet to be determined, factors which may influence MH expression, and (c) characterization of normal SR Ca2+ release channel function by exploring genetic channel defects.  相似文献   

18.
Rabbit right ventricular papillary muscles were cooled from 30 to approximately 1 degree C immediately after discontinuing electrical stimulation (0.5 Hz). This produced a contracture that was 30-50% of the preceding twitch magnitude and required 20-30 s to develop. The contractures were identical in cooling solutions with normal (144 mM) or low (2.0 mM) Na. They were therefore not Na-withdrawal contractures. Contracture activation was considerably slower than muscle cooling (approximately 2.5 s to cool below 2 degrees C). Cooling contractures were suppressed by caffeine treatment (10.0 mM). Rapid cooling did not cause sufficient membrane depolarization (16.5 +/- 1.2 mV after 30 s of cooling) to produce either a voltage-dependent activation of contracture or a gated entry of Ca from the extracellular space. Contractures induced by treating resting muscles with 5 X 10(-5) M strophanthidin at 30 degrees C exhibited pronounced tension noise. The Fourier spectrum of this noise revealed a periodic component (2-3 Hz) that disappeared when the muscle was cooled. Cooling contractures decayed with rest (t1/2 = 71.0 +/- 9.3 s). This decay accelerated in the presence of 10.0 mM caffeine and was prevented and to some extent reversed when extracellular Na was reduced to 2.0 mM. 20 min of rest resulted in a net decline in intracellular Ca content of 1.29 +/- 0.38 mmol/kg dry wt. I infer that cooling contractures are principally activated by Ca from the sarcoplasmic reticulum (SR). The properties of these contractures suggest that they may provide a convenient relative index of the availability of SR Ca for contraction. The rest decay of cooling contractures (and hence the decay in the availability of activating Ca) is consistent with the measured loss in analytic Ca during rest. The results suggest that contraction in heart muscle can be regulated by an interaction between sarcolemmal and SR Ca transport.  相似文献   

19.
In mechanically skinned fibers of the semitendinosus muscle of bullfrogs, we examined the role of membrane sulfhydryl groups on Ca2+ release from the sarcoplasmic reticulum (SR). Hg2+, a sulfhydryl reagent (20-100 microM), induced a repetitive contracture of skinned fibers, and this contracture did not occur in skinned fibers in which the SR had been disrupted by treatment with a detergent (Brij 58). Procaine (10 mM), Mg2+ (5 mM), or dithiothreitol (1 mM) blocked the Hg2+-induced contracture. Ag+ or p-chloromercuribenzenesulfonic acid produced similar contractures to that induced by Hg2+. We conclude that Hg2+ releases Ca2+ from SR of a skinned fiber by modifying sulfhydryl groups on the SR membrane, and suggest that the Ca2+ released by Hg2+ may trigger a greater release of Ca2+ from SR to develop tension.  相似文献   

20.
The effects of caffeine, ryanodine, and rapid cooling were tested on the depolarization-induced contraction and the apamin-insensitive slow outward current (Iso) of voltage-clamped (double mannitol gap) single frog muscle fibers. Subthreshold caffeine concentrations (0.5-2 mM) induced a monotonic increase in contractile and Iso amplitude. Whatever the concentration, the increase in contraction was roughly twice the one in current. Similar results were obtained upon rapid cooling (20-4 degrees C) in the presence of 0.5 mM caffeine. In the absence of external Na+ (choline-substituted) 10(-5) M ryanodine induced a delayed increase (approximately 30 min) in contraction and in current, shortly before the development of a drastic and irreversible contracture. Here again, the increase in contraction was twice that in current. In the presence of 5 mM tetraethylammonium (TEA) and (or) 25 nM charybdotoxin, 2 mM caffeine still induced a strong facilitating effect on contraction but the parallel increase in current was strongly reduced. The linear relationship between the increase in current and contractile amplitude has a slope approximately 0.5 (whatever the drug used to increase contractility); it is approximately 0.1 in the presence of TEA and (or) charybdotoxin. In conclusion, provided the changes in contractile amplitude are caused by parallel changes in depolarization-induced sarcoplasmic reticulum Ca2+ release, about 50% of the apamin-insensitive Iso is controlled by internal Ca2+ release. The main part of this current corresponds to the TEA- and charybdotoxin-sensitive component of Iso.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号