首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
(1) The relationship between Ca2+ and sugar transport has been studied by comparing the washout of 45Ca and 3-O-[14C]methylglucose from preloaded isolated rat soleus muscles and whole epididymal fat pads. (2) In soleus muscle, nine different agents with well established stimulating effects on glucose transport were all found to produce a marked increase in 3-O-[14C]methylglucose washout, which in each instance was preceded by or coincided with a rise in the washout of 45Ca. (3) Trypsin, 2,4-dinitrophenol, p-chloromercuriphenylsulfonic acid, H2O2 and hyperosmolarity all produced dose-dependent stimulation of the washout of 45Ca and 3-O-[3H]methylglucose. Regression analysis showed a highly significant correlation between the increases in the two parameters (P < 0.001). (4) Depolarization and Na+ influx induced by veratrine were found to be associated with a marked rise in 45Ca release followed by stimulation of 3-O-[14C]methylglucose washout. (5) In epididymal fat pads, six different agents known to stimulate glucose transport were found to produce a highly significant (P < 0.001) increase in the washout of 45Ca and 3-O-[14C]methylglucose. (6) It is concluded that in the major targets for insulin action, activation of the glucose transport system can be elicited by a rise in cytoplasmic Ca2+ concentration brought about by mobilization of Ca2+ from endogenous cellular pools.  相似文献   

2.
The cytoplasmic concentration of ionized Ca2+ [( Ca2+]i) was determined in 3T3-L1 cells during their differentiation from fibroblasts to adipocytes, suspended and loaded with the fluorescent Ca2+ indicators quin2 or indo-1. In undifferentiated fibroblasts, as well as in differentiated adipocytes up to day 9, [Ca2+]i was steady around 170 nM, and it increased significantly only in old adipocytes (day 12). During differentiation, stimulation of glucose uptake by insulin increased from a few percent to severalfold. Stimulation of uptake was already apparent after 10 min of addition of the hormone, and 10 nM insulin produced maximal stimulation in 30 min. Insulin (10(-6) M) added to quin2- or indo-1-loaded, suspended adipocytes had no detectable effect on [Ca2+]i for at least 10 min. In contrast, addition of the general anesthetic halothane increased [Ca2+]i from 172 to 251 nM in 3 min. In EGTA solution, the Ca2+ ionophore ionomycin elicited release of Ca2+ from intracellular stores that resulted in a transient increase in [Ca2+]i. A smaller but measurable Ca2+ release from intracellular stores (increasing [Ca2+]i by 20 nM) resulted upon addition of 20 micrograms/ml phosphatidic acid. In contrast, insulin did not produce any detectable release of Ca2+ from intracellular stores. Incubation of 3T3-L1 adipocytes with insulin in the presence of EGTA (the latter in excess over the Ca2+ concentration of the medium) did not prevent the stimulation of hexose uptake by the hormone, indicating that extracellular Ca2+ does not play a role in the insulin response. Furthermore, incubation of cells with quin2/AM in EGTA medium during exposure to insulin did not prevent stimulation of hexose uptake. Under these conditions it is demonstrated that intracellular quin2 suffices to chelate cytoplasmic Ca2+ even if releasable Ca2+ from intracellular stores were to pour into the cytoplasm. Thus, quin2 effectively lowers [Ca2+]i without impairing insulin action. It is concluded that insulin does not produce changes in [Ca2+]i and that chelating intracellular Ca2+ does not prevent stimulation of hexose uptake by insulin. These results suggest that it is unlikely that changes in [Ca2+]i may play a role in the transduction of information in insulin stimulation of glucose uptake in 3T3-L1 adipocytes.  相似文献   

3.
Mouse islets were used to define the glucose-dependence and extracellular Ca2+ requirement of muscarinic stimulation of pancreatic beta-cells. In the presence of a stimulatory concentration of glucose (10 mM) and of Ca2+, acetylcholine (0.1-100 microM) accelerated 3H efflux from islets preloaded with myo-[3H]inositol. It also stimulated 45Ca2+ influx and efflux, 86Rb+ efflux and insulin release. In the absence of Ca2+, only 10-100 microM-acetylcholine mobilized enough intracellular Ca2+ to trigger an early but brief peak of insulin release. At a non-stimulatory concentration of glucose (3 mM), 1 microM- and 100 microM-acetylcholine increased 45Ca2+ and 86Rb+ efflux in the presence and absence of extracellular Ca2+. However, only 100 microM-acetylcholine marginally increased 45Ca2+ influx and caused a small, delayed, stimulation of insulin release, which was abolished by omission of Ca2+. At a maximally effective concentration of glucose (30 mM), 1 microM- and 100 microM-acetylcholine increased 45Ca2+ influx and efflux only slightly, but markedly amplified insulin release. Again, only 100 microM-acetylcholine mobilized enough Ca2+ to trigger a peak of insulin release in the absence of Ca2+. The results thus show that only high concentrations of acetylcholine (greater than or equal to 10 microM) can induce release at low glucose or in a Ca2+-free medium. beta-Cells exhibit their highest sensitivity to acetylcholine in the presence of Ca2+ and stimulatory glucose. Under these physiological conditions, the large amplification of insulin release appears to be the result of combined effects of the neurotransmitter on Ca2+ influx, on intracellular Ca2+ stores and on the efficiency with which Ca2+ activates the releasing machinery.  相似文献   

4.
The effects of glucose on cytoplasmic free Ca2+ concentration, [Ca2+]i, and insulin release were investigated using pancreatic beta-cells isolated from obese hyperglycemic mice. Measurements of [Ca2+]i were performed in cell suspensions in a cuvette and in single cell-aggregates in a microscopic system, using fura 2 and quin 2. Insulin release was studied from indicator loaded cells in a column perifusion system. In the presence of 1.28 mM extracellular Ca2+, an increase in the glucose concentration from 0 to 20 mM had two major effects on [Ca2+]i. Initially there was a decrease, which was immediately followed by a pronounced increase. At reduced extracellular Ca2+, or when Ca2+ influx was blocked, glucose induced only a decrease in [Ca2+]i. With increasing intracellular concentrations of indicator, the effects of glucose on [Ca2+]i were markedly reduced. Changes in [Ca2+]i, similar effects being obtained in the cuvette and microfluorometric measurements, were paralleled by changes in insulin release. Insulin release from indicator loaded cells did not markedly differ from that of non-loaded controls, either with respect to rapidity or size in the response to the sugar. The addition of 20 mM glucose increased the efflux of fura 2, an effect that was not related to insulin release. Permeabilization of indicator loaded cells demonstrated a substantial amount of fura 2 bound intracellularly. Although the effects of glucose on [Ca2+]i seemed to be similar in fura 2 and quin 2 loaded cells, the demonstrated leakage and possible intracellular binding should be considered before using fura 2 for measurements in pancreatic beta-cells.  相似文献   

5.
The effect of amiloride, an inhibitor of Na+-H+ exchange, on intracellular pH (pHi), 86Rb outflow, 45Ca outflow and insulin release from pancreatic rat islets was examined. In the 0.1-1 mM range, amiloride transiently reduced pHi of glucose-deprived islets and allowed glucose to induce a sustained decrease in pHi of the islet cells. Amiloride reproduced the effect of glucose to decrease 86Rb and 45Ca outflow. In the presence of glucose (5.6 mM or more), amiloride (100 microM) acted synergistically with the sugar to reduce K+ outflow, and to stimulate 40Ca inflow and insulin release from perifused islets. These results add strong support to the view that the generation of protons through the metabolism of glucose represents an important step in the process of glucose-induced release. The stimulation by glucose of Na+-H+ exchange apparently masks and even overcomes the glucose-induced decrease in pHi otherwise expected from the increase in catabolic fluxes.  相似文献   

6.
The putative role of voltage-dependent Na+ channels for glucose induction of rhythmic Ca2+ signalling was studied in mouse pancreatic beta-cells with the use of the Ca2+ indicator fura-2. A rise in glucose from 3 to 11 mM resulted in slow oscillations of the cytoplasmic Ca2+ concentration ([Ca2+]i). These oscillations, as well as superimposed transients seen during forskolin-induced elevation of cAMP, remained unaffected in the presence of the Na+ channel blocker tetrodotoxin. During exposure to 1-10 microM veratridine, which facilitates the opening of voltage-dependent Na+ channels, the slow oscillations were replaced by repetitive and pronounced [Ca2+]i transients arising from the basal level. The effects of veratridine were reversed by tetrodotoxin. The veratridine-induced [Ca2+]i transients were critically dependent on the influx of Ca2+ and persisted after thapsigargin inhibition of the endoplasmic reticulum Ca2+-ATPase. Both tolbutamide and ketoisocaproate mimicked the action of glucose in promoting [Ca2+]i transients in the presence of veratridine. It is suggested that activation of voltage-dependent Na+ channels is a useful approach for amplifying Ca2+ signals for insulin release.  相似文献   

7.
Monensin, a univalent ionophore, is a carboxylic acid produced by Streptomyces cinnamonensis. It will complex various alkali-metal ions, but most readily binds Na+. Because of interest in the possible role of Na+ in the regulation of insulin secretion, we examined its effects on several aspects of the metabolism of isolated rat islets of Langerhans. The ionophore inhibited glucose-stimulated insulin release in a concentration-dependent manner, completely inhibiting secretion evoked by 20 mM-glucose at concentrations as low as 0.1 microM in static incubations. In perifusion experiments, both phases of insulin release were equally affected. Monensin (0.1 microM) had no significant effect on glucose oxidation as measured by the generation of 14CO2 from [14C]glucose. Monensin increased the rate of 22Na+ efflux from preloaded islets and net 22Na+ uptake over 30 min, in the absence of changes in islet volume or extracellular space. The ionophore increased the Rb+/K+ permeability of islet cells, as shown by its inhibition of 86Rb+ retention and stimulation of 86Rb+ efflux. At 0.1 microM, monensin abolished glucose-stimulated 45Ca2+ uptake by islets during 5 min incubations, and stimulated 45Ca2+ efflux from preloaded islets perifused with Ca2+-free medium, even in the complete absence of extracellular Na+. Studies of the uptake of 14C-labelled 5,5-dimethyloxazolidine-2,4-dione showed that 0.1 microM-monensin increased net intracellular pH from 7.05 to 7.13. 7 Monensin has widespread, complex, effects on the secretory responses and ion handling by the B cells, which are difficult to interpret in terms solely of actions as a Na+ ionophore.  相似文献   

8.
The effects of acute omission of extracellular Na+ on pancreatic B-cell function were studied in mouse islets, using choline and lithium salts as impermeant and permeant substitutes, respectively. In the absence of glucose, choline substitution for Na+ hyperpolarized the B-cell membrane, inhibited 86Rb+ and 45Ca2+ efflux, but did not affect insulin release. In contrast, Li+ substitution for Na+ depolarized the B-cell membrane and caused a Ca2+-independent, transient acceleration of 45Ca2+ efflux and insulin release. Na+ replacement by choline in the presence of 10 mM glucose and 2.5 mM Ca2+ again rapidly hyperpolarized the B-cell membrane. This hyperpolarization was then followed by a phase of depolarization with continuous spike activity, before long slow waves of the membrane potential resumed. Under these conditions, 86Rb+ efflux first decreased before accelerating, concomitantly with marked and parallel increases in 45Ca2+ efflux and insulin release. In the absence of Ca2+, 45Ca2+ and 86Rb+ efflux were inhibited and insulin release was unaffected by choline substitution for Na+. Na+ replacement by Li+ in the presence of 10 mM glucose rapidly depolarized the B-cell membrane, caused an intense continuous spike activity, and accelerated 45Ca2+ efflux, 86Rb+ efflux and insulin release. In the absence of extracellular Ca2+, Li+ still caused a rapid but transient increase in 45Ca2+ and 86Rb+ efflux and in insulin release. Although not indispensable for insulin release, Na+ plays an important regulatory role in stimulus-secretion coupling by modulating, among others, membrane potential and ionic fluxes in B-cells.  相似文献   

9.
Glucagon-like peptide-1 (GLP-1) elevates the intracellular free calcium concentration ([Ca2+]i) and insulin secretion in a Na+-dependent manner. To investigate a possible role of Na ion in the action of GLP-1 on pancreatic islet cells, we measured the glucose-and GLP-1-induced intracellular Na+ concentration ([Na+]i), [Ca2+]i, and insulin secretion in hamster islet cells in various concentrations of Na+. The [Na+]i and [Ca2+]i were monitored in islet cells loaded with sodium-binding benzofuran isophthalate and fura 2, respectively. In the presence of 135 mM Na+ and 8 mM glucose, GLP-1 (10 nM) strongly increased the [Na+]i, [Ca2+]i, and insulin secretion. In the presence of 13.5 mM Na+, both glucose and GLP-1 increased neither the [Na+]i nor the [Ca2+]i. In a Na+-free medium, GLP-1 and glucose did not increase the [Na+]i. SQ-22536, an inhibitor of adenylate cyclase, and H-89, an inhibitor of PKA, incompletely inhibited the response. In the presence of both 8 mM glucose and H-89, 8-pCPT-2'-O-Me-cAMP, a PKA-independent cAMP analog, increased the insulin secretion and the [Na+]i. Therefore, we conclude that GLP-1 increases the cAMP level via activation of adenylate cyclase, which augments the membrane Na+ permeability through PKA-dependent and PKA-independent mechanisms, thereby increasing the [Ca2+]i and promoting insulin secretion from hamster islet cells.  相似文献   

10.
La3+ was used to study the involvement of Ca2+ in insulin secretion in beta-cell-rich pancreatic islets micro-dissected from non-inbred ob/ob mice. Ultrastructural studies revealed that the localization of La3+ was entirely restricted to the exterior of the cells. Consistent with a membrane action, exposure to La3+ failed to affect glucose oxidation and either the sucrose space or the general ultrastructure of the islets. In contrast, La3+ had marked effects on insulin release and 45Ca fluxes. Exposure to La3+ resulted in pronounced inhibition of insulin release irrespective of the presence or absence of Ca2+, 3-isobutyl-1-methylxanthine or glucose. Perifusion experiments revealed that the inhibitory action was prompt, sustained and readily reversible. Removal of La3+ was associated with a subsequent prolonged stimulatory phase of insulin release even in medium deficient in Ca2+. This action could not be attributed to an increase in cyclic AMP, but was potentiated by 3-isobutyl-1-methylxanthine and abolished by L-adrenaline. La3+ displaced 45Ca from superficially located binding sites and inhibited the uptake and efflux of 45Ca. The stimulatory and inhibitory actions of glucose on 45Ca efflux were also abolished in the presence of 2 mM-La3+ Removal of La3+ was associated with the preferential mobilization of 45Ca incorporated in response to glucose. The results indicate that binding of La3+ to superficial sites in the plasma membrane leads to inhibition of insulin release by suppression of transmembrane Ca2+ fluxes. It is suggested that accumulation of Ca2+ in the cytoplasm accounts for the stimulation of insulin release seen after removal of La3+ from inhibitory binding sites in the beta-cell plasma membrane.  相似文献   

11.
Glucose-induced changes in cytoplasmic pH (pHi) were investigated using pancreatic beta-cells isolated from obese hyperglycemic mice. Glucose, at concentrations above 3-5 mM, depolarized the beta-cell and increased pHi, cytoplasmic free Ca2+ ([Ca2+]i), and insulin release. This increase in pHi was dependent on the presence of extracellular Na+ and was inhibited by 5-(N-ethyl-N-isopropyl) amiloride, a blocker of Na+/H+ exchange. Stimulation of protein kinase C with phorbol ester also induced an alkalinization. However, when protein kinase C activity was down-regulated, glucose stimulation still induced alkalinization. At 20 mM glucose, 10 mM NH4Cl induced a marked rise in pHi, paralleled by repolarization, inhibition of electrical activity, and decreases in both [Ca2+]i and insulin release. Reduction in [Ca2+]i was prevented by 200 microM tolbutamide, but not by 10 mM tetraethylammonium. At 4 mM glucose, NH4Cl induced a transient increase in insulin release, without changing [Ca2+]i. Exposure of beta-cells to 10 mM sodium acetate caused a persistent decrease in pHi, an effect paralleled by a small transient increase in [Ca2+]i. Acidification per se did not change the beta-cell sensitivity to glucose, not excluding that the activity of the ATP-regulated K+ channels may be modulated by changes in pHi.  相似文献   

12.
Glucose (20 mM) and carbachol (1 mM) produced a rapid increase in [3H]inositol trisphosphate (InsP3) formation in isolated rat islets of Langerhans prelabelled with myo-[3H]inositol. The magnitude of the increase in InsP3 formation was similar when either agent was used alone and was additive when they were used together. In islets prelabelled with 45Ca2+ and treated with carbachol (1 mM), the rise in InsP3 correlated with a rapid, transient, release of 45Ca2+ from the cells, consistent with mobilization of 45Ca2+ from an intracellular pool. Under these conditions, however, insulin secretion was not increased. In contrast, islets prelabelled with 45Ca2+ and exposed to 20mM-glucose exhibited a delayed and decreased 45Ca2+ efflux, but released 7-8-fold more insulin than did those exposed to carbachol. Depletion of extracellular Ca2+ failed to modify the increase in InsP3 elicited by either glucose or carbachol, whereas it selectively inhibited the efflux of 45Ca2+ induced by glucose in preloaded islets. Under these conditions, however, glucose was still able to induce a small stimulation of the first phase of insulin secretion. These results demonstrate that polyphosphoinositide metabolism, Ca2+ mobilization and insulin release can all be dissociated in islet cells, and suggest that glucose and carbachol regulate these parameters by different mechanisms.  相似文献   

13.
Replacing extracellular Na+ with choline transiently increased cytoplasmic free Ca2+ ([Ca2+]i) more than 5-fold in coronary endothelial cells. Removing external Na+ stimulated 45Ca2+ efflux approximately 4-fold and influx approximately 1.7-fold. The stimulation of efflux was independent of extracellular Ca2+ and the osmotic Na+ substitute. The release of stored Ca2+, rather than Ca2+ influx via Na(+)-Ca2+ exchange, probably causes the increase in [Ca2+]i and 45Ca2+ efflux. Cadmium or decreasing external, not intracellular, pH transiently increased [Ca2+]i. Cd2+ and some other divalent metals also stimulated 45Ca2+ efflux. The potency order of the metals that stimulated efflux was Cd2+ greater than CO2+ greater than Ni2+ greater than Fe2+ greater than Mn2+. Incubating the cells with Zn2+ prior to assaying efflux in the absence of Zn2+ strongly inhibited the stimulation of 45Ca2+ efflux by Cd2+, pH 6, and the removal of external Na+ without affecting the stimulation of efflux by ATP. These findings support the hypothesis that certain trace metals or decreasing external Na+ or pH trigger the release of stored Ca2+ by stimulating a cell surface "receptor."  相似文献   

14.
We have examined the effects of extracellular and intracellular Ca2+ concentrations upon basal and insulin-stimulated 2-deoxyglucose uptake in isolated rat adipocytes. In the absence of extracellular Ca2+, both basal and insulin-stimulated glucose uptake were significantly reduced. Insulin-stimulated glucose transport was optimal at 1 and 2 mM Ca2+. Further increases in extracellular Ca2+ concentration (3 mM) significantly diminished insulin-stimulated glucose uptake. When intracellular Ca2+ concentrations were augmented by ionomycin (1 microM), insulin-stimulated glucose uptake was significantly reduced at extracellular Ca2+ concentrations of 2 and 3 mM. The levels of intracellular free Ca2+ concentrations were then measured with Ca2+ indicator fura-2. The correlation between the levels of intracellular free Ca2+ and the magnitude of insulin-stimulated glucose uptake revealed that the optimal effect of insulin is observed at Ca2+ levels between 140 and 370 nM. At both extremes outside of this window, both low and high levels of intracellular Ca2+ result in diminished cellular responsiveness to insulin. These data suggest that intracellular calcium concentrations may exert a dual role in the regulation of cellular sensitivity to insulin. First, there must exist a minimal concentration of intracellular calcium to promote insulin action. Second, increased levels of intracellular calcium may provide a critical signal for diminution of insulin action.  相似文献   

15.
The inhibitory effect of glucose upon 45Ca efflux from prelabeled pancreatic islets was simulated in a mathematical model for Ca2+-cyclic AMP interaction in the process of glucose-induced insulin release. At variance with a previous interpretation, it was postulated that glucose inhibits 45Ca efflux by facilitating the uptake of the cation by the vacuolar system. The latter facilitation did not hinder glucose from provoking a rapid accumulation of cytosolic Ca2+ and, hence, insulin release. The postulated facilitation was also suitable in simulating the effect of glucose upon 45Ca efflux, uptake, and intracellular distribution in the pancreatic islets.  相似文献   

16.
An oscillatory increase in pancreatic beta cell cytoplasmic free Ca2+ concentration, [Ca2+]i, is a key feature in glucose-induced insulin release. The role of the voltage-gated Ca2+ channel beta3 subunit in the molecular regulation of these [Ca2+]i oscillations has now been clarified by using beta3 subunit-deficient beta cells. beta3 knockout mice showed a more efficient glucose homeostasis compared to wild-type mice due to increased glucose-stimulated insulin secretion. This resulted from an increased glucose-induced [Ca2+]i oscillation frequency in beta cells lacking the beta3 subunit, an effect accounted for by enhanced formation of inositol 1,4,5-trisphosphate (InsP3) and increased Ca2+ mobilization from intracellular stores. Hence, the beta3 subunit negatively modulated InsP3-induced Ca2+ release, which is not paralleled by any effect on the voltage-gated L type Ca2+ channel. Since the increase in insulin release was manifested only at high glucose concentrations, blocking the beta3 subunit in the beta cell may constitute the basis for a novel diabetes therapy.  相似文献   

17.
The effects of galanin and somatostatin on insulin release, membrane potential, and cytoplasmic free Ca2+ concentration [( Ca2+]i) were investigated using beta-cells isolated from obese hyperglycemic mice. Whereas insulin release was measured in a column perifusion system, membrane potential and [Ca2+]i were measured with the fluorescent indicators bisoxonol (bis-(1,3-diethylthiobarbiturate)trimethineoxonol) and quin 2, in cell suspensions in a cuvette. Galanin (16 nM) and somatostatin (400 nM) suppressed glucose-stimulated insulin release in parallel to promoting repolarization and a reduction in [Ca2+]i. The reduction in [Ca2+]i comprised an initial nadir followed by a slow rise and the establishment of a new steady state level. The slow rise in [Ca2+]i was abolished by 50 microM D-600, a blocker of voltage-activated Ca2+ channels. Both peptides suppressed insulin release even when [Ca2+]i was raised by 25 mM K+. Under these conditions the inhibition of insulin release was partly reversed by an increase in the glucose concentration. Addition of 5 mM Ca2+ to a cell suspension, incubated in the presence of 20 mM glucose and either galanin, somatostatin, or the alpha 2-adrenergic agonist clonidine (10 nM), induced oscillations in [Ca2+]i, this effect disappearing subsequent to the addition of D-600. The effects of galanin, somatostatin, and clonidine on [Ca2+]i were abolished in beta-cells treated with pertussis toxin. In accordance with measurements of [Ca2+]i, treatment with pertussis toxin reversed the inhibitory effect of galanin on insulin release. The inhibitory action of galanin and somatostatin on insulin release is probably accounted for by not only a repolarization-induced reduction in [Ca2+]i and a decreased sensitivity of the secretory machinery to Ca2+, but also by a direct interaction with the exocytotic process. It is proposed that these effects are mediated by a pertussis toxin-sensitive GTP-binding protein.  相似文献   

18.
In muscle and some other tissues the membrane transport of glucose is normally rate limiting for glucose utilization. It is modulated by insulin, muscular contraction, availability of oxygen and alternative substrates, and many other factors. An increase in glucose transport is associated with interventions increasing the influx of Ca2+ or its release from internal stores, thus presumably raising cytoplasmic [Ca2+]. Recent results with isolated myocytes from adult rat hearts are shown to be consistent with this hypothesis, and supporting evidence was obtained with other cell types. In avian erythrocytes glucose transport was found to be modulated only by internal Ca2+ redistribution, as plasmalemmal fluxes were very slow. In isolated bovine adrenal chromaffin cells glucose transport was found to be increased in a Ca2+-dependent manner by insulin (resembling muscle) and by stimulators of catecholamine secretion. These features are essentially preserved during the morphologic changes these cells undergo when cultured. Thus, enhanced glucose transport is often coupled to increased energy production for contraction, secretion, growth, etc., and to some hormonal signals. Other factors, notably the oxidation of fatty acids, exert a suppressive influence; this negative feedback may account in part for the decreased peripheral response to insulin in diabetes. It is suggested that binding of Ca2+ to a regulatory site, perhaps involved in the translocation of glucose transporters to the plasma membrane, may be involved in these regulatory phenomena and may play a central role in coupling glucose transport to a variety of other cellular processes.  相似文献   

19.
Influence of basal glucose concentration on the response evoked by subsequent stimulation with the sugar, was evaluated by investigating changes in free cytoplasmic Ca2+ concentration, [Ca2+]i, and insulin release, using beta-cells isolated from obese hyperglycemic mice. When increasing the glucose concentration from 0 to either 11 or 20 mM, there was a transient decrease in both [Ca2+]i and insulin release. The decrease was followed by a pronounced increase in both of the parameters. When increasing the basal glucose concentration, the initial decrease gradually disappeared, being abolished already at 5 mM of the sugar and the subsequent increase appeared more rapidly. It is suggested that the observed decrease in [Ca2+]i and thereby insulin release reflects a phenomenon associated with fuel deprived beta-cells.  相似文献   

20.
The effects of vanadate (Na3VO4) on pancreatic B-cell function were studied in normal mouse islets. Vanadate did not affect basal insulin release but potentiated the effect of 7-30 mM glucose at concentrations of 0.1-1 mM. This effect was progressive and slowly reversible. It was abolished by omission of extracellular Ca2+ but unaffected by blockers of adrenergic or muscarinic receptors. Comparison of the changes in membrane potential, 86Rb efflux and 45Ca efflux that vanadate and ouabain produced in B-cells made it possible to exclude the hypothesis that vanadate increases insulin release by blocking the sodium pump. Vanadate was also without effect on cAMP levels. On the other hand, it markedly changed the characteristics of the Ca(2+)-dependent electrical activity and of the oscillations of cytoplasmic Ca2+ recorded in B-cells stimulated by 15 mM glucose. In the steady state, Ca2+ influx was increased by vanadate, and this resulted in a rise in cytoplasmic Ca2+. The exact mechanisms underlying these changes could not be established but a blockade of K channels was excluded. In the presence of LiCl, vanadate markedly increased inositol phosphate levels in islet cells. This effect was attenuated but not suppressed by omission of Ca2+. A small increase in inositol bisphosphate was still produced by vanadate in the absence of LiCl. These results suggest that vanadate both stimulates phosphoinositide breakdown and inhibits inositol phosphate degradation. In conclusion, vanadate does not induce insulin release, but markedly potentiates the stimulation by glucose. This property is not due to an inhibition of the sodium pump or to a rise in cAMP concentration. It results from a complex interplay between changes in B-cell membrane potential, phosphoinositide metabolism and Ca2+ handling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号