首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
水稻氮素营养高光谱遥感诊断模型   总被引:13,自引:0,他引:13  
对水稻氮素含量与原始光谱反射率、一阶微分光谱以及高光谱特征参数间的相关性进行了分析,并构建和验证了以遥感参数为自变量的水稻氮素营养诊断模型.结果表明:氮素含量在水稻各器官中总的变化趋势为茎<鞘<穗<叶;各器官在可见光波段的光谱反射能力为叶<穗<鞘<茎,在近红外波段则与此相反.以波长796.7 nm处的光谱反射率和738.4 nm处的一阶微分光谱反射率为自变量的线性模型和指数模型的决定系数(R2)分别为0.7996和0.8606,二者均能较好地诊断水稻氮素营养,但最适合诊断水稻氮素含量的拟合模型是以植被指数的归一化变量(SDr-SDb)/(SDr+SDb)为自变量构建的水稻氮素营养高光谱遥感诊断模型[y=365871+639323(SDr-SDb)/(SDr+SDb),R2=0.8755,RMSE=0.2372,相对误差=11.36%],该模型可定量诊断水稻氮素营养.  相似文献   

2.
Summary Soil solution Zn, Cu, Mn and Fe concentrations which were monitored throughout the growing season were found to be representative for flooded rice culture. Plant Zn, Cu, Mn and Fe contents of top, middle and bottom leaves as well as whole plants were also measured periodically throughout the growing season. These data were found to be within reported ranges for rice plants grown on flooded soils. Simple regression analyses were performed between plant micronutrient contents for each plant part sampled and the corresponding soil solution values. Results showed that the most promising portions of the rice plant to sample for accurate assessment of plant response to changes in soil solution micronutrient concentration as a function of time are as follows: (a) for Zn, bottom leaf; (b) for Cu, top or bottom leaf, whole plant; (c) for Mn, top leaf and (d) for Fe, bottom leaf or whole plant. re]19750915  相似文献   

3.
Fe对不同品种水稻吸收Cd的影响   总被引:13,自引:5,他引:13  
1引言在农作物重金属污染中,Cd是一个毒性较强的元素,不仅对植物产生毒害引起产量下降[1,4],而且还会残留在植物可食部分,通过食物链进入人体,危害人体健康[2]。减少Cd进入食物链的可能途径之一是调节土壤中Cd的生物有效性;二是利用或培育吸Cd童少或Cd优先吸附保留在报中的植物品种水稻对土壤中Cd吸收量较大,通过第一种途径改良比较困难,因此利用植物自身的调控机制减少对Cd的吸收及其转移尤为重要Cd很容易被吸收并分配到植物的各个部位,为了减少它在食物链中的官集,有必要了解植物对它的吸收机制和在体内的分配过程本文研究…  相似文献   

4.
Summary Nitrogen application increased Zn contents of flooded rice on two calcareous soils. Urea and (NH4)2SO4 being better N carriers than NH4NO3 resulted in higher increase. Nitrogen enhanced Zn contents partly through growth promotion but mainly by increasing soil Zn solubility and root efficiency for Zn absorption. Zinc solubility rose by an enigmatic mechanism and not from pH reduction or soluble Zn-HN3 complex formation as occurs for upland plants. Nitrogen aggravated Zn retention in upland plant roots as immobile Zn-protein complex was not important for rice. Bicarbonate inhibition of Zn uptake by rice from CO(NH2)2 application or its stimulation by lower redox potential from NH4NO3 addition were not involved.No. V in the series Micronutrient availability to cereals from calcareous soils.  相似文献   

5.
The contribution of hyphae of Glomus mosseae (Nicol. and Gerd.) Gerd. and Trappe (BEG 107) to the acquisition of mineral nitrogen by Triticum aestivum L. cv. Hano (wheat) was tested under conditions of low P and high N (+N−P) or low N (−N−P). Mycorrhizal colonisation increased the shoot dry weight and plant tissue concentrations of P and cations. However, N tissue concentrations of mycorrhizal plants were not increased, although nitrate reductase activities were significantly higher (in vivo activity) in +N−P mycorrhizal compared to non-mycorrhizal roots. Severe plant N deficiency reduced the percentage root length colonised (but not the percentage viable colonisation), hyphal length, total 15 N uptake by hyphae and dry weight of mycorrhizal plants. Although mycorrhizal colonisation did not affect the overall plant N status, hyphae transported 1% (−N−P) and 7% (+N−P) of the 15 N-labelled NH4NO3 to mycorrhizal plants over 48 h. The higher rate of hyphal N uptake was apparently related to the more extensive hyphal growth at the higher level of plant N supply. However, the hyphal N supply was not sufficiently high to sustain adequate N nutrition of the plants supplied with very low amounts of N to the roots. Conversely, a sufficient N supply to the roots was important for the development of an extensive mycelium.  相似文献   

6.
Summary Rice (Oryza sativa L.) cv. IR8 was grown in sand culture with nutrient solutions of normal (40 ppm) nitrogen (N), and 3 times the normal nitrogen (3N) applied in the form of ammonium nitrate in combination with molybdenum as foliar spray at the rates of 0, 15. 30, and 45g per plant. In both the nitrogen concentration the foliar application of molybdenum increased the mean crop growth rates. Molybdenum application also increased nitrate reductase activity leading to higher concentration of reduced nitrogen in the tissue and thereby creating a concentration gradient for the uptake and assimilation of applied nitrogen. re]19760505  相似文献   

7.
Chen  Jixing  Xuan  Jiaxiang  Du  Chenglin  Xie  Jianchang 《Plant and Soil》1997,188(1):131-137
With four soils differing in K supplying power and with four rice cultivars (Oryza sativa L.) differing in K uptake kinetic parameters, the relationship between K fertilizer application and soil redox status in rhizosphere and; the distribution of ferrous iron and other toxic substances on the root surface and in the rhizosphere; and the effect of K supply on uptake of reduced iron by rice plants have been studied.The results show that K application on K-deficient soils reduced the content of active reducing substances and ferrous iron in the soil, raised the soil redox potential in the rhizosphere, increased the Eh value of rice roots and lowered the content of iron in the rice plants. These effects of K varied with different rice cultivars. When no K fertilizer was applied, active reducing substances and ferrous iron in rhizosphere soils were decreased more by the rice cultivars absorbing K strongly (e.g. Shanyou 64) than by cultivars absorbing K weakly (e.g. Zhongguo 91). Therefore, the diminution of the toxic substances by K application in the weakly K-absorbing cultivars was more significant.The observation of a rhizobox separated by a nylon screen showed that appreciably more iron oxides, compared with the control, were deposited at or adjacent to the root surfaces of the rice plant supplied with K fertilizer, fully demonstrating the relationship between K nutrition and the total oxidizing power of rice plants. According to the distribution of active reducing substances and ferrous iron, the oxidizing range of the rice root extended in K application treatment a few centimeters away from the root plane. K application to rice affected the soil redox status in rhizosphere in many ways. The main effect was an increase of the oxidizing power of the rice root. As a result, the value of soil Eh was increased, the contents of active reducing substances and ferrous iron were lowered, as well as the number of oxygen consuming microorganisms.  相似文献   

8.
Assessment of the Zn status of chickpea by plant analysis   总被引:1,自引:0,他引:1  
Khan  H. R.  McDonald  G. K.  Rengel  Z. 《Plant and Soil》1998,198(1):1-9
Chickpea (Cicer arietinum L.) is extensively grown in areas where soils are deficient in zinc (Zn). To determine the response of chickpea to Zn nutrition and to diagnose Zn status in plant tissue, two glasshouse experiments were conducted using Zn-deficient siliceous sandy soil. In Experiment 1, two genotypes of desi chickpea (Dooen and Tyson) were grown at five Zn levels (0, 0.04, 0.2, 1.0 and 5.0 mg kg-1 of soil). After 4 weeks, no difference in growth and no visible symptoms of Zn deficiency were detected. After 6–8 weeks of growth, chlorosis of younger leaves and stipules occured in the Zn0 treatment, with shoot dry weight being only 24% of that recorded at the highest Zn level. Root growth increased from 0.52 g/plant when no Zn was applied to 1.04 g/plant in the treatment with 0.2 mg Zn kg-1 of soil; no response to further increase of Zn fertilization occurred. Zinc concentration in the whole shoot increased significantly with increased in Zn application. The critical Zn concentration in the shoot tissue, associated with 90% of maximum growth, was 20 mg kg-1 for both genotypes at flowering stage.In the second experiment, two genotypes of desi chickpea (Tyson and T-1587) were grown at three Zn levels (0, 0.5 and 2.5 mg kg-1 of soil) under two moisture regimes (field capacity 12% w/w, and water stress 4% w/w). Shoot growth was influenced by both Zn supply and water stress. The effect of water stress was severe in the 0.5 and 2.5 mg Zn treatments where shoot dry matter was reduced 52 and 46%, respectively. T-1587 was less sensitive to Zn deficiency and produced higher shoot dry weight than Tyson in the Zn0 treatment. Zinc concentration in shoots increased from 5 mg kg-1 when no Zn was applied to 40 mg kg-1 at the highest Zn level. The critical Zn concentration in shoots was 21 mg kg-1.The results of the two experiments showed that the critical concentration for Zn did not differ amongst the three cultivars used and was not affected by soil moisture. Similar studies should be undertaken with a wider number of genotypes to discover if a critical concentration of 20–21 mg kg-1 in the shoot can be used to diagose the Zn status of chickpea genotypes.  相似文献   

9.
Summary The importance of initial exchangeable soil NH 4 + in nitrogen nutrition and grain yield of rice was studied in a number of representative lowland rice soils in the Philippines. The initial exchangeable soil NH 4 + +fertilizer N plotted against nitrogen uptake by the crop resulted in a highly significant linear relationship (R2=0.91), suggesting that the presence of exchangeable NH 4 + in the soil at transplanting behaved like fertilizer nitrogen. The correlation between N fertilizer rate and N uptake by the rice crop was relatively poor (R2=0.73). On the other hand, relative grain yield was more closely correlated with the initial exchangeable soil NH 4 + +fertilizer N than with fertilizer nitrogen applied alone. These results indicate that the initial exchangeable NH 4 + in the soil contributed substantially to the nitrogen uptake of the crop.Critical nitrogen levels in the soil defined as the initial exchangeable soil NH 4 + +fertilizer N at which the optimum grain yield (95% of the maximum yield) is obtained, varied from 60 to 100 kg N/ha in the wet season and from 100 to 120 kg N/ha in the dry season for the different fertilizer treatments. The results further suggest that the initial exchangeable soil NH 4 + should serve as a guide in selecting an optimum nitrogen fertilizer rate for high grain yields.  相似文献   

10.
11.
12.
The analysis of primary and secondary nitrogen metabolism in plants by nuclear magnetic resonance (NMR) spectroscopy is comprehensively reviewed. NMR is a versatile analytical tool, and the combined use of 1H, 2H, 13C, 14N and 15N NMR allows detailed investigation of the acquisition, assimilation and metabolism of nitrogen. The analysis of tissue extracts can be complemented by the in vivo NMR analysis of functioning tissues and cell suspensions, and by the application of solid state NMR techniques. Moreover stable isotope labelling with 2H-, 13C- and 15N-labelled precursors provides direct insight into specific pathways, with the option of both time-course and steady state analysis increasing the potential value of the approach. The scope of the NMR method, and its contribution to studies of plant nitrogen metabolism, are illustrated with a wide range of examples. These include studies of the GS/GOGAT pathway of ammonium assimilation, investigations of the metabolism of glutamate, glycine and other amino acids, and applications to tropane alkaloid metabolism. The continuing development of the NMR technique, together with potential applications in the emerging fields of metabolomics and metabolic flux analysis, leads to the conclusion that NMR will play an increasingly valuable role in the analysis of plant nitrogen metabolism.  相似文献   

13.
不同改良方法对盐碱土壤氮素营养状况的影响   总被引:5,自引:0,他引:5  
采用浅耕翻、施用磷石膏、施用糠醛渣、施用有机肥、建植星星草人工草地或星星草+羊草人工草地等不同改良方法对盐碱土壤氮素营养影响的研究结果表明,不同改良方法与浅耕翻相比能不同程度地提高土壤全氮含量、碱解氮含量、氨化强度、固氮强度、蛋白酶活性、脲酶活性、硝酸还原酶活性和亚硝酸还原酶活性。其中,浅耕+有机肥+星星草+羊草处理对所测定盐碱土壤氮素营养及相关酶活性指标增加明显,同时,盐碱土壤氮素营养各指标间存在着一定的相关关系。  相似文献   

14.
Duan YH  Zhang YL  Ye LT  Fan XR  Xu GH  Shen QR 《Annals of botany》2007,99(6):1153-1160
BACKGROUND AND AIMS: There is increased evidence that partial nitrate (NO3-) nutrition (PNN) improves growth of rice (Oryza sativa), although the crop prefers ammonium (NH4+) to NO3- nutrition. It is not known whether the response to NO3- supply is related to nitrogen (N) use efficiency (NUE) in rice cultivars. Methods Solution culture experiments were carried out to study the response of two rice cultivars, Nanguang (High-NUE) and Elio (Low-NUE), to partial NO3- supply in terms of dry weight, N accumulation, grain yield, NH4+ uptake and ammonium transporter expression [real-time polymerase chain reaction (PCR)]. KEY RESULTS: A ratio of 75/25 NH4+ -N/NO3- -N increased dry weight, N accumulation and grain yield of 'Nanguang' by 30, 36 and 21 %, respectively, but no effect was found in 'Elio' when compared with those of 100/0 NH4+ -N/NO3- -N. Uptake experiments with 15N-NH4+ showed that NO3- increased NH4+ uptake efficiency in 'Nanguang' by increasing Vmax (14 %), but there was no effect on Km. This indicated that partial replacement of NH4+ by NO3- could increase the number of the ammonium transporters but did not affect the affinity of the transporters for NH4+. Real-time PCR showed that expression of OsAMT1s in 'Nanguang' was improved by PNN, while that in 'Elio' did not change, which is in accordance with the differing responses of these two cultivars to PNN. Conclusions Increased NUE by PNN can be attributed to improved N uptake. The rice cultivar with a higher NUE has a more positive response to PNN than that with a low NUE, suggesting that there might be a relationship between PNN and NUE.  相似文献   

15.
Spectral reflectance ratio of rice canopy for estimating crop nitrogen status   总被引:25,自引:0,他引:25  
A portable meter for measuring the intensity of the green color of a rice canopy in the field by using spectral reflectance at 550 and 800 nm was newly devised. The measurements were found to be affected by reflection of sunshine on the leaf surface. With such limitations being taken into account, rice canopy green color intensity could be evaluated with this meter.  相似文献   

16.
应用盆栽试验,通过调节不同光照强度并控制其它条件相互一致的条件下,研究了光照条件对土壤植物系统N素状况以及作物(莴笋)产量的影响.结果表明,光照强度的改变会引起作物生长状况的相应变化,同时也导致土壤N素(NH4+-N、NO3--N)状况、作物吸收N量以及作物对N素吸收速度等的改变.在试验所处的光照强度范围内,光照较强时,则作物吸收N素的速度较快、吸收N量增加,且产量高,但土壤中相应的N素含量(NH4+-N、NO3--N)则只能维持在相对较低的水平;光照较弱时,则出现与此相反的情况.  相似文献   

17.
Li WJ  Xia YQ  Yang XY  Guo M  Yan XY 《应用生态学报》2011,22(9):2331-2336
在苏南太湖地区开展田间试验,研究了施氮和肥料添加剂对水稻产量、氮素吸收转运及利用的影响.结果表明:施氮对水稻产量、各生育时期植株累积吸氮量、阶段氮累积量和花后氮素转运量具有显著的促进作用(P<0.01),当施氮量高于200 kg·hm-2时,增施氮肥的增产效应不显著(P>0.05);花后氮素转运率和氮肥利用率均随施氮量的增加而降低.施用肥料添加剂可进一步提高水稻产量、累积吸氮量、花后氮素转运量和氮肥利用率,且该效应在高施氮量( ≥200 kg·hm-2)条件下表现更明显.本试验条件下不施用肥料添加剂时,施氮150kg·hm-2可同时获得较高的产量和氮肥利用率.  相似文献   

18.
Summary While the degree of leaf erectness of the rice plant is a varietal characteristic, it can be changed greatly by silica and nitrogen nutrition. Nitrogen tends to make rice leaves more droopy and silica keeps them more erect. This effect of silica on leaf erectness is marked when the silica content of leaves is low. Leaf openness is well correlated with the light extinction coefficient of rice populations.Leaf thickness increases with increasing supply of silica whereas it decreases with increasing supply of nitrogen. Increased nitrogen supply markedly increases leaf length, width, and area. Silica has little effect on these characters.  相似文献   

19.
20.
Soil moisture and nutritional characteristics are frequently assessed using plant species and community bioindication, e.g., the Ellenberg system of species indicator values. This method, based on complete inventories of plant species present in plots, is time-consuming, which could prevent its general use for forest or other natural land management. Our aim was to determine the impact of a reduction in the time spent to carry out a floristic inventory on the quality of soil characteristic assessment using plant bioindication. We compared the measurements of soil pH-H2O (pH), organic carbon to total nitrogen ratio (C:N) and base saturation (BS) in the 0–5 cm soil layer of 470 plots with the same variables estimated from floristic inventories of increasing duration, using plant indicator values (IV) from the EcoPlant database. The performance of predictions was evaluated by the square of the linear correlation coefficient between measured and predicted values (R2) and the root mean square error (RMSE) of predictions.The number rather than the percentage of total plot species used for the estimations was determinant for the prediction of soil pH quality. Performance of bioindication of pH, BS and C:N reached the maximum R2 using the first 20–25 species recorded per plot, corresponding to a 14-min-long floristic inventory in comparison to a mean of 28 min spent to carry out a complete floristic inventory. A precision of prediction of 80% of the maximal precision was obtained after 4–5 min (6–12 inventoried species) for the three studied variables. These results are independent of the nutritional capability of the soils and were similar at the national and local scales. In order to estimate soil nutritional resources by plant bioindication, it is feasible to significantly reduce the time spent on floristic inventories and, thus, their cost. This is especially useful when the goal is to map the soil quality for decision-making in forest management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号