首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The Cape Floristic Region and the Succulent Karoo in southwestern Africa are both noted for their plant species richness and high levels of endemism. The southwestern tip of Africa is one of the world's five Mediterranean-type climate regions. The biodiversity in the Cape Floristic Region and Succulent Karoo is thought to be at least partly due to changes to the climate of these regions that have occurred since the middle Miocene. Annual species are usually a significant proportion of local flora in Mediterranean-type climate regions. Previous studies of species radiations in the Cape Floristic Region have concentrated on genera that predominantly contain perennial species. Nemesia (Scrophulariaceae) comprises c. 65 species of annual and perennial herbs and sub-shrubs that are native to southern and tropical Africa. Annuals make up a significant proportion (~75%) of Nemesia species. We have reconstructed a phylogeny of 23 Nemesia species using nucleotide sequences of the ITS, ETS and trnL-spacer regions. Species were grouped into five clades, two composed of annual species, one that contained two annual and one perennial species, one that contained one annual and two perennial species, and one that was predominantly composed of perennial species. Phylogenetic dating of the ITS + ETS based phylogenetic tree using penalised likelihood suggested the genus evolved during the Miocene, and that the majority of extant Nemesia species studied radiated during the Pliocene. Ancestral state reconstruction supports at least three separate origins of the annual habit from plants with a perennial life history. One origin can be traced to the late Miocene while the other two transitions occurred more recently during the Pliocene. The transition from perennial to annual life-histories in Nemesia may have been a response to climate change.  相似文献   

2.
The Greater Cape Floristic Region   总被引:3,自引:0,他引:3  
Aim The Cape Floristic Region (CFR) (Cape Floristic Kingdom) is currently narrowly delimited to include only the relatively mesic Cape fold mountains and adjacent intermontane valleys and coastal plains. We evaluate the floristic support for expanding the delimitation to include the whole winter‐rainfall area (arid and mesic climates) into a Greater CFR. Location Southern Africa, particularly the south‐western tip. Methods The initial divisive hierarchical classification analysis twinspan used the presence/absence of vascular plant genera to obtain major floristic groupings in southern Africa. For the more detailed analyses, we scored the flora as present/absent within a set of centres, among which the floristic relationships were investigated (agglomerative methods, upgma and minimum spanning trees). These analyses were conducted with species, genera and families separately. The centres were grouped into five regions. The species richness and endemism was calculated for the centres, regions and combination of regions. The dominant floristic components of each region were sought by calculating the percentage contribution of each family to the flora. Results The divisive method showed that the winter‐rainfall areas are floristically distinct from the rest of southern Africa. The species‐ and generic‐level analyses revealed five regions: CFR, Karoo Region, Hantam‐Tanqua‐Roggeveld Region, Namaqualand Region and Namib‐Desert Region. The CFR has the highest endemism and richness. However, the combination of the CFR, the Hantam‐Tanqua‐Roggeveld Region and the Namaqualand Region results in a higher total endemism. Combined, these three regions almost match the region delimited by the twinspan analysis, and together constitute the Greater CFR. Main conclusions The CFR constitutes a valid floristic region. This is evident from the endemism and the distinctive composition of the flora. However, the total endemism is higher for the whole winter‐rainfall area, and this supports the recognition of the larger unit. If floristic regions are to be delimited only on endemism, then the Greater CFR is to be preferred. If floristic regions are delimited on the composition of their floras at family level, then the support for such a grouping is weaker.  相似文献   

3.
Aim The Southern African orchid flora is taxonomically well known, but the biogeographical and diversity patterns have not yet been analysed. In particular, we want to establish whether (a) it is, like the Southern African flora in general, more diverse than would be expected from its latitude and area; (b) it is an African flora, or whether it contains palaeoendemic relicts of a Gondwanan orchid flora; (c) the diversity and endemism in the orchid flora is concentrated in particular biomes and habitat types; and (d) the patterns of endemism in the flora can be accounted for by current environmental parameters, or whether we need to invoke historical explanations. Location Southern Africa. Methods We used the recent floristic account of the Southern African orchids, in conjunction with a data base of over 14,642 herbarium records, to assign the species and subspecies of Southern African orchids to biomes, habitats, and clades. We explored the relationship between the number and endemism of entities (species, subspecies and varieties) and the biomes and habitats. We compared the richness of this flora with that of 31 other regions from all continents and latitudes, to establish whether the Southern African orchid flora is richer or poorer than expected. We assigned the Southern African orchid species to 16 monophyletic clades and mapped the global distribution of these clades to establish the continental affinities of the flora. Main conclusions The Southern African orchid flora is not any more diverse than could be expected from its latitude or area, while the two tropical African floras included were less diverse than expected. Latitude is an excellent predictor of regional orchid species richness; this might indicate that available habitat is more important for orchid diversity than gross area available, since latitude is probably correlated with the extent of suitable habitat. The Southern African orchid flora is clearly an African flora, since all clades are also found in tropical Africa, while many of them are absent from the Americas or Asia. Conversely, while most African orchid clades are also found in Southern Africa, both the Americas and Asia contain many clades absent from Africa. The distribution of orchid entities among the biomes in Southern Africa is very uneven, with two of the seven biomes totally devoid of orchids. Habitats and biomes that have no equivalent in tropical Africa are high in endemism, and habitats and biomes which are also well developed in tropical Africa are low in endemism. Endemism appears largely explained in terms of modern habitats. However, two patterns (the high endemism in the Succulent Karoo and the lack of endemism in the southern Cape among epiphytic orchids) may also be explained in terms of Quaternary climatic changes.  相似文献   

4.
The plant diversity of the Cape Floristic Region is regarded as being exceptional in an ecological and evolutionary context. The region supports about double the number of species predicted by models based on water-energy variables for regional floras globally. However, contemporary diversity patterns are profoundly influenced by evolutionary processes contingent upon idiosyncrasies of history and geography. The relatively recent appearance of dated molecular phylogenies, and their optimization in relation to habitat and geography, has provided hitherto unsurpassed opportunities to generate knowledge about the evolution of the Cape flora. Almost all studies invoke climatic deterioration during the Mio-Pliocene as the major trigger of radiations and subsequent speciation of Cape clades. While some do show the importance of edaphic heterogeneity for clade radiation, the evolution of this heterogeneity is not considered. Here, we review the literature on the late Cenozoic geomorphic evolution of the Cape in order to assess the extent to which the changing nature of scenery and soils could act as a stimulus for plant diversification. Despite dating uncertainties associated with both the phylogenetic and geomorphic data, it appears that moderate uplift in the early and late Miocene, which significantly increased the topo-edaphic heterogeneity of the Cape was an important driver of plant diversification. In particular, the massive increase in heterogeneity after the late Miocene event probably acted in synergy with rapid climatic deterioration, to produce the extraordinarily rapid diversification recorded for some Cape clades at that time. A comparison of the plant diversity and palaeoenvironmetal patterns of mediterranean-climate regions provide insights regarding the "remarkable environmental conditions" of the Cape that have generated the high diversification and low extinction rates necessary to produce such a rich flora. These conditions are a gradual increase in topo-edaphic heterogeneity and relative climatic stability during the late Cenozoic.  相似文献   

5.
Evolution of the species-rich Cape flora   总被引:4,自引:0,他引:4  
The Cape Floristic Region ('fynbos biome') has very high levels of plant species diversity and endemism. Much of this diversity is concentrated in a relatively small number of clades centered in the region (Cape clades), and these form a vegetation called 'fynbos'. The general explanation for the origin of this diversity is that much of it evolved in the Pliocene and Late Miocene in response to progressive aridification. We present a phylogenetic analysis of an almost complete species sample of the largest clade of Restionaceae, the third largest Cape clade. This indicates that the radiation of the Restionaceae started between 20 and 42 Myr ago, and since then there were no, or at most gradual, changes in the speciation rate in this clade. For seven other clades, the estimated starting dates for their radiation ranges from 7 to 20 Myr ago. Combining the radiation patterns for these clades shows that ca. 15% of the modern species evolved during the Pleistocene, and almost 40% since the beginning of the Pliocene. We suggest that these clades might have radiated in response to the fynbos vegetation increasing its extent in the Cape as a result of climatic change.  相似文献   

6.
Mediterranean‐type ecosystems (MTEs) are remarkable in their species richness and endemism, but the processes that have led to this diversity remain enigmatic. Here, we hypothesize that continent‐dependent speciation and extinction rates have led to disparity in diversity between the five MTEs of the world: the Cape, California, Mediterranean Basin, Chile, and Western Australia. To test this hypothesis, we built a phylogenetic tree for 280 Rhamnaceae species, estimated divergence times using eight fossil calibrations, and used Bayesian methods and simulations to test for differences in diversification rates. Rhamnaceae lineages in MTEs generally show higher diversification rates than elsewhere, but speciation and extinction dynamics show a pattern of continent‐dependence. We detected high speciation and extinction rates in California and significantly lower extinction rates in the Cape and Western Australia. The independent colonization of four of five MTEs may have occurred conterminously in the Oligocene/Early Miocene, but colonization of the Mediterranean Basin happened later, in the Late Miocene. This suggests that the in situ radiations of these clades were initiated before the onset of winter rainfall in these regions. These results indicate independent evolutionary histories of Rhamnaceae in MTEs, possibly related to the intensity of climate oscillations and the geological history of the regions.  相似文献   

7.
The spatial and temporal patterns of plant species radiations are largely unknown. I used a nonlinear regression to estimate speciation and extinction rates from all relevant dated clades. Both are surprisingly high. A high species richness can be the result of either little extinction, thus preserving the diversity that dates from older radiations (a 'mature radiation'), or a 'recent and rapid radiation'. The analysis of radiations from different regions (Andes, New Zealand, Australia, southwest Africa, tropics and Eurasia) revealed that the diversity of Australia may be largely the result of mature radiations. This is in sharp contrast to New Zealand, where the flora appears to be largely the result of recent and rapid radiations. Mature radiations are characteristic of regions that have been climatically and geologically stable throughout the Neogene, whereas recent and rapid radiations are more typical of younger (Pliocene) environments. The hyperdiverse Cape and Neotropical floras are the result of the combinations of mature as well as recent and rapid radiations. Both the areas contain stable environments (the Amazon basin and the Cape Fold Mountains) as well as dynamic landscapes (the Andes and the South African west coast). The evolution of diversity can only be understood in the context of the local environment.  相似文献   

8.
《Nordic Journal of Botany》2007,25(3-4):227-237
The orchid flora of the Iberian Peninsula is relatively well known, but its biogeographical and diversity patterns have until now remained unanalysed. This work compares the richness of this flora with that of 27 other territories in different continents and at different latitudes, with the aim of establishing whether it is richer or poorer than might be expected. Latitude was found to be an excellent predictor of regional orchid species richness. With 122 taxa, the orchid flora of the Iberian Peninsula is more or less as diverse as that of other Mediterranean areas of similar latitude (e.g. France, Greece or Italy), but more diverse than other European or indeed North African orchid floras. In this study, the Iberian orchid species were assigned to eight monophyletic clades and the global distribution of these are mapped to establish continental affinities between the floras. A recent floristic account on the Iberian orchids was also used to assign the orchid taxa to habitats, and the relationship between the number of endemisms and their habitats was analysed. The patterns of endemism differed in different habitats. Very high levels of endemism were found in habitats peculiar to the Mediterranean Basin, indicating the relict status of its orchid flora.  相似文献   

9.
Geographical affinities of the Cape flora, South Africa   总被引:1,自引:0,他引:1  
Aim The flora characteristic of the Cape Floristic Region (CFR) is dominated by a relatively small number of clades that have been proposed as ‘Cape clades’. These clades have variously been suggested to have African or Austral affinities. Here we evaluate the support for these conflicting hypotheses. In addition, we test the hypothesis that these clades share a common time of differentiation from their geographical neighbours. Location The Cape Floristic Region, South Africa Methods We use both published and unpublished phylogenetic information to investigate the geographical sister areas of the Cape clades as well as the timing and the direction of biogeographical disjunctions. Results Almost half of the Cape clades for which unambiguous sister areas could be established show a trans‐Indian Ocean disjunction. The earliest trans‐Indian Ocean disjunction dates from 80 Ma. Other disjunctions date from various times in the Cenozoic, and we suggest that the process of recruiting lineages into the Cape flora might be ongoing. Relatively few Cape clades show a sister relationship with South America and tropical Africa, despite their relative geographical proximity. Numerous Cape clades contain species also found on tropical African mountains; in all cases tested, these species are shown to be embedded within the Cape clades. While many Cape clades show a relationship with the Eurasian temperate flora, this is complicated by their presence in tropical Africa. The single case study addressing this to date suggests that the Cape clade is nested within a European grade. Main conclusions Although many Cape clades show Austral rather than African relationships, there are numerous other patterns suggestive of a cosmopolitan flora. This spatial variation is echoed in the temporal data, from which, although there is wide variance around the dates of disjunctions, it is clear the Cape flora has been assembled over a long time period. There is no simple hypothesis that can account for the geographical sources of the currently distinctive Cape flora. The phylogenetic positions of Afromontane members of Cape clades suggest a history of dispersal from the CFR, rather than the reverse.  相似文献   

10.
Aim Estimates of endemic and non‐endemic native vascular plant species in each of the three Western Australian Botanical Provinces were made by East in 1912 and Beard in 1969. The present paper contains an updated assessment of species endemism in the State. Location Western Australia comprises one third of the continental Australian land mass. It extends from 13° to 35° S and 113° to 129° W. Methods Western Australia is recognized as having three Botanical Provinces (Northern, Eremaean and South‐West) each divided into a number of Botanical Districts. Updated statistics for number of species and species endemism in each Province are based on the Census of Western Australian Plants data base at the Western Australian Herbarium ( Western Australian Herbarium, 1998 onwards). Results The number of known species in Western Australia has risen steadily over the years but reputed endemism has declined in the Northern and Eremaean Provinces where cross‐continental floras are common. Only the isolated South‐West Province retains high rates of endemism (79%). Main conclusions With 5710 native species, the South‐West Province contains about the same number as the California Floristic Province which has a similar area. The Italian mediterranean zone also contains about this number but in a smaller area, while the much smaller Cape Floristic Region has almost twice as many native species. The percentage of endemic species is highest at the Cape, somewhat less in south‐western Australia and less again in California. Italy, at 12.5%, has the lowest value. Apart from Italy, it is usual for endemism to reach high values in the largest plant families. In Western Australia, these mainly include woody sclerophyll shrubs and herbaceous perennials with special adaptations to environmental conditions. While those life forms are prominent in the Cape, that region differs in the great importance of herbaceous families and succulents, both of which are virtually absent from Western Australia. In California and Italy, most endemics are in families of annual, herbaceous perennial and soft shrub plants. It is suggested that the dominant factor shaping the South‐West Province flora is the extreme poverty of the area’s soils, a feature that emphasizes sclerophylly, favours habitat specialization and ensures relatively many local endemic species.  相似文献   

11.
Taxonomie and biological aspects of endemism and Red Data Book status were studied amongst the limestone endemics of the lowland fynbos in the Cape Floristic Region, South Africa. Of the 110 limestone endemics, 1.8% are widely distributed in the Cape Floristic Region and 56.4% are regional endemics. Relative to flora of non-limestone lowland fynbos (n=538 species), the families which were overrepresented in terms of limestone endemics included the Ericaceae, Fabaceae, Polygalaceae, Rutaceae and Sterculiaceae. The Restionaceae was the only underrepresented family. The local limestone endemics were not significantly different from regional endemics in terms of their biological attributes. An analysis of the frequency of the biological traits associated with the limestone-endemic flora established a biological profile for a limestone endemic: a dwarf-to-low shrub with soil-stored seeds which are ant or wind dispersed. In terms of the species richness of limestone endemics, the De Hoop Nature Reserve was the hotspot within the region. Relative to the total species richness, the Hagelkraal and Stilbaai areas contained higher-than-predicted numbers of rare species. These areas require urgent attention if the unique floral diversity associated with limestone substrata within the Bredasdorp-Riversdale centre of endemism is to be conserved.  相似文献   

12.
The biodiversity of floras has until recently been measured solely in terms of their species number or species density, with little regard to the breadth of phylogenetic diversity represented by the species. The latter is partly a function of the size of the flora, and partly of the pattern of distribution of the species into higher taxa. To determine whether floras differ in this respect, this study compares the frequency distribution of genus size in 20 island and regional floras. Certain floras (Cape Region, S.W. Australia, New Zealand, Hawaii) are found to have high concentrations of genera containing many species. Others are notably lacking in large genera (Java, Jamaica, Nepal, Niger), though this group tend to be family-rich. In floras with high endemism (Cape, New Zealand, Fiji, Jamaica, Hawaii), the level of endemism is consistently higher in larger genera. Possible reasons for the observed differences between floras are geographic and temporal isolation, level of habitat diversity, climatic history, volcanic, orogenic and tectonic events. Clusters of large genera may indicate recent speciation, possibly following the last glaciation. Genus size may be an important consideration when limited conservation resources have to be targetted to retain the maximum phylogenetic diversity in a threatened flora.  相似文献   

13.
The hypothesis that the elements of the modern species-rich flora of the Cape Floristic Region (CFR), South Africa, originated more or less simultaneously at the Miocene/Pliocene boundary, in response to the development of a mediterranean climate, has been challenged by numerous molecular dating estimates of Cape floral clades. These studies reveal a more gradual emergence, with the oldest clades originating in the Eocene, but others appearing later, some as recently as the Pliocene. That there are factors which might affect the dates recovered, such as choice of calibration point, analysis method, sampling density and the delimitation of Cape floral clades, suggests a need for further critical evaluation of the age estimates presented to date. In this study, the dates of origin of two Cape floral clades (the legume Crotalarieae p.p. and Podalyrieae) are estimated, constrained by a shared calibration point in a single analysis using an rDNA ITS phylogeny in which 633 taxa are sampled. The results indicate that these two clades arose contemporaneously 44-46 mya, not at the Miocene/Pliocene boundary as had been previously supposed. The contemporaneous origin of these Cape floral clades suggests that additional more inclusive analyses are needed before rejecting the hypothesis that a single environmental trigger explains the establishment of Cape floral clades.  相似文献   

14.
The enormous species richness in the Cape Floristic Region (CFR) of Southern Africa is the result of numerous radiations, but the temporal progression and possible mechanisms of these radiations are still poorly understood. Here, we explore the macroevolutionary dynamics of the Restionaceae, which include 340 species that are found in all vegetation types in the Cape flora and are ecologically dominant in fynbos. Using an almost complete (i.e., 98%) species‐level time calibrated phylogeny and models of diversification dynamics, we show that species diversification is constant through the Cenozoic, with no evidence of an acceleration with the onset of the modern winter‐wet climate, or a recent density‐dependent slowdown. Contrary to expectation, species inhabiting the oldest (montane) and most extensive (drylands) habitats did not undergo higher diversification rates than species in the younger (lowlands) and more restricted (wetland) habitats. We show that the rate of habitat transitions is more closely related to the speciation rate than to time, and that more than a quarter of all speciation events are associated with habitat transitions. This suggests that the unbounded Restionaceae diversification resulted from numerous, parallel, habitat shifts, rather than persistence in a habitat stimulating speciation. We speculate that this could be one of the mechanisms resulting in the hyperdiverse Cape flora.  相似文献   

15.
The California Floristic Province exhibits one of the richest floras on the planet, with more than 5500 native plant species, approximately 40% of which are endemic. Despite its impressive diversity and the attention it has garnered from ecologists and evolutionary biologists, historical causes of species richness and endemism in California remain poorly understood. Using a phylogenetic analysis of 16 angiosperm clades, each containing California natives in addition to species found only outside California, we show that CA's current biodiversity primarily results from low extinction rates, as opposed to elevated speciation or immigration rates. Speciation rates in California were lowest among Arcto‐Tertiary lineages (i.e., those colonizing California from the north, during the Tertiary), but extinction rates were universally low across California native plants of all historical, geographic origins. In contrast to long‐accepted ideas, we find that California diversification rates were generally unaffected by the onset of the Mediterranean climate. However, the Mediterranean climate coincided with immigration of many desert species, validating one previous hypothesis regarding origins of CA's plant diversity. This study implicates topographic complexity and climatic buffering as key, long‐standing features of CA's landscape favoring plant species persistence and diversification, and highlights California as an important refuge under changing climates.  相似文献   

16.
Aim We tested an entrenched concept – that the Australian rain forest flora is essentially a Gondwanan relict. We also assessed the role of regional‐level source–sink dynamics in the assembly of this flora. Location Eastern Australia. Methods To avoid potential biases inherent in selective studies undertaken to date, we used an analytical, whole‐of‐flora approach integrated with the fossil record. We identified disjunctions between woody Australian rain forest plant taxa and relatives on other land masses. To test the strength of the fossil evidence for the regional antiquity of this flora, we evaluated the proportion of these disjunct clades represented in the Australian fossil record, and to minimize the effects of biases in this record, we compared late Quaternary (i.e. late Pleistocene and Holocene, 126–0 ka), Pliocene and late Oligocene–early Miocene Australian pollen records interpreted as tropical rain forest. Using within‐species disjunctions as a proxy, we assessed the role of recent immigration from Asia into Australia. To assess the role of source–sink dynamics, we performed comparative analyses of disjunctions in major rain forest categories representing a north–south/climatic gradient. Results Southern Australian, cool temperate (microthermal) rain forests contain many floristic disjunctions with Gondwanan fragments and most of these clades have Gondwanan fossils. Disjunct clades in Australian mesothermal rain forest mostly occur in Asia/Malesia and a low proportion of these clades show pre‐Neogene records. Many clades in lowland tropical and ‘dry’ rain forest show disjunctions with Asia/Malesia and few have Australian fossil records. Rates of recent immigration from Asia/Malesia are high in these northern forests, and outweigh rates of recent emigration approximately nine‐fold. The late Quaternary fossil record has many more rain forest angiosperms than Oligocene–Miocene and Pliocene floras, consistent with extensive late Cenozoic immigration. Main conclusions The microthermal rain forests are largely Gondwanan relicts, but there is progressively greater, and more recent contribution from Asia/Malesia into more northern, and more lowland tropical rain forests. This variation reflects a strong gradient in geographic and ecological proximity between these forests and source floras in Asia/Malesia, and is consistent with a source–sink size model of immigration driven by late Cenozoic contractions and expansions of Australian rain forest.  相似文献   

17.
Nemopteridae are a charismatic family of lacewings characterised by uniquely extended hind wings. They are an ancient widespread group in the drier regions of the world. The family comprises two subfamilies, Crocinae (thread-wings) and Nemopterinae (spoon- and ribbon-wings). The present distribution of the family has been largely influenced by the vicariant events of plate tectonics, resulting in relict populations in some parts of the world and extensive evolutionary radiations in others, particularly southern Africa where the vast majority of the species are endemic to the Western and Northern Cape Provinces of South Africa. This study aimed to establish the validity of the 11 currently recognised genera and infer their biogeographic history using molecular sequence data from four gene regions. The hypothesis that the Cape nemopterines co-evolved with certain taxa in the Cape Floristic Region was also tested. Phylogenetic analysis supports seven of the 11 currently recognised genera. The crown age of the Nemopterinae is estimated to be at ca. 145.6 Mya, indicating that the group has been present since the late Jurassic. Most of the genera appear to have diversified during the middle Eocene and into the middle Miocene (ca. 44–11 Mya) with recent rapid radiation of several of the genera occurring during the late Miocene (ca. 6–4.5 Mya). While these data support an initial radiation with the Rushioideae (Aizoaceae) it is recommended that further study including observations and gut content be carried out.  相似文献   

18.
The exceptionally high plant diversity of the Greater Cape Floristic Region (GCFR) comprises a combination of ancient lineages and young radiations. A previous phylogenetic study of Aizoaceae subfamily Ruschioideae dated the radiation of this clade of > 1500 species in the GCFR to 3.8–8.7 Mya, establishing it as a flagship example of a diversification event triggered by the onset of a summer‐arid climate in the region. However, a more recent analysis found an older age for the Ruschioideae lineage (17 Mya), suggesting that the group may in fact have originated much before the aridification of the region 10–15 Mya. Here, we reassess the tempo of radiation of ice plants by using the most complete generic‐level phylogenetic tree for Aizoaceae to date, a revised calibration age and a new dating method. Our estimates of the age of the clade are even younger than initially thought (stem age 1.13–6.49 Mya), supporting the hypothesis that the radiation post‐dates the establishment of an arid environment in the GCFR and firmly placing the radiation among the fastest in angiosperms (diversification rate of 4.4 species per million years). We also statistically examine environmental and morphological correlates of richness in ice plants and find that diversity is strongly linked with precipitation, temperature, topographic complexity and the evolution of highly succulent leaves and wide‐band tracheids. © 2013 The Authors. Botanical Journal of the Linnean Society published by John Wiley & Sons Ltd on behalf of The Linnean Society of London, Botanical Journal of the Linnean Society, 2014, 174 , 110–129.  相似文献   

19.
The Cape Floristic Region is exceptionally species-rich both for its area and latitude, and this diversity is highly unevenly distributed among genera. The modern flora is hypothesized to result largely from recent (post-Oligocene) speciation, and it has long been speculated that particular species-poor lineages pre-date this burst of speciation. Here, we employ molecular phylogenetic data in combination with fossil calibrations to estimate the minimum duration of Cape occupation by 14 unrelated putative relicts. Estimates vary widely between lineages (7-101 Myr ago), and when compared with the estimated timing of onset of the modern flora's radiation, it is clear that many, but possibly not all, of these lineages pre-date its establishment. Statistical comparisons of diversities with lineage age show that low species diversity of many of the putative relicts results from a lower rate of diversification than in dated Cape radiations. In other putative relicts, however, we cannot reject the possibility that they diversify at the same underlying rate as the radiations, but have been present in the Cape for insufficient time to accumulate higher diversity. Although the extremes in diversity of currently dated Cape lineages fall outside expectations under a constant underlying diversification rate, sampling of all Cape lineages would be required to reject this null hypothesis.  相似文献   

20.
The Cape region of South Africa is one of the most remarkable hotspots of biodiversity with a flora comprising more than 9000 plant species, almost 70% of which are endemic, within an area of only ± 90,000 km2. Much of the diversity is due to an exceptionally large contribution of just a few clades that radiated substantially within this region, but little is known about the causes of these radiations. Here, we present a comprehensive analysis of plant diversification, using near complete species-level phylogenies of four major Cape clades (more than 470 species): the genus Protea, a tribe of legumes (Podalyrieae) and two speciose genera within the iris family (Babiana and Moraea), representing three of the seven largest plant families in this biodiversity hotspot. Combining these molecular phylogenetic data with ecological and biogeographical information, we tested key hypotheses that have been proposed to explain the radiation of the Cape flora. Our results show that the radiations started throughout the Oligocene and Miocene and that net diversification rates have remained constant through time at globally moderate rates. Furthermore, using sister-species comparisons to assess the impact of different factors on speciation, we identified soil type shifts as the most important cause of speciation in Babiana, Moraea, and Protea, whereas shifts in fire-survival strategy is the most important factor for Podalyrieae. Contrary to previous findings in other groups, such as orchids, pollination syndromes show a high degree of phylogenetic conservatism, including groups with a large number of specialized pollination syndromes like Moraea. We conclude that the combination of complex environmental conditions together with relative climatic stability promoted high speciation and/or low extinction rates as the most likely scenario leading to present-day patterns of hyperdiversity in the Cape.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号