首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background  

A common approach to understanding the genetic basis of complex traits is through identification of associated quantitative trait loci (QTL). Fine mapping QTLs requires several generations of backcrosses and analysis of large populations, which is time-consuming and costly effort. Furthermore, as entire genomes are being sequenced and an increasing amount of genetic and expression data are being generated, a challenge remains: linking phenotypic variation to the underlying genomic variation. To identify candidate genes and understand the molecular basis underlying the phenotypic variation of traits, bioinformatic approaches are needed to exploit information such as genetic map, expression and whole genome sequence data of organisms in biological databases.  相似文献   

2.
《Biophysical journal》2022,121(24):4770-4776
RNA aptamers are oligonucleotides with high binding affinity and specificity for target molecules and are expected to be a new generation of therapeutic molecules and targeted delivery materials. The tertiary structure of RNA molecules and RNA-protein interaction sites are increasingly important as potential targets for new drugs. The pathological mechanisms of diseases must be understood in detail to guide drug design. In developing RNA aptamers as drugs, information about the interaction mechanisms and structures of RNA aptamer-target protein complexes are useful. We constructed a database, RNA aptamer 3D-structural modeling (RNAapt3D), consisting of RNA aptamer data that are potential drug candidates. The database includes RNA sequences and computationally predicted RNA tertiary structures based on secondary structures and implements methods that can be used to predict unknown structures of RNA aptamer-target molecule complexes. RNAapt3D should enable the design of RNA aptamers for target molecules and improve the efficiency and productivity of candidate drug selection. RNAapt3D can be accessed at https://rnaapt3d.medals.jp.  相似文献   

3.

Background  

Eukaryotic DNA replication is regulated at the level of large chromosomal domains (0.5–5 megabases in mammals) within which replicons are activated relatively synchronously. These domains replicate in a specific temporal order during S-phase and our genome-wide analyses of replication timing have demonstrated that this temporal order of domain replication is a stable property of specific cell types.  相似文献   

4.
neuroConstruct: a tool for modeling networks of neurons in 3D space   总被引:1,自引:0,他引:1  
Gleeson P  Steuber V  Silver RA 《Neuron》2007,54(2):219-235
Conductance-based neuronal network models can help us understand how synaptic and cellular mechanisms underlie brain function. However, these complex models are difficult to develop and are inaccessible to most neuroscientists. Moreover, even the most biologically realistic network models disregard many 3D anatomical features of the brain. Here, we describe a new software application, neuroConstruct, that facilitates the creation, visualization, and analysis of networks of multicompartmental neurons in 3D space. A graphical user interface allows model generation and modification without programming. Models within neuroConstruct are based on new simulator-independent NeuroML standards, allowing automatic generation of code for NEURON or GENESIS simulators. neuroConstruct was tested by reproducing published models and its simulator independence verified by comparing the same model on two simulators. We show how more anatomically realistic network models can be created and their properties compared with experimental measurements by extending a published 1D cerebellar granule cell layer model to 3D.  相似文献   

5.
6.
TopoICE-R: 3D visualization modeling the topology of DNA recombination   总被引:1,自引:0,他引:1  
TopoICE-R is a three-dimensional visualization and manipulation software for solving 2-string tangle equations and can be used to model the topology of DNA bound by proteins such as recombinases and topoisomerases. AVAILABILITY: This software, manual and example files are available at www.knotplot.com/download for Linux, Windows and Mac.  相似文献   

7.
We offer a tool, denoted VISTAL, for two-dimensional visualization of protein structural alignments. VISTAL describes aligned structures as a series of matched secondary structure elements, colored according to the three-dimensional distance of their Calpha atoms. AVAILABILITY: VISTAL can be downloaded from http://trantor.bioc.columbia.edu/~kolodny/software.html.  相似文献   

8.
虚拟森林景观中林火蔓延模型及三维可视化表达   总被引:15,自引:2,他引:13  
传统上的林火模拟通常只选用一种林火模型,用一个简单的椭圆预测林火蔓延时火场各个位置的情况,与现实中火灾蔓延状况相差甚远,而且以往的林火蔓延是基于二维可视化表达,表达信息有限.本系统采用现今运用最广泛的Rothermel模型,利用Huygen原理,并以改进的粒子系统方法三维模拟在不同的风速、坡度下林火在火场不同位置的扩散行为.采用该方法模拟林火扩散行为,不仅能实时显示受灾面积、火势蔓延的方向、火势大小,且能给人以真实感.并将该方法成功地应用于福建漳浦林区.  相似文献   

9.
10.
11.
The electrostatic-surface of functional site (eF-site) is a database for the molecular surfaces of protein functional sites. To enable browsing of each molecular surface along with the atomic model, we have developed a new three-dimensional interactive viewer, PDBjViewer, that can be used both as an applet and as a stand-alone program. AVAILABILITY: The eF-site database and PDBjViewer are freely available from http://www.pdbj.org/eF-site/  相似文献   

12.
Summary: Traditional two-dimensional (2D) software programsfor drawing pedigrees are limited when dealing with extendedpedigrees. In successive generations, the number of individualsgrows exponentially, leading to an unworkable amount of spacerequired in the horizontal direction for 2D displays. In addition,it is not always possible to place closely related individualsnear each other due to the lack of space in 2Ds. To addressthese issues we have developed three-dimensional (3D) pedigreedrawing techniques to enable clearer visualization of extendedpedigrees. Currently no other methods are available for displayingextended pedigrees in 3Ds. We have made freely available a softwaretool—‘Celestial3D’—that implements thesenovel techniques. Availability: Freely available to non-commercial users Contact: celestial3d{at}genepi.org.au Supplementary information: www.genepi.org.au/celestial3d Associate Editor: Martin Bishop 1A more extensive list of software tools appears in the SupplementaryMaterial.  相似文献   

13.
14.
To address many challenges in RNA structure/function prediction, the characterization of RNA''s modular architectural units is required. Using the RNA-As-Graphs (RAG) database, we have previously explored the existence of secondary structure (2D) submotifs within larger RNA structures. Here we present RAG-3D—a dataset of RNA tertiary (3D) structures and substructures plus a web-based search tool—designed to exploit graph representations of RNAs for the goal of searching for similar 3D structural fragments. The objects in RAG-3D consist of 3D structures translated into 3D graphs, cataloged based on the connectivity between their secondary structure elements. Each graph is additionally described in terms of its subgraph building blocks. The RAG-3D search tool then compares a query RNA 3D structure to those in the database to obtain structurally similar structures and substructures. This comparison reveals conserved 3D RNA features and thus may suggest functional connections. Though RNA search programs based on similarity in sequence, 2D, and/or 3D structural elements are available, our graph-based search tool may be advantageous for illuminating similarities that are not obvious; using motifs rather than sequence space also reduces search times considerably. Ultimately, such substructuring could be useful for RNA 3D structure prediction, structure/function inference and inverse folding.  相似文献   

15.
The various roles of versatile non-coding RNAs typically require the attainment of complex high-order structures. Therefore, comparing the 3D structures of RNA molecules can yield in-depth understanding of their functional conservation and evolutionary history. Recently, many powerful tools have been developed to align RNA 3D structures. Although some methods rely on both backbone conformations and base pairing interactions, none of them consider the entire hierarchical formation of the RNA secondary structure. One of the major issues is that directly applying the algorithms of matching 2D structures to the 3D coordinates is particularly time-consuming. In this article, we propose a novel RNA 3D structural alignment tool, STAR3D, to take into full account the 2D relations between stacks without the complicated comparison of secondary structures. First, the 3D conserved stacks in the inputs are identified and then combined into a tree-like consensus. Afterward, the loop regions are compared one-to-one in accordance with their relative positions in the consensus tree. The experimental results show that the prediction of STAR3D is more accurate for both non-homologous and homologous RNAs than other state-of-the-art tools with shorter running time.  相似文献   

16.
Summary: BicOverlapper is a tool to visualize biclusters fromgene-expression matrices in a way that helps to compare biclusteringmethods, to unravel trends and to highlight relevant genes andconditions. A visual approach can complement biological andstatistical analysis and reduce the time spent by specialistsinterpreting the results of biclustering algorithms. The techniqueis based on a force-directed graph where biclusters are representedas flexible overlapped groups of genes and conditions. Availability: The BicOverlapper software and supplementary materialare available at http://vis.usal.es/bicoverlapper Contact: rodri{at}usal.es Associate Editor: John Quackenbush The first two authors should be reported as joint first authors.  相似文献   

17.
MOTIVATION: As the sizes of three-dimensional (3D) protein structure databases are growing rapidly nowadays, exhaustive database searching, in which a 3D query structure is compared to each and every structure in the database, becomes inefficient. We propose a rapid 3D protein structure retrieval system named 'ProtDex2', in which we adopt the techniques used in information retrieval systems in order to perform rapid database searching without having access to every 3D structure in the database. The retrieval process is based on the inverted-file index constructed on the feature vectors of the relationships between the secondary structure elements (SSEs) of all the 3D protein structures in the database. ProtDex2 is a significant improvement, both in terms of speed and accuracy, upon its predecessor system, ProtDex. RESULTS: The experimental results show that ProtDex2 is very much faster than two well-known protein structure comparison methods, DALI and CE, yet not sacrificing on the accuracy of the comparison. When comparing with a similar SSE-based method, namely TopScan, ProtDex2 is much faster with comparable degree of accuracy. AVAILABILITY: The software is available at: http://xena1.ddns.comp.nus.edu.sg/~genesis/PD2.htm  相似文献   

18.

Background  

Many important agricultural traits such as weight gain, milk fat content and intramuscular fat (marbling) in cattle are quantitative traits. Most of the information on these traits has not previously been integrated into a genomic context. Without such integration application of these data to agricultural enterprises will remain slow and inefficient. Our goal was to populate a genomic database with data mined from the bovine quantitative trait literature and to make these data available in a genomic context to researchers via a user friendly query interface.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号