首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sopina VA 《Tsitologiia》2005,47(4):357-365
In free-living Amoeba proteus (strain B), 3 phosphatase were found after disc-electrophoresis of 10 microg of protein in PAGE and using 1-naphthyl phosphate as a substrate a pH 9.0. These phosphatases differed in their electrophoretic mobilities - "slow" (1-3 bands), "middle" (one band) and "fast" (one band). In addition to 1-naphthyl phosphate, "slow" phosphatases were able to hydrolyse 2-naphthyl phosphate and p-nitrophenyl phosphate. They were slightly activated by Mg2+, completely inhibited by 3 chelators (EDTA, EGTA and 1,10-phenanthroline), L-cysteine, sodium dodecyl sulfate and Fe2+, Zn2+ and Mn2+ (50 mM), considerably inactivated by orthovanadate, molybdate, phosphatase inhibitor cocktail 1, p-nitrophenyl phosphate, Na2HPO4, DL-dithiothreitol and urea and partly inhibited by H2O2, DL-phenylalanine, 2-mercaptoethanol, phosphatase inhibitor cocktail 2 and Ca2+. Imidazole, L-(+)-tartrate, okadaic acid, NaF and sulfhydryl reagents -p-(hydroxy-mercuri)benzoate and N-ethylmaleimide - had no influence on the activity of "slow" phosphatases. "Middle" and "fast" phosphatases, in contrast to "slow" ones, were not inactivated by 3 chelators. The "middle" phosphatase differed from the "fast" one by smaller resistance to urea, Ca2+, Mn2+, phosphates and H2O2 and greater resistance to dithiothreitol and L-(+)-tartrate. In addition, the "fast" phosphatase was inhibited by L-cysteine but the "middle" one was activated by it. Of 5 tested ions (Mg2+, Cu2+, Mn2+, Ca2+ and Zn2+), only Zn2+ reactivated "slow" phosphatases after their inactivation by EDTA treatment. The reactivation of apoenzyme was only partial (about 35 %). Thus, among phosphatases found in amoebae at pH 9.0, only "slow" ones are Zn-metalloenzymes and may be considered as alkaline phosphatases (EC 3.1.3.1). It still remains uncertain, to which particular phosphatase class "middle" and "fast" phosphatases (pH 9.0) may belong.  相似文献   

2.
A calmodulin-dependent protein phosphatase has been identified in human platelets by its cross-reactivity with an antibody developed against a bovine brain calmodulin-dependent protein phosphatase and by its calmodulin-stimulated dephosphorylation of 32P-labeled substrates. The platelet enzyme was partially purified to separate it from calmodulin and calmodulin-independent phosphatases. The partially purified enzyme was stimulated by calmodulin, requiring 15 nM calmodulin for half-maximal activation. Calmodulin increased the Vmax of the phosphatase, with no significant effect on its Km. The enzyme was stimulated irreversibly and made calmodulin-independent by limited proteolysis. The optimal pH for the phosphatase was 7.5. After partial purification, phosphatase activity was significantly increased in the presence of Mn2+ and Ca2+ over that observed in the presence of Ca2+ alone. The enzyme effectively dephosphorylated casein, histone, protamine, and platelet actin. The holophosphatase was estimated to have a molecular weight of 76,900 as determined by sedimentation on sucrose gradients. Immunoblotting techniques using an antibody against the brain phosphatase suggests that the enzyme consists of 2 subunits of 60,000 and 16,500 daltons; the 60,000-dalton subunit co-migrates in sodium dodecyl sulfate-polyacrylamide gel electrophoresis with a 60,000-dalton calmodulin-binding protein in the platelet suggesting that it is the calmodulin-binding subunit of the enzyme. The identification of a calmodulin-dependent protein phosphatase in human platelets suggests a role for Ca2+-dependent dephosphorylation in platelet activation.  相似文献   

3.
Recombinant phospholipase D (PLD) from Streptomyces chromofuscus (scPLD) has been characterized using colorimetric assays, spectroscopic investigations, and site-directed mutagenesis. scPLD, which shows phosphodiesterase activity toward a wide variety of phospholipids and phosphatase activity toward p-nitrophenyl phosphate, exhibits a visible absorption band with lambda(max) at 570 nm. Metal ion analysis performed by inductively coupled plasma mass spectroscopy shows the presence of approximately 1 equivalent of iron, 0.27 equivalent of manganese, and 0.1 equivalent of zinc per mole of protein as isolated. The metal ion content coupled with the visible absorption feature is compatible with the presence of Fe(3+)-tyrosinate coordination. When scPLD was dialyzed against solutions containing Mn(2+), Zn(2+) or EDTA, the Fe(3+) content was reduced to variable extents, and the residual specific activity correlated well with the residual iron content. Sequence homology with metal ion binding motifs in known alkaline phosphatases and purple acid phosphatase from red kidney bean shows that most of the residues involved in metal ion coordination are conserved among all the sequences considered. Mutation of some of these conserved residues (C123A, D151A, Y154F, and H391A) produced enzymes lacking iron with dramatically reduced PLD activity but little change in secondary structure or ability to bind to small unilamellar vesicles of phosphatidylcholine (with Ba(2+)) or phosphatidic acid. We suggest that scPLD is a member of a family of phosphodiesterase/phosphatases with structural and mechanistic similarity to iron-dependent purple acid phosphatases.  相似文献   

4.
Protein phosphatases regulated by calmodulin (CaM) mediate the action of intracellular Ca2+ and modulate functions of various target proteins by dephosphorylation. In plants, however, the role of Ca2+ in the regulation of protein dephosphorylation is not well understood due to a lack of information on characteristics of CaM-regulated protein phosphatases. Screening of a cDNA library of the moss Physcomitrella patens by using 35S-labeled calmodulin as a ligand resulted in identification of a gene, PCaMPP, that encodes a protein serine/threonine phosphatase with 373 amino acids. PCaMPP had a catalytic domain with sequence similarity to type 2C protein phosphatases (PP2Cs) with six conserved metal-associating amino acid residues and also had an extra C-terminal domain. Recombinant GST fusion proteins of PCaMPP exhibited Mn2+-dependent phosphatase activity, and the activity was inhibited by pyrophosphate and 1 mm Ca2+ but not by okadaic acid, orthovanadate, or beta-glycerophosphate. Furthermore, the PCaMPP activity was increased 1.7-fold by addition of CaM at nanomolar concentrations. CaM binding assays using deletion proteins and a synthetic peptide revealed that the CaM-binding region resides within the basic amphiphilic amino acid region 324-346 in the C-terminal domain. The CaM-binding region had sequence similarity to amino acids in one of three alpha-helices in the C-terminal domain of human PP2Calpha, suggesting a novel role of the C-terminal domains for the phosphatase activity. These results provide the first evidence showing possible regulation of PP2C-related phosphatases by Ca2+/CaM in plants. Genes similar to PCaMPP were found in genomes of various higher plant species, suggesting that PCaMPP-type protein phosphatases are conserved in land plants.  相似文献   

5.
The phosphatase activities responsible for the sequential dephosphorylation of lysophosphatidylinositol 4,5-bisphosphate (lysoPtdIns(4,5)P2) to lysophosphatidylinositol that precedes reacylation in rat brain and liver microsomes were characterized. LysoPtdIns(4,5)P2 and the intermediate lysophosphatidylinositol 4-phosphate (lysoPtdIns4P) were hydrolyzed by two distinct phosphatase activities which were distinguishable by their substrate and cation requirements. The lysoPtdIns(4,5)P2 phosphatase activity was Mg2+ dependent and partially inhibited by Ca2+, excess Mg2+, and cationic detergent (cetyltrimethylammonium bromide). Activity was maximal at neutral (brain) or slightly alkaline (liver) pH when the Mg2+/lysoPtdIns(4,5)P2 molar ratio was 1.0 in the presence of bovine serum albumin (1 mg.mL-1). LysoPtdIns4P phosphatase activity did not require divalent cations (not inhibited by EDTA). This activity was inhibited by Ca2+, Mg2+, and substrate concentrations above 0.2 mM. Maximum activity was observed over a broad pH range (6.0-8.5). Both activities were inhibited by lysophosphatidylinositol and lysophosphatidylcholine, but not other lysophospholipids. The lysopolyphosphoinositides are most likely hydrolyzed by the same phosphatases that act on the diacylpolyphosphoinositides, since PtdIns(4,5)P2 and PtdIns4P were also hydrolysed by Mg2+-dependent and cation-independent phosphatases, respectively. Activities with the diacylpolyphosphoinositides differed only in their requirement of detergents for maximum activity in vitro. Specific activities for the diacyl and "lyso" forms of each substrate were very similar when suitably optimized reaction mixtures were used. The subcellular distributions of the two phosphatase activities in both brain and liver were the same when acting on diacyl- or lyso-polyphosphoinositides, as was their response to inhibitors. Alkaline, acid, phosphoprotein, and inositol-1-phosphate phosphatases did not contribute substantially to the hydrolysis of either lysoPtdIns4P or lysoPtdIns(4,5)P2, since the activities were not significantly inhibited by cysteine, dithiothreitol, NaF, or LiCl.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Dephosphorylation of neuromodulin by calcineurin   总被引:8,自引:0,他引:8  
Neuromodulin (p57, GAP-43, F1, B-50) is a major neural-specific, calmodulin binding protein found in brain, spinal cord, and retina that is associated with membranes. Phosphorylation of neuromodulin by protein kinase C causes a significant reduction in its affinity for calmodulin (Alexander, K. A., Cimler, B. M., Meirer, K. E., and Storm, D. R. (1987) J. Biol. Chem. 262, 6108-6113). It has been proposed that neuromodulin may function to bind and concentrate calmodulin at specific sites within neurons and that activation of protein kinase C causes the release of free calmodulin at high concentrations near its target proteins. It was the goal of this study to determine whether bovine brain contains a phosphoprotein phosphatase that will utilize phosphoneuromodulin as a substrate. Phosphatase activity for phosphoneuromodulin was partially purified from a bovine brain extract using DEAE-Sephacel and Sephacryl S-200 gel filtration chromatography. The neuromodulin phosphatase activity was resolved into two peaks by Affi-Gel Blue chromatography. One of these phosphatases, which represented approximately 60% of the total neuromodulin phosphatase activity, was tentatively identified as calcineurin by its requirement for Ca2+ and calmodulin (CaM) and inhibition of its activity by chlorpromazine. Therefore, bovine brain calcineurin was purified to homogeneity and examined for its phosphatase activity against bovine phosphoneuromodulin. Calcineurin rapidly dephosphorylated phosphoneuromodulin in the presence of micromolar Ca2+ and 3 microM CaM. The apparent Km and Vmax for the dephosphorylation of neuromodulin, measured in the presence of micromolar Ca2+ and 2 microM CaM, were 2.5 microM and 70 nmol Pi/mg/min, respectively, compared to a Km and Vmax of 4 microM and 55 nmol Pi/mg/min, respectively, for myosin light chain under the same conditions. Dephosphorylation of neuromodulin by calcineurin was stimulated 50-fold by calmodulin in the presence of micromolar free Ca2+. Half-maximal stimulation was observed at a calmodulin concentration of 0.5 microM. We propose that phosphoneuromodulin may be a physiologically important substrate for calcineurin and that calcineurin and protein kinase C may regulate the levels of free calmodulin available in neurons.  相似文献   

7.
Four phosphoprotein phosphatases, with the ability to act upon hydroxymethylglutaryl (HMG)-CoA reductase, phosphorylase, and glycogen synthase have been purified from rat liver cytosol through a process that involves DEAE-cellulose, aminohexyl-Sepharose-4B, and Bio-Gel A 1.5 m chromatographies. Protein phosphatase II (Mr 180,000) was the major enzyme (68%) with a very broad substrate specificity, showing similar activity toward the three substrates. Phosphatases I1 (Mr 180,000) and I3 (Mr 250,000) accounted for only 12 and 15% of the total activity, respectively, and they were also able to dephosphorylate the three substrates. In contrast, phosphatase I2 (Mr 200,000) showed only phosphorylase phosphatase activity with insignificant dephosphorylating capacity toward HMG-CoA reductase and glycogen synthase. Upon ethanol treatment at room temperature, the Mr of all phosphatases changed; protein phosphatases I2, I3, and II were brought to an Mr of 35,000, while phosphatase I1 was reduced to an Mr of 69,000. Glycogen synthase phosphatase activity was decreased in all four phosphatases. There was also a decrease in phosphatase I1 activity toward HMG-CoA reductase and phosphorylase as substrates. The HMG-CoA reductase phosphatase and phosphorylase phosphatase activities of phosphatases I2, I3, and II were increased after ethanol treatment. Each protein phosphatase showed a different optimum pH, which changed depending on the substrate. The four phosphatases increased their activity in the presence of Mn2+ and Mg2+. In general, Mn2+ was a better activator than Mg2+, and phosphatase I1 showed a stronger dependency on these cations than any other phosphatase. Phosphorylase was a competitive substrate in the HMG-CoA reductase phosphatase and glycogen synthase phosphatase reactions of protein phosphatases I1, I3, and II. HMG-CoA reductase was also able to compete with phosphorylase and glycogen synthase for phosphatase activity. Glycogen synthase phosphatase activity presented less inhibition in the low-Mr forms. A comparison has been made with other protein phosphatases previously reported in the literature.  相似文献   

8.
Washed human platelets suspended in buffers containing either 1.8 mM Ca2+ and 0.49 mM Mg2+ or 1 mM EDTA were treated with human alpha-thrombin to induce secretion. Glycoprotein G, a major glycoprotein in alpha-granules, was quantitatively secreted from platelets activated in the EDTA-containing buffer but remained with the platelet in the presence of Ca2+ and Mg2+. Addition of Ca2+ to the platelets that were activated in the presence of EDTA caused glycoprotein G to bind to platelets. To determine if glycoprotein G is expressed on the membrane surface of the activated platelet, platelets were rapidly labeled by a method employing lactoperoxidase-catalyzed iodination. Although glycoprotein G was barely detected on the surface of unstimulated platelets, labveling 1 min after thrombin treatment showed that glycoprotein G rapidly became one of the prominent surface proteins. These findings show that an alpha-granule protein, glycoprotein G, is one of the major glycoproteins on the membrane surface of thrombin-activated platelets and that its binding is dependent on divalent cations.  相似文献   

9.
Protein phosphatases and phosphatase inhibitors were used to examine the role of protein phosphorylation in the regulation of norepinephrine secretion in digitonin-permeabilized PC12 cells. The addition of an exogenous type 2A protein phosphatase caused as much as a 70% decrease in Ca2(+)-dependent norepinephrine secretion. In the presence of okadaic acid, a potent inhibitor of type 2A protein phosphatases, phosphatase 2A had no effect on secretion. The addition of exogenous calcineurin, a Ca2(+)-calmodulin-stimulated phosphatase, also caused decrease in Ca2(+)-dependent secretion, but on a molar basis it was less effective than phosphatase 2A. Two phosphatase inhibitors, 1-naphthylphosphate and sodium pyrophosphate, caused 75-100% increases in the amount of norepinephrine secreted in the absence of Ca2+ without affecting the amount of norepinephrine secreted in the presence of Ca2+. This stimulation of Ca2(+)-independent secretion by 1-naphthylphosphate and pyrophosphate suggests that there is a slow rate of Ca2(+)-independent phosphorylation and that phosphorylation triggers secretion. Unlike the results obtained in the presence of ATP, secretion in the presence of adenosine-5'-O-(3-thiotriphosphate), ATP gamma S, was not affected by the addition of type 2A protein phosphatase or by the addition of phosphatase inhibitors. These results are consistent with secretion in these permeabilized cells being regulated by a Ca2(+)-stimulated phosphorylation.  相似文献   

10.
M Nomura  J T Stull  K E Kamm  M C Mumby 《Biochemistry》1992,31(47):11915-11920
Smooth muscle myosin light chain kinase is phosphorylated at two sites (A and B) by different protein kinases. Phosphorylation at site A increases the concentration of Ca2+/calmodulin required for kinase activation. Diphosphorylated myosin light chain kinase was used to determine the site-specificity of several forms of protein serine/threonine phosphatase. These phosphatases readily dephosphorylated myosin light chain kinase in vitro and displayed differing specificities for the two phosphorylation sites. Type 2A protein phosphatase specifically dephosphorylated site A, and binding of Ca2+/calmodulin to the kinase had no effect on dephosphorylation. The purified catalytic subunit of type 1 protein phosphatase dephosphorylated both sites in the absence of Ca2+/calmodulin but only dephosphorylated site A in the presence of Ca2+/calmodulin. A protein phosphatase fraction was prepared from smooth muscle actomyosin by extraction with 80 mM MgCl2. On the basis of sensitivity to okadaic acid and inhibitor 2, this activity was composed of multiple protein phosphatases including type 1 activity. This phosphatase fraction dephosphorylated both sites in the absence of Ca2+/calmodulin. However, dephosphorylation of both sites A and B was completely blocked in the presence of Ca2+/calmodulin. These results indicate that two phosphorylation sites of myosin light chain kinase are dephosphorylated by multiple protein serine/threonine phosphatases with unique catalytic specificities.  相似文献   

11.
After human platelets were lysed by freezing and thawing in the presence of EDTA, about 35% of the total cyclic AMP-dependent protein kinase activity was specifically associated with the particulate fraction. In contrast, Ca2+-activated phospholipid-dependent protein kinase was found exclusively in the soluble fraction. Photoaffinity labelling of the regulatory subunits of cyclic AMP-dependent protein kinase with 8-azido-cyclic [32P]AMP indicated that platelet lysate contained a 4-fold excess of 49 000-Da RI subunits over 55 000-Da RII subunits. The RI and RII subunits were found almost entirely in the particulate and soluble fractions respectively. Chromatography of the soluble fraction on DEAE-cellulose demonstrated a single peak of cyclic AMP-dependent activity with the elution characteristics and regulatory subunits characteristic of the type-II enzyme. A major enzyme peak containing Ca2+-activated phospholipid-dependent protein kinase was eluted before the type-II enzyme, but no type-I cyclic AMP-dependent activity was normally observed in the soluble fraction. The particulate cyclic AMP-dependent protein kinase and associated RI subunits were solubilized by buffers containing 0.1 or 0.5% (w/v) Triton X-100, but not by extraction with 0.5 M-NaCl, indicating that this enzyme is firmly membrane-bound, either as an integral membrane protein or via an anchor protein. DEAE-cellulose chromatography of the Triton X-100 extracts demonstrated the presence of both type-I cyclic AMP-dependent holoenzyme and free RI subunits. These results show that platelets contain three main protein kinase activities detectable with histone substrates, namely a membrane-bound type-I cyclic AMP-dependent enzyme, a soluble type-II cyclic AMP-dependent enzyme and Ca2+-activated phospholipid-dependent protein kinase, which was soluble in lysates containing EDTA.  相似文献   

12.
Ca2+-activated protein phosphatase activity was demonstrated in mouse pancreatic acinar cytosol with alpha-casein and skeletal-muscle phosphorylase kinase as substrates. This phosphatase activity preferentially dephosphorylated the alpha subunit of phosphorylase kinase. After DEAE-cellulose chromatography, the Ca2+-activated phosphatase activity became dependent on exogenous calmodulin for maximal activity. Half-maximal activation was achieved at 0.5 +/- 0.1 microM-Ca2+. Trifluoperazine completely inhibited Ca2+-activated phosphatase activity, with half-maximal inhibition occurring at 8.5 +/- 0.6 microM. Mn2+, but not Mg2+, at 1 mM concentration could substitute for Ca2+ in eliciting full enzyme activation. The apparent Mr of the phosphatase as determined by Sephadex G-150 chromatography was 93000 +/- 1000. Submitting active fractions obtained after Sephadex chromatography to calmodulin affinity chromatography resulted in the resolution of a major protein of Mr 55500 +/- 300. In conclusion, Ca2+-activated protein phosphatase activity has been identified in exocrine pancreas and has several features in common with Ca2+-activated calmodulin-dependent protein phosphatases previously isolated from brain and skeletal muscle. It is possible that this Ca2+-activated phosphatase may utilize as substrates certain acinar-cell phosphoproteins previously shown to undergo dephosphorylation in response to Ca2+-mediated secretagogues.  相似文献   

13.
Phospholipase D from Streptomyces chromofuscus (sc-PLD) is a member of the diverse family of metallo-phosphodiesterase/phosphatase enzymes that also includes purple acid phosphatases, protein phosphatases, and nucleotide phosphodiesterases. Whereas iron is an essential cofactor for scPLD activity, Mn2+ is also found in the enzyme. A third metal ion, Ca2+, has been shown to enhance scPLD catalytic activity although it is not an essential cofactor. Sequence alignment of scPLD with known phosphodiesterases and phosphatases requiring metal ions suggested that His-212, Glu-213, and Asp-389 could be involved in Mn2+ binding. H212A, E213A, and D389A were prepared to test this hypothesis. These three mutant enzymes and wild type scPLD show similar metal content but considerably different catalytic properties, suggesting different roles for each residue. His-212 appears involved in binding the phosphate group of substrates, whereas Glu-213 acts as a ligand for Ca2+. D389A showed a greatly reduced phosphodiesterase activity but almost unaltered ability to hydrolyze the phosphate group in p-nitrophenyl phosphate suggesting it had a critical role in aligning groups at the active site to control phosphodiesterase versus phosphatase activities. We propose a model for substrate and cofactor binding to the catalytic site of scPLD based on these results and on sequence alignment to purple acid phosphatases of known structure.  相似文献   

14.
Sopina VA 《Tsitologiia》2006,48(7):610-616
Three different phosphatases ("slow", "middle" and "fast") were found in Amoeba proteus (strain B) after PAGE and a subsequent gel staining in 1-naphthyl phosphate containing incubation mixture (pH 9.0). Substrate specificity of these phosphatases was determined in supernatants of homogenates using inhibitors of phosphatase activity. All phosphatases showed a broad substrate specificity. Of 10 tested compounds, p-nitrophenyl phosphate was a preferable substrate for all 3 phosphatases. All phosphatases were able to hydrolyse bis-p-nitrophenyl phosphate and, hence, displayed phosphodiesterase activity. All phosphatases hydrolysed O-phospho-L-tyrosine to a greater or lesser degree. Only little differences in substrate specificity of phosphatases were noticed: 1) "fast" and "middle" phosphatases hydrolysed naphthyl phosphates and O-phospho-L-tyrosine less efficiently than did "slow" phosphatase; 2) "fast" and "middle" phosphatases hydrolysed 2- naphthyl phosphate to a lesser degree than 1-naphthyl phosphate 3) "fast" and "middle" phosphatases hydrolysed O-phospho-L-serine and O-phospho-L-threonine with lower intensity as compared with "slow" phosphatase; 4) as distinct from "middle" and "slow" phosphatases, the "fast" phosphatase hydrolysed glucose-6-phosphate very poorly. The revealed broad substrate specificity of "slow" phosphatase together with data of inhibitory analysis and results of experiments with reactivation of this phosphatase by Zn2+-ions after its inactivation by EDTA strongly suggest that only the "slow" phosphatase is a true alkaline phosphatase (EC 3.1.3.1). The alkaline phosphatase of A. proteus is secreted into culture medium where its activity is low. The enzyme displays both phosphomono- and phosphodiesterase activities, in addition to supposed protein phosphatase activity. It still remains unknown, to which particular phosphatase class the amoeban "middle" and "fast" phosphatases (pH 9.0) may be assigned.  相似文献   

15.
K M Lerea 《Biochemistry》1991,30(28):6819-6824
The involvement of protein phosphatases in regulating platelet activation was studied. The major portion of the phosphorylase phosphatase activity found in platelet lysates appears to be of the type 1 variety. The identification of this enzyme was based on the finding that greater than 80% of protein phosphatase activity was inhibited by the heat-stable inhibitor protein inhibitor 2 and, while only 20% of the phosphorylase phosphatase activity in platelet extracts was inhibited by 2 nM okadaic acid, greater than 95% of the activity was inhibited in the presence of 1 microM okadaic acid. Increases in protein phosphorylations occurred and thrombin-induced release of serotonin was prevented as a result of artificially inhibiting the enzyme with okadaic acid in intact platelets. This implies either that the regulation of okadaic acid sensitive protein phosphatases is necessary for some agonist-induced effects or that okadaic acid sensitive phosphatases are required for maintaining platelets in a responsive state.  相似文献   

16.
Two protein phosphatases (enzymes I and II) were extensively purified from wheat embryo by a procedure involving chromatography on DEAE-cellulose, phenyl-Sepharose CL-4B, DEAE-Sephacel and Ultrogel AcA 44. Preparations of enzyme I (Mr 197,000) are heterogeneous. Preparations of enzyme II (Mr 35,000) contain only one major polypeptide (Mr 17,500), which exactly co-purifies with protein phosphatase II on gel filtration and is not present in preparations of enzyme I. However, this major polypeptide has been identified as calmodulin. Calmodulin and protein phosphatase II can be separated by further chromatography on phenyl-Sepharose CL-4B. Protein phosphatases I and II do not require Mg2+ or Ca2+ for activity. Both enzymes catalyse the dephosphorylation of phosphohistone H1 (phosphorylated by wheat-germ Ca2+-dependent protein kinase) and of phosphocasein (phosphorylated by wheat-germ Ca2+-independent casein kinase), but neither enzyme dephosphorylates a range of non-protein phosphomonoesters tested. Both enzymes are inhibited by Zn2+, Hg2+, vanadate, molybdate, F-, pyrophosphate and ATP.  相似文献   

17.
We have previously described a phosphotyrosylprotein phosphatase in membrane vesicles from human epidermoid carcinoma A431 cells which is inhibited by micromolar concentration of Zn2+ and is insensitive to ethylenediaminetetraacetic acid (EDTA) and NaF [Brautigan, D. L., Bornstein, P., & Gallis, B. (1981) J. Biol. Chem. 256, 6519-6522]. Here we present the identification and partial purification of a similar enzyme from lysates of Ehrlich ascites tumor cells. the enzyme was purified by using diethylaminoethyl-Sephadex, Zn2+ affinity, and Sephadex G-75 chromatography. During purification, the phosphatase was separated into at least three fractions, all of which exhibited very similar properties and an apparent molecular weight of 40 000 upon gel filtration. The enzyme dephosphorylated phosphotyrosine (P-Tyr)-containing carboxymethylated and succinylated (CM-SC) phosphorylase with an apparent Km of 0.8 microM, as well as P-Tyr containing casein and epidermal growth factor (EGF) receptor kinase, but did not dephosphorylate P-Ser-phosphorylase. The phosphatase was inhibited by Zn2+ at micromolar concentrations (K0.5 with EGF receptor kinase = 5 X 10(-6) M; with CM-SC phosphorylase = 3.3 X 10(-5) M) but not by millimolar concentrations of EDTA and NaF. No inhibition was seen with 1 mM tetramisole, a specific inhibitor of alkaline phosphatases. P-Tyr inhibited the enzyme by 50% at 0.4 X 10(-3) M, while Tyr, Pi, PPi, and p-nitrophenyl phosphate, an excellent substrate for alkaline phosphatases and structurally very similar to P-Tyr, exerted partial inhibition at concentrations above 10(-3) M. The pH optimum was found to be 6.5-7, depending on the substrate used. Very little activity was seen below pH 5 and above pH 8.5. These properties clearly distinguish this enzyme from alkaline phosphatases, as well as the neutral and acidic protein phosphatases so far described, and therefore define it as a new enzyme of the phosphatase family--a phosphotyrosyl-protein phosphatase.  相似文献   

18.
A soluble alkaline phosphatase was purified 10 000-fold in an overall yield of 8% from both of the cilia and cell bodies of the protozoan Paramecium tetraurelia. The concentration in cilia (1.7 microM) was 6-fold higher than in cell bodies, although the latter contained most of the activity due to their much greater volume. The purified protein showed a single (36 kDa) protein staining band on SDS-PAGE. This value, in conjunction with the apparent molecular mass of 66 kDa for the native enzyme (gel filtration) suggests a dimeric structure. The specific activity of the purified phosphatase ranged from 10 to 70 mumols.min-1.mg-1 at the pH-optimum of 8.0 and the Km for p-nitrophenyl phosphate was 81 microM. Basal enzyme activity was inhibited by metal chelators and stimulated up to 12-fold by addition of divalent cations. Mg2+ acted as a non-essential mixed-type activator with a half-maximal effect at 7 microM. Ca2+ was inhibitory, the extent of inhibition was dependent on the concentration of Mg2+ in the assay. Furthermore, the kinetics of inhibition by Ca2+ varied with the Mg2+ concentration. Phosphate, pyrophosphate, and SH-group blocking agents also strongly inhibited. The enzyme did not dephosphorylate Tyr- or Ser-/Thr-phosphoproteins. The Paramecium enzyme is not of lysosomal origin and its properties are quite different from all known phosphatases. It is a novel type of phosphatase since it (i) shows F(-)-inhibition like Ser/Thr-phosphatases but (ii) is inhibited by vanadate and molybdate like Tyr-phosphatases, and (iii) inhibition by Ca2+ has not been reported for any other phosphatase.  相似文献   

19.
A Chu  C Sumbilla  G Inesi  S D Jay  K P Campbell 《Biochemistry》1990,29(25):5899-5905
A systematic study of protein kinase activity and phosphorylation of membrane proteins by ATP was carried out with vesicular fragments of longitudinal tubules (light SR) and junctional terminal cisternae (JTC) derived from skeletal muscle sarcoplasmic reticulum (SR). Following incubation of JTC with ATP, a 170,000-Da glycoprotein, a 97,500-Da protein (glycogen phosphorylase), and a 55,000-60,000-Da doublet (containing calmodulin-dependent protein kinase subunit) underwent phosphorylation. Addition of calmodulin in the presence of Ca2+ (with no added protein kinase) produced a 10-fold increase of phosphorylation involving numerous JTC proteins, including the large (approximately 450,000 Da) ryanodine receptor protein. Calmodulin-dependent phosphorylation of the ryanodine receptor protein was unambiguously demonstrated by Western blot analysis. The specificity of these findings was demonstrated by much lower levels of calmodulin-dependent phosphorylation in light SR as compared to JTC, and by much lower cyclic AMP dependent kinase activity in both JTC and light SR. These observations indicate that the purified JTC contain membrane-bound calmodulin-dependent protein kinase that undergoes autophosphorylation and catalyzes phosphorylation of various membrane proteins. Protein dephosphorylation was very slow in the absence of added phosphatases, but was accelerated by the addition of phosphatase 1 and 2A (catalytic subunit) in the absence of Ca2+, and calcineurin in the presence of Ca2+. Therefore, in the muscle fiber, dephosphorylation of SR proteins relies on cytoplasmic phosphatases. No significant effect of protein phosphorylation was detected on the Ca2(+)-induced Ca2+ release exhibited by isolated JTC vesicles. However, the selective and prominent association of calmodulin-dependent protein kinase and related substrates with junctional membranes, its Ca2+ sensitivity, and its close proximity to the ryanodine and dihydropyridine receptor Ca2+ channels suggest that this phosphorylation system is involved in regulation of functions linked to these structures.  相似文献   

20.
A protein tyrosine kinase with an apparent Mr of 60,000 was highly purified from bovine spleen and used to phosphorylate poly(Glu, Tyr) (4:1) on tyrosine residues for the study of phosphotyrosyl protein phosphatases from this tissue. About 70% of the phosphotyrosyl protein phosphatase activity in extracts of bovine spleen was adsorbed on DEAE-Sepharose. Chromatography of the eluted phosphotyrosyl protein phosphatases on phosphocellulose indicated the presence of at least two species, one that did not bind to the phosphocellulose and a second species that did bind and was eluted at about 0.5 M NaCl. The phosphatase that did not bind to phosphocellulose was further purified by successive chromatography on poly(L-lysine)-Sepharose, L-tyrosine-agarose, poly(Glu,Tyr)-Sepharose, and Sephacryl S-200. The enzyme had an apparent Mr of 50,000 as estimated by gel filtration and 52,000 as estimated by NaDodSO4- polyacrylamide gel electrophoresis. The phosphatase exhibited a pH optimum of 6.5-7.0, was inhibited by Zn2+ and vanadate ions, and was stimulated by EDTA. Sodium fluoride and sodium pyrophosphate, inhibitors of phosphoseryl protein phosphatases, had no effect on the enzyme. Protein inhibitors of type 1 phosphoseryl/threonyl phosphatase were also ineffective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号