首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inhaled short-lived radon progenies may deposit in bronchial airways and interact with the epithelium by the emission of alpha particles. Simulation of the related radiobiological effects requires the knowledge of space and time distributions of alpha particle hits and biological endpoints. Present modelling efforts include simulation of radioaerosol deposition patterns in a central bronchial airway bifurcation, modelling of human bronchial epithelium, generation of alpha particle tracks, and computation of spatio-temporal distributions of cell nucleus hits, cell killing and cell transformation events. Simulation results indicate that the preferential radionuclide deposition at carinal ridges plays an important role in the space and time evolution of the biological events. While multiple hits are generally rare for low cumulative exposures, their probability may be quite high at the carinal ridges of the airway bifurcations. Likewise, cell killing and transformation events also occur with higher probability in this area. In the case of uniform surface activities, successive hits as well as cell killing and transformation events within a restricted area (say 0.5 mm2) are well separated in time. However, in the case of realistic inhomogeneous deposition, they occur more frequently within the mean cycle time of cells located at the carinal ridge even at low cumulative doses. The site-specificity of radionuclide deposition impacts not only on direct, but also on non-targeted radiobiological effects due to intercellular communication. Incorporation of present results into mechanistic models of carcinogenesis may provide useful information concerning the dose–effect relationship in the low-dose range.  相似文献   

2.
In vivo bifurcating airways are complex and the airway segments leading to the bifurcations are not always straight, but curved to various degrees. How do such curved inlet tubes influence the motion as well as local deposition and hence the biological responses of inhaled particulate matter in lung airways? In this paper steady laminar dilute suspension flows of micron-particles are simulated in realistic double bifurcations with curved inlet tubes, i.e., 0 degrees < or =theta< or =90 degrees, using a commercial finite-volume code with user-enhanced programs. The resulting air-flow patterns as well as particle transport and wall depositions were analyzed for different flow inlet conditions, i.e., uniform and parabolic velocity profiles, and geometric configurations. The curved inlet segments have quite pronounced effects on air-flow, particle motion and wall deposition in the downstream bifurcating airways. In contrast to straight double bifurcations, those with bent parent tubes also exhibit irregular variations in particle deposition efficiencies as a function of Stokes number and Reynolds number. There are fewer particles deposited at mildly curved inlet segments, but the particle deposition efficiencies at the downstream sequential bifurcations vary much when compared to those with straight inlets. Under certain flow conditions in sharply curved lung airways, relatively high, localized particle depositions may take place. The findings provide necessary information for toxicologic or therapeutic impact assessments and for global lung dosimetry models of inhaled particulate matter.  相似文献   

3.
Aerosol transport and deposition in sequentially bifurcating airways   总被引:1,自引:0,他引:1  
Deposition patterns and efficiencies of a dilute suspension of inhaled particles in three-dimensional double bifurcating airway models for both in-plane and 90 deg out-of-plane configurations have been numerically simulated assuming steady, laminar, constant-property air flow with symmetry about the first bifurcation. Particle diameters of 3, 5, and 7 microns were used in the simulation, while the inlet Stokes and Reynolds numbers varied from 0.037 to 0.23 and 500 to 2000, respectively. Comparisons between these results and experimental data based on the same geometric configuration showed good agreement. The overall trend of the particle deposition efficiency, i.e., an exponential increase with Stokes number, was somewhat similar for all bifurcations. However, the deposition efficiency of the first bifurcation was always larger than that of the second bifurcation, while in general the particle efficiency of the out-of-plane configuration was larger than that of the in-plane configuration. The local deposition patterns consistently showed that the majority of the deposition occurred in the carinal region. The distribution pattern in the first bifurcation for both configurations were symmetric about the carina, which was a direct result of the uniaxial flow at the inlet. The deposition patterns about the second carina showed increased asymmetry due to highly nonuniform flow generated by the first bifurcation and were extremely sensitive to bifurcation orientation. Based on the deposition variations between bifurcation levels and orientations, the use of single bifurcation models was determined to be inadequate to resolve the complex fluid-particle interactions that occur in multigenerational airways.  相似文献   

4.
Considerable progress has been made on modeling particle deposition in the oral-tracheal airway under some normal breathing conditions,i.e.,resting,light activity and moderate exercise.None of these standard breathing patterns correspond to very low inhalation profiles.It is known that particle deposition in the oral-tracheal airway is greatly influenced by flow and particle inlet conditions.In this work,very low inhalation flow rates are considered.Particle deposition is numerically investigated in different oral-tracheal airway models,i.e.,circular,elliptic and realistic oral-tracheal airway models.Both micro- and nano-particles that are normally present in cigarette smoke are considered.Results show that inhalation profiles greatly influence the particle deposition.Due to relatively low flow rate,for ultra-fine particles,the oral deposition is enhanced due to longer residence time in oral cavity and stronger Brownian motion.However,for larger particles,less particles deposit in the oral-tracheal airway due to the weaker impaction.The transition happens when particle size changes from 0.01 μm to 0.1 μm.The influence of the limited entrance area is shown and discussed.Under the low inhalation profiles,the highest deposition fraction could be in either circular or realistic models depending on the particle property and the geometric characteristic of oral cavity.The knowledge obtained in this study may be beneficial for the design of bionic inhaler and understanding of health effect from smoke particle on human being.  相似文献   

5.
The deposition of ultrafine aerosols in the respiratory tract presents a significant health risk due to the increased cellular-level response that these particles may invoke. However, the effects of geometric simplifications on local and regional nanoparticle depositions remain unknown for the oral airway and throughout the respiratory tract. The objective of this study is to assess the effects of geometric simplifications on diffusional transport and deposition characteristics of inhaled ultrafine aerosols in models of the extrathoracic oral airway. A realistic model of the oral airway with the nasopharynx (NP) included has been constructed based on computed tomography scans of a healthy adult in conjunction with measurements reported in the literature. Three other geometries with descending degrees of physical realism were then constructed with successive geometric simplifications of the realistic model. A validated low Reynolds number k-omega turbulence model was employed to simulate laminar, transitional, and fully turbulent flow regimes for the transport of 1-200 nm particles. Results of this study indicate that the geometric simplifications considered did not significantly affect the total deposition efficiency or maximum local deposition enhancement of nanoparticles. However, particle transport dynamics and the underlying flow characteristics such as separation, turbulence intensity, and secondary motions did show an observable sensitivity to the geometric complexity. The orientation of the upper trachea was shown to be a major factor determining local deposition downstream of the glottis and should be retained in future models of the respiratory tract. In contrast, retaining the NP produced negligible variations in airway dynamics and could be excluded for predominantly oral breathing conditions. Results of this study corroborate the use of existing diffusion correlations based on a circular oral airway model. In comparison to previous studies, an improved correlation for the deposition of nanoparticles was developed based on a wider range of particle sizes and flow rates, which captures the dependence of the Sherwood number on both Reynolds and Schmidt numbers.  相似文献   

6.
Lung carcinomas are now the most common form of cancer. Clinical data suggest that tumors are found preferentially in upper airways, perhaps specifically at carina within bifurcations. The disease can be treated by aerosolized pharmacologic drugs. To enhance their efficacies site-specific drugs must be deposited selectively. Since inhaled particles are transported by air, flow patterns will naturally affect their trajectories. Therefore, in Part I of a systematic investigation, we focused on tumor-induced effects on airstreams, in Part II (the following article [p. 245]), particle trajectories were determined. To facilitate the targeted delivery of inhaled drugs, we simulated bifurcations with tumors on carinas using a commercial computational fluid dynamics (CFD) software package (FIDAP) with a Cray T90 supercomputer and studied effects of tumor sizes and ventilatory parameters on localized flow patterns. Critical tumor sizes existed; e.g., tumors had dominant effects when r/R > or = 0.8 for bifurcation 3-4 and r/R > or = 0.6 for bifurcation 7-8 (r = tumor radius and R = airway radius). The findings suggest that computer modeling is a means to integrate alterations to airway structures caused by diseases into aerosol therapy protocols.  相似文献   

7.
Asthma is characterized by both local infiltration of eosinophils in the bronchial mucosa and bronchial hyperreactivity (BHR). A detailed characterization of BHR implies analysis of a histamine or methacholine dose-response curve yielding not only the dose at 20% fall of baseline forced expiratory volume in 1 s (FEV1), but also a plateau (P) representing the maximal narrowing response in terms of percent change in FEV1 and reactivity as the steepest slope at 50% of P (%FEV1/doubling dose). In the baseline condition, the specific airway conductance (sGaw) may be considered closely related to airway lumen diameter. In 20 nonsmoking asthmatic patients, methacholine dose-response curves were obtained, and a sigmoid model fit yielded the BHR indexes. Immunohistochemistry with the monoclonal antibodies (EG1 and EG2) was used to recognize the total number of eosinophils and activated eosinophils, respectively. The number of activated eosinophils was significantly correlated to both P (r = 0.62; P < 0.05) and sGaw (r = -0.52; P < 0.05), whereas weaker and nonsignificant correlations were found for dose at 20% fall of baseline FEV1 and the total number of eosinophils. We conclude that the number of activated eosinophils can be considered a marker of the inflammation-induced decrease of airway lumen diameter as represented by the plateau index and sGaw.  相似文献   

8.
We present a distributed model of the bronchial tree which simulates the global dynamic characteristics of the lung. Local mechanical characteristics of each airway are represented by RCL circuits and parameters of the electrical components are determined from local physiological data. The bronchi geometry is described by Weibel's symmetric model, the flow in each airway is assumed laminar and mixing effects at the bifurcations are neglected; the transpulmonary pressure is assumed to be sinusoidal. In simulations of quiet breathing the resistance to airflow is found to be dominant, the flow amplitude decreasing as breathing frequency increases, but remaining almost constant in all the generations. Simulations of ventilation through obstructed lungs show frequency dependence of the dynamic characteristics in very compliant lungs. The global resistance to airflow and the dynamic compliance of the bronchi decrease as the forced oscillation frequency increases in a pattern similar to in vivo measurements in diseased lungs. This may be an outcome of the RCL properties of the network rather than due to uneven distribution of mechanical properties of the lung.  相似文献   

9.
Asthma is characterized by an airway remodeling process involving altered extracellular matrix deposition such as collagen, fibronectin and proteoglycans. Proteoglycans determine tissue mechanical properties and are involved in many important biological aspects. Not surprisingly, it has been suggested that proteoglycan deposition may alter airway properties in asthma including airway hyperresponsiveness. In chronically inflamed airway tissues, fibroblasts likely represent an activated fibrotic phenotype that contributes to the excessive deposition of different extracellular matrix components. To investigate whether this was the case for proteoglycans, the production of hyaluronan, perlecan, versican, small heparan sulphate proteoglycans (HSPGs), decorin and biglycan was quantified in the culture medium of primary bronchial fibroblast cultures, established from four normal and six asthmatic subjects. Values were further correlated to the airway responsiveness (PC(20) methacholine) of donor subjects. Fibroblasts from subjects with the most hyperresponsive airways produced up to four times more total proteoglycans than cells from subjects with less hyperresponsive or normoresponsive airways. We observed a significant negative correlation between the PC(20) and perlecan, small HSPGs and biglycan, while such correlation was absent for decorin and close to significant for hyaluronan and versican. Altered proteoglycan metabolism by bronchial fibroblasts may contribute to the increased proteoglycan deposition in the bronchial mucosa and to airway hyperresponsiveness characterizing asthma.  相似文献   

10.
Bronchial clearance of deposited particles was simulated using a stochastic model of the tracheobronchial tree. The clearance model introduced in this study considers (1) a continuous decrease of the mucus thickness from the trachea to the terminal bronchioles according to a linear or an exponential function, (2) the possibility of mucus discontinuities, which are mainly found in intermediate and distal airways of the tracheobronchial compartment, (3) mucus production in proximal airways, (4) a slow bronchial clearance phase due to the capture of a defined particle fraction f s in the periciliary sol phase, and (5) an eventual delay of the mucociliary transport at carinal ridges of airway bifurcations. Based on the concept of mucus volume conservation in single bifurcations, a reduction of the thickness of the mucus blanket from proximal to distal airways causes a significant increase of the mucus velocities in small ciliated airways compared to other stochastic modeling predictions assuming a constant thickness of the mucus layer throughout the conducting airways. This effect is further enhanced by the consideration of mucus discontinuities. In contrast, the ability of bronchial airways to produce a certain volume of mucus has a decreasing effect on the mucus velocities. In all generated clearance velocity models, mucociliary clearance is completely terminated within 24 h after exposure, consistent with the experimental evidence. Implementation of a slow bronchial clearance phase predicts a long-term retention fraction, which is fully cleared from the lung after several weeks. For 1-μm MMAD particles, 24-h retention varies between 0.42 and 0.52, in line with the suggestions of the ICRP. Mucus delay at carinal ridges only affects short-term clearance by increasing the retained particle fraction at a given time, while long-term retention is not influenced.  相似文献   

11.
12.
The behavior of respiratory diseases such as asthma and COPD may involve complicated interactions among multiple factors. Theoretical and experimental data suggest that interdependence among the airways of the bronchial tree leads to the emergence of self-organized patterns of airway narrowing, ventilation defects, and other phenomena when a tipping point is passed. Additionally, evidence from several studies shows that the behavior of an isolated airway is different from an identical airway embedded in the bronchial tree so that experimental results of isolated elements such as airways, airway smooth muscle, or inflammatory pathways may not explain the whole organ behavior. However, there may be factors in the isolated elements that can dramatically change the complex system's behavior. More effective strategies for prevention or recovery from a disease, such as asthma, will depend on our progress in identifying and understanding the essential parts of the self-organized behavior that is involved.  相似文献   

13.
Airway wall edema, prominent in inflammatory airways disease, may alter barrier properties at the airway air-liquid interface such that normal absorption of soluble substances into the airway circulation is altered. We studied the effects of bradykinin-induced airway wall edema on the clearance of the soluble tracer technetium-99m-labeled diethylenetriamine pentaacetic acid ((99m)Tc-DTPA) from subcarinal airways in sheep (n = 8). (99m)Tc-DTPA (6-10 microl) was delivered by a microspray nozzle inserted through a bronchoscope to a fourth-generation bronchus both before and 1 h after bradykinin (20 ml; 10(-6) M) had been infused through a cannulated and perfused bronchial artery. Airway retention (by scintigraphy) and blood levels of radiolabel were monitored for 30 min after the local deposition of (99m)Tc-DTPA. During control conditions, 85-90% of the tracer cleared from the deposition site within 30 min. The maximum blood level during that time was 17% of the total delivered tracer. However, 1 h after bradykinin infusion, there was significant retention of the marker at the deposition site with clearance within 30 min reduced to 63-70% and decreased blood levels of radiolabel (8%; both P < 0.05). These results demonstrate that moderate airway wall edema alters blood uptake and removal of soluble substances delivered to the subcarinal airways. We suggest that the interplay between vascular and mucociliary clearance routes will impact the resident time for clearance of soluble air toxins and/or therapeutic agents from the epithelial surface.  相似文献   

14.

Background

Pseudomonas aeruginosa (Pa) infection is an important contributor to the progression of cystic fibrosis (CF) lung disease. The cornerstone treatment for Pa infection is the use of inhaled antibiotics. However, there is substantial lung disease heterogeneity within and between patients that likely impacts deposition patterns of inhaled antibiotics. Therefore, this may result in airways below the minimal inhibitory concentration of the inhaled agent. Very little is known about antibiotic concentrations in small airways, in particular the effect of structural lung abnormalities. We therefore aimed to develop a patient-specific airway model to predict concentrations of inhaled antibiotics and to study the impact of structural lung changes and breathing profile on local concentrations in airways of patients with CF.

Methods

In- and expiratory CT-scans of children with CF (5–17 years) were scored (CF-CT score), segmented and reconstructed into 3D airway models. Computational fluid dynamic (CFD) simulations were performed on 40 airway models to predict local Aztreonam lysine for inhalation (AZLI) concentrations. Patient-specific lobar flow distribution and nebulization of 75 mg AZLI through a digital Pari eFlow model with mass median aerodynamic diameter range were used at the inlet of the airway model. AZLI concentrations for central and small airways were computed for different breathing patterns and airway surface liquid thicknesses.

Results

In most simulated conditions, concentrations in both central and small airways were well above the minimal inhibitory concentration. However, small airways in more diseased lobes were likely to receive suboptimal AZLI. Structural lung disease and increased tidal volumes, respiratory rates and larger particle sizes greatly reduced small airway concentrations.

Conclusions

CFD modeling showed that concentrations of inhaled antibiotic delivered to the small airways are highly patient specific and vary throughout the bronchial tree. These results suggest that anti-Pa treatment of especially the small airways can be improved.  相似文献   

15.
Understanding the impact distribution of particles entering the human respiratory system is of primary importance as it concerns not only atmospheric pollutants or dusts of various kinds but also the efficiency of aerosol therapy and drug delivery. To model this process, current approaches consist of increasingly complex computations of the aerodynamics and particle capture phenomena, performed in geometries trying to mimic lungs in a more and more realistic manner for as many airway generations as possible. Their capture results from the complex interplay between the details of the aerodynamic streamlines and the particle drag mechanics in the resulting flow. In contrast, the present work proposes a major simplification valid for most airway generations at quiet breathing. Within this context, focusing on particle escape rather than capture reveals a simpler structure in the entire process. When gravity can be neglected, we show by computing the escape rates in various model geometries that, although still complicated, the escape process can be depicted as a multiplicative escape cascade in which each elementary step is associated with a single bifurcation. As a net result, understanding of the particle capture may not require computing particle deposition in the entire lung structure but can be abbreviated in some regions using our simpler approach of successive computations in single realistic bifurcations. Introducing gravity back into our model, we show that this multiplicative model can still be successfully applied on up to nine generations, depending on particle type and breathing conditions.  相似文献   

16.
Values for the effective axial diffusivity D for laminar flow of a gas species in the bronchial airways have been obtained as a function of the mean axial gas velocity u by experiment measurements of benzene vapor dispersion in a five generation glass tube model of the bronchial tree. For both inspiration and expiration D is seen to be approximately a linear function of u over the range of Reynolds' numbers 30-2,000 corresponding to peak flows in bronchial generations 0-13 under resting breathing conditions. The diffusivity for expiration is seen to be approximately one-third that for inspiration due presumably to increased radial mixing at bifurcations during expiration. The effective diffusivities relative to the molecular diffusivity can be expressed by the formulas D/Dmol = 1 + 1.08 NPe for inspiration and D/Dmol = 1 + .37 N-Pe for expiration. These velocity dependent diffusivities help to explain the short transit times of gas boluses from mouth to alveoli and will aid in the analysis of airway gas mixing by mathematical transport equations.  相似文献   

17.
A new computer model is developed and used to calculate the deposition of inhaled heterodispersed hygroscopic aerosols for mouth breathing in a Weibel symmetric bronchial tree. The model was first validated by obtaining good agreement with recent experimental and theoretical data on regional and total airway deposition of monodispersed and heterodispersed nonhygroscopic aerosols. The model was then used to obtain predictions of regional and total deposition of heterodispersed hygroscopic aerosol particles (droplets of NaCl solutions). Parameters that were varied in the hygroscopic calculations include initial droplet NaCl concentration, time of inspiration and expiration, volume of aerosol inspired, period of breath holding, and initial inhaled lognormal aerosol mass median diameter and geometric standard deviation. Results of the computer calculations show that increasing heterodispersity tends to flatten and broaden regional deposition curves when fraction of inhaled mass deposited is plotted vs. inhaled mass median aerodynamic particle diameter. Hygroscopicity is shown to increase tracheobronchial and pulmonary airway deposition with hypertonic NaCl solution aerosols showing increases over isotonic and nonhygroscopic aerosols of up to 200%.  相似文献   

18.
Deposition efficiencies of monodisperse ammonium fluorescein aerosols have been measured in simulated human lungs made of replica laryngeal casts combined with trachebronchial systems. Other tests, with radiolabelled submicron-sized particles, combined the larynges with replica tracheobronchial casts. The laryngeal casts had internal flow rate-specific geometries. Data indicate thatin vitro bifurcations have ?hot spots? or highly localized deposits, particularly at carinal ridges, suggesting that epithelial cells at airway branching sitesin vitro receive increased exposures to inhaled particulate matter. For dosimetry purposes, therefore, the lung should be likened to a series of Y-shaped airway junctures. The data have risk assessment applications for ambient radon progeny and radioactive airborne particles found in uranium mining and milling operations.  相似文献   

19.
Computer simulations were conducted to describe drug particle motion in human lung bifurcations with tumors. The computations used FIDAP with a Cray T90 supercomputer. The objective was to better understand particle behavior as affected by particle characteristics, airflow conditions, and disease-modified airway geometries. The results indicated that increases in particle sizes, breathing intensities and tumor sizes could enhance drug deposition on the tumors. The modeling suggested that targeted drug delivery could be achieved by regulating breathing parameters and designing (selecting physical features of) aerosolized drugs. We present the theoretical work as a step towards improving aerosol therapy protocols. Since modeling describes factors affecting dose, it is complementary to considerations of the molecular aspects of drug formulation and pharmacokinetics.  相似文献   

20.
Importance of airway blood flow on particle clearance from the lung   总被引:2,自引:0,他引:2  
Wagner, Elizabeth M., and W. Michael Foster. Importanceof airway blood flow on particle clearance from the lung.J. Appl. Physiol. 81(5):1878-1883, 1996.The role of the airway circulation insupporting mucociliary function has been essentially unstudied. Weevaluated the airway clearance of inert, insoluble particles inanesthetized ventilated sheep (n = 8),in which bronchial perfusion was controlled, to determine whetherairway mucosal blood flow is essential for maintaining surfacetransport of particles through airways. The bronchial branch of thebronchoesophageal artery was cannulated and perfused with autologousblood at control flow (0.6 ml · min1 · kg1)or perfusion was stopped. With the sheep in a supine position and aftera steady-state 133Xe ventilationscan for designation of lung zones of interest, an inert99mTc-labeled sulfur colloidaerosol (2.1-µm diameter) was deposited in the lung. The clearancekinetics of the radiolabeled particles were determined from theactivity-time data obtained for right and left lung zones. At 60 minpostdeposition of aerosol, average airway particle retention forcontrol bronchial blood flow conditions was 57 ± 7 (SE)% for theright and 53 ± 8% for the left lung zones. Clearance of particleswas significantly impaired when bronchial blood flow was stopped, e.g.,right and left lung zones averaged 77 ± 6 and 76 ± 7% at 60 min, respectively (P < 0.05). Thesedata demonstrate a significant influence of the bronchial circulation on mucociliary transport of insoluble particles. Potential mechanisms that may account for these results include the importance of the bronchial circulation for nutrient flow, maintenance of airway walltemperature and humidity, and release of mediators and sequelae associated with tissue ischemia.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号