首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
J H Ahn  Y Choi  Y M Kwon  S G Kim  Y D Choi    J S Lee 《The Plant cell》1996,8(9):1477-1490
A novel hydroxyproline-rich glycoprotein (SbHRGP3) that consists of two different domains is encoded by an extensin gene from soybean. The first domain (domain 1) located at the N terminus is composed of 11 repeats of Ser-Pro4-Lys-His-Ser-Pro4-Tyr3-His, whereas the second domain (domain 2) at the C terminus contains five repeats of Ser-Pro4-Val-Tyr-Lys-Tyr-Lys-Ser-Pro4-Tyr-Lys-Tyr-Pro-Ser-Pro5-Tyr-Lys-T yr- Pro-Ser-Pro4-Val-Tyr-Lys-Tyr-Lys. These two repeat motifs are organized in an extremely well-ordered pattern in each domain, which suggests that SbHRGP3 belongs to a new group of proteins having the repeat motifs of two distinct groups of dicot extensins. The expression of the SbHRGP3 gene increased with seedling maturation, and its expression was relatively high in the mature regions of the hypocotyl and in the root of soybean seedlings. An SbHRGP3-beta-glucuronidase (SbHRGP3-GUS) chimeric gene was constructed and expressed in transgenic tobacco plants. The expression of the SbHRGP3-GUS gene was not induced by wounding alone in transgenic tobacco plants; sucrose was also required. Expression was specific to phloem tissues and cambium cells of leaves and stems. In transgenic tobacco seedlings, SbHRGP3-GUS gene expression was activated by the maturation of the primary root and then inactivated; however, reactivation was specifically at the epidermis of the zone from which the lateral root was to be initiated. Its reactivation occurred just before the lateral root initiation. These results indicate that the SbHRGP3 gene in different tissues responds to different signals.  相似文献   

2.
Ahn JH  Lee JS 《Plant cell reports》2003,22(4):286-293
SbHRGP3 encodes an HRGP whose expression is correlated with the cessation of root elongation in soybean. The wound-inducible expression of SbHRGP3 interestingly requires sucrose although wounding alone induces the expression of many HRGP genes. To examine whether sugar serves as a specific signal on the wound-inducible expression or whether sugar is required to provide ATP, we examined SbHRGP3::GUS expression in transgenic tobacco plants. Various oligosaccharides including non-metabolizable sugar induced SbHRGP3::GUS expression in transgenic plants. The inhibitors of photosynthesis and of cellular respiration did not affect the wound-inducible expression of SbHRGP3::GUS. However, the induction was significantly affected by PCMBS, an inhibitor of active apoplastic phloem loading of sucrose, suggesting that SbHRGP3::GUS expression in phloem tissues requires translocated sucrose. We therefore propose that sugar acts as a specific regulatory signal on the wound-inducible expression of SbHRGP3, rather than acting as a simple provider of ATP.Abbreviations ATP Adenosine triphosphate - DCMU 3-(3,4-Dichlorophenyl)-1,1-dimethylurea - DTT Dithiothreitol - HRGP Hydroxyproline-rich glycoprotein - GUS -Glucuronidase - MU 4-Methylumbelliferone - MUG 4-Methylumbelliferyl ß-glucuronide - PCMBS p-Chloromercuribenzenesulphonic acidCommunicated by I.S. Chung  相似文献   

3.
4.
We conducted a coordinated biochemical and morphometric analysis of the effect of saline conditions on the differentiation zone of developing soybean (Glycine max L.) roots. Between d 3 and d 14 for seedlings grown in control or NaCl-supplemented medium, we studied (a) the temporal evolution of the respiratory alternative oxidase (AOX) capacity in correlation with the expression and localization of AOX protein analyzed by tissue-print immunoblotting; (b) the temporal evolution and tissue localization of a peroxidase activity involved in lignification; and (c) the structural changes, visualized by light microscopy and quantified by image digitization. The results revealed that saline stress retards primary xylem differentiation. There is a corresponding delay in the temporal pattern of AOX expression, which is consistent with the xylem-specific localization of AOX protein and the idea that this enzyme is linked to xylem development. An NaCl-induced acceleration of the development of secondary xylem was also observed. However, the temporal pattern of a peroxidase activity localized in the primary and secondary xylem was unaltered by NaCl treatment. Thus, the NaCl-stressed root was specifically affected in the temporal patterns of AOX expression and xylem development.  相似文献   

5.
Yan H  Li K  Ding H  Liao C  Li X  Yuan L  Li C 《Journal of plant physiology》2011,168(10):1067-1075
The primary objective of this study was to better understand how root morphological alteration stimulates N uptake in maize plants after root growth restriction, by investigating the changes in length and number of lateral roots, 15NO3 influx, the expression level of the low-affinity Nitrate transporter ZmNrt1.1, and proteomic composition of primary roots. Maize seedlings were hydroponically cultured with three different types of root systems: an intact root system, embryonic roots only, or primary roots only. In spite of sufficient N supply, root growth restriction stimulated compensatory growth of remaining roots, as indicated by the increased lateral root number and root density. On the other hand, there was no significant difference in 15NO3 influx between control and primary root plants; neither in ZmNrt1.1 expression levels in primary roots of different treatments. Our data suggested that increased N uptake by maize seedlings experiencing root growth restriction is attributed to root morphological adaptation, rather than explained by the variation in N uptake activity. Eight proteins were differentially accumulated in embryonic and primary root plants compared to control plants. These differentially accumulated proteins were closely related to signal transduction and increased root growth.  相似文献   

6.
The induction of the sucrose synthase (SuSy) gene (SuSy) by low O2, low temperature, and limiting carbohydrate supply suggested a role in carbohydrate metabolism under stress conditions. The isolation of a maize (Zea mays L.) line mutant for the two known SuSy genes but functionally normal showed that SuSy activity might not be required for aerobic growth and allowed the possibility of investigating its importance during anaerobic stress. As assessed by root elongation after return to air, hypoxic pretreatment improved anoxic tolerance, in correlation with the number of SuSy genes and the level of SuSy expression. Furthermore, root death in double-mutant seedlings during anoxic incubation could be attributed to the impaired utilization of sucrose (Suc). Collectively, these data provide unequivocal evidence that Suc is the principal C source and that SuSy is the main enzyme active in Suc breakdown in roots of maize seedlings deprived of O2. In this situation, SuSy plays a critical role in anoxic tolerance.  相似文献   

7.
Rotylenchulus macrodoratus completed its embryogenic development in about 16-19 days at 18-32 C. On olive seedlings the life-cycle from egg to egg was completed in 45-55 days. The first molt occurred in the egg while the other three were superimposed, with retention of successive larval cuticles. Only immature vermiform and swollen egg-laying females were found attached to olive roots. Eggs are laid in a gelatinous matrix on the root surface. The maximum number of eggs seen was 55. Males were not parasitic. Dianthus barbatus, Parietaria officinalis, and Eriobotrya japonica were found to be hosts of the parasite. Observed in all infested hosts was an uninucleate giant cell that expanded from the endodermis toward the center of the stele in primary roots, and from the secondary vascular tissue toward the periphery of the cortex in secondary roots.  相似文献   

8.
The soybean vegetative storage protein genes vspA and vspB are highly expressed in developing leaves, stems, flowers, and pods as compared with roots, seeds, and mature leaves and stems. In this paper, we report that physiological levels of methyl jasmonate (MeJA) and soluble sugars synergistically stimulate accumulation of vsp mRNAs. Treatment of excised mature soybean (Glycine max Merr. cv Williams) leaves with 0.2 molar sucrose and 10 micromolar MeJA caused a large accumulation of vsp mRNAs, whereas little accumulation occurred when these compounds were supplied separately. In soybean cell suspension cultures, the synergistic effect of sucrose and MeJA on the accumulation of vspB mRNA was maximal at 58 millimolar sucrose and was observed with fructose or glucose substituted for sucrose. In dark-grown soybean seedlings, the highest levels of vsp mRNAs occurred in the hypocotyl hook, which also contained high levels of MeJA and soluble sugars. Lower levels of vsp mRNAs, MeJA, and soluble sugars were found in the cotyledons, roots, and nongrowing regions of the stem. Wounding of mature soybean leaves induced a large accumulation of vsp mRNAs when wounded plants were incubated in the light. Wounded plants kept in the dark or illuminated plants sprayed with dichlorophenyldimethylurea, an inhibitor of photosynthetic electron transport, showed a greatly reduced accumulation of vsp mRNAs. The time courses for the accumulation of vsp mRNAs induced by wounding or sucrose/MeJA treatment were similar. These results strongly suggest that vsp expression is coregulated by endogenous levels of MeJA (or jasmonic acid) and soluble carbohydrate during normal vegetative development and in wounded leaves.  相似文献   

9.
Previously, we reported that chlorogenic acid (CGA) facilitated root hair formation at pH 4.0 in lettuce (Lactuca sativa L. cv. Grand Rapids). Light was essential for this process. In the present study, we determined relationships between CGA, light, and sugar during root hair formation in lettuce seedlings. The amount of CGA increased with white light in intact seedlings. Exogenously applied CGA restored root hair formation in dark-grown intact seedlings at pH 4.0. However, no root hair formation was induced in decapitated seedlings regardless of light exposure and CGA application. Application of sucrose or glucose induced both root hair formation and CGA synthesis in light-grown decapitated seedlings at pH 4.0. Blue light was the most effective for both root hair formation and CGA synthesis when supplied with sucrose to decapitated seedlings. Addition of sucrose and CGA together induced root hair formation at pH 4.0 in dark-grown decapitated seedlings. Results suggest that light induced CGA synthesis from sugar in the roots. Sugar was also required for root hair formation other than starting material of CGA synthesis. In addition, an unknown low pH-induced factor was essential for lettuce root hair formation.  相似文献   

10.
11.
The quantities of endogenous indol-3yl-acetic acid (IAA) in endosperms and scutella of 6-day-old maize seedlings (Zea mays L. cv Giant White Horsetooth) were determined by a fluorimetric method. Endosperms were found to contain 33.4 nanograms IAA per plant, and scutella 7.5 nanograms IAA per plant. [5-3H]IAA applied to endosperms of 6-day-old seedlings moved into the roots and radioactivity accumulated at the apex of the primary root within 8 hours. Two to 7-day-old seedlings were treated simultaneously with [5-3H]IAA in the endosperm and [2-14C] IAA on the shoot apex. The patterns of transport into the root were found to change during ontogeny: in successively older plants, transport from the shoot into the roots increased relative to transport from the endosperm into the roots. The auxin required for the growth of maize roots could, therefore, partially be contributed by the shoot and endosperm. Ontogenetic changes in the relative importance of these two supplies could be of significance for the integration of growth and development between shoot and root.  相似文献   

12.
Root hairs and arbuscular mycorrhiza (AM) coexist in root systems for nutrient and water absorption, but the relation between AM and root hairs is poorly known. A pot study was performed to evaluate the effects of four different AM fungi (AMF), namely, Claroideoglomus etunicatum, Diversispora versiformis, Funneliformis mosseae, and Rhizophagus intraradices on root hair development in trifoliate orange (Poncirus trifoliata) seedlings grown in sand. Mycorrhizal seedlings showed significantly higher root hair density than non-mycorrhizal seedlings, irrespective of AMF species. AMF inoculation generally significantly decreased root hair length in the first- and second-order lateral roots but increased it in the third- and fourth-order lateral roots. AMF colonization induced diverse responses in root hair diameter of different order lateral roots. Considerably greater concentrations of phosphorus (P), nitric oxide (NO), glucose, sucrose, indole-3-acetic acid (IAA), and methyl jasmonate (MeJA) were found in roots of AM seedlings than in non-AM seedlings. Levels of P, NO, carbohydrates, IAA, and MeJA in roots were correlated with AM formation and root hair development. These results suggest that AMF could alter the profile of root hairs in trifoliate orange through modulation of physiological activities. F. mosseae, which had the greatest positive effects, could represent an efficient AM fungus for increasing fruit yields or decreasing fertilizer inputs in citrus production.  相似文献   

13.
Patatin class I promoter (B33 promoter) is a tissue-specific potato (Solanum tuberosum L.) promoter expressing the patatin gene mainly in tubers. However, it can be induced in other organs by sucrose or light. We compared the activity of this promoter fused with the reporter gene during heterological expression in B33::GUS transgenic arabidopsis (Arabidopsis thaliana L.) plants and homological expression of the same DNA construct in potato. Promoter activity was estimated from quantification of β-glucuronidase (GUS) activity. It was shown that, during heterological expression in arabidopsis seedlings, B33 promoter manifested a tissue-specificity and inducibility, although in a different manner than during homological expression in potato. In noninduced arabidopsis seedlings, B33 promoter was most active in the roots, whereas, after induction with sucrose treatment, it became most active in cotyledons. 10 mM sucrose was sufficient for a manifold activation of B33 promoter in intact seedlings. The degree of B33 promoter induction by sucrose in arabidopsis seedlings was strictly organ-specific and increased in the following sequence: root < hypocotyl < cotyledons. 150–200 mM sucrose enhanced B33 promoter activity in cotyledons by 200 to 300 times, i.e., much stronger than in potato organs. Glucose and fructose were less efficient than sucrose. Phytohormones affecting tuber formation in potato (gibberellins, auxins, and cytokinins) did not affect significantly B33 promoter activity in arabidopsis. A lag period of approximately 6 h preceded sucrose-induced B33 promoter activation. This indicates that the patatin promoter is not the primary target for the sucrose signal. The quantitative examination of heterological expression of patatin class I promoter further clarifies its basic functional characteristics and permits a better prognosis of its behavior after transferring into other plant species.  相似文献   

14.
Early autoregulation of symbiotic root nodulation in soybeans   总被引:4,自引:0,他引:4       下载免费PDF全文
Takats ST 《Plant physiology》1990,94(3):865-869
Autoregulation of symbiotic root nodulation in soybean seedlings (Glycine max L. Merrill cv Pride 216) was studied following double inoculation of primary roots with Bradyrhizobium japonicum 110. When the second inoculation was given 10 or 17 hours after the first, the nodulation in the first-inoculated region of the root was suppressed. The effect was eliminated if B. japonicum 110 containing Tn5 insertions in the `common' nod ABC genes was used for the second inoculation, indicating the requirement for changes in the root mediated by these bacterial genes. When the root cortex in the suppressed basal region was examined 3 days after inoculation, cell division centers were present in numbers not significantly different from the numbers in control roots given a sham second inoculation; their size distribution, however, showed a failure of enlargement compared with controls.  相似文献   

15.

Background and Aims

As part of a study on growth of tree roots in hostile soil, we envisaged that establishment and survival of trees on hard, dry soil may depend on their ability to exert axial root growth pressures of similar magnitude to those of the roots of agricultural plants (with significant root thickening when roots grow across an air gap or cracks and biopores). We selected tree species originating from a range of different soil and climatic conditions to evaluate whether their relative success on harsh soil (in an evolutionary sense) might be related to the magnitude of root growth pressures they could exert, or how they performed in the very early stages of growth after germination.

Methods

We measured the maximum axial root growth force (Fmax) on single lateral root axes of 3- to 4- month old seedlings of 6 small-seeded eucalypts from 2 different habitats and 2 contrasting soil types. Root growth rate, root diameter and Fmax were also measured on the primary root axes of a large-seeded acacia and a domesticated annual (Pisum sativum) seedling for up to 10 days following germination.

Results

The lateral roots of the 6 eucalypts and the primary roots of the acacia were considerably smaller than the primary roots of P. sativum and they exerted average forces of similar magnitude to one another (0.198 to 0.312 N). The maximum axial root growth pressures were all in the range 150 to 250 kPa but E. leucoxylon, E. loxophleba and A. salicina exerted the greatest pressures among the trees, and comparable pressures to those exerted by the primary roots of 2-day-old P. sativum (211-252 kPa). Although the primary roots of acacia seedlings exerted increasing axial root growth pressures over a 10-day period following germination, the pressures were still only slightly greater than those of the domesticated plant, P. sativum.

Conclusions

The lack of any very large differences in axial root growth pressures between trees and domesticated plants suggests that trees that grow well in harsh soil don’t do so by exerting higher root growth pressures alone but by also exploring the network of cracks and pores more effectively than do other plants that are less successful.  相似文献   

16.
Photosynthesis in leaves generates fixed-carbon resources and essential metabolites that support sink tissues, such as roots. Two of these metabolites, sucrose and auxin, promote growth in root systems, but the explicit connection between photosynthetic activity and control of root architecture has not been explored. Through a mutant screen to identify pathways regulating root system architecture, we identified a mutation in the Arabidopsis thaliana CYCLOPHILIN 38 (CYP38) gene, which causes accumulation of pre-emergent stage lateral roots. CYP38 was previously reported to stabilize photosystem II (PSII) in chloroplasts. CYP38 expression is enriched in shoots, and grafting experiments show that the gene acts non-cell-autonomously to promote lateral root emergence. Growth of wild-type plants under low-light conditions phenocopies the cyp38 lateral root emergence defect, as does the inhibition of PSII-dependent electron transport or Nicotinamide adenine dinucleotide phosphate (NADPH) production. Importantly, these perturbations to photosynthetic activity rapidly suppress lateral root emergence, which is separate from their effects on shoot size. Supplementary exogenous sucrose largely rescued primary root (PR) growth in cyp38, but not lateral root growth. Auxin (indole-3-acetic acid (IAA)) biosynthesis from tryptophan is dependent on reductant generated during photosynthesis. Consistently, we found that wild-type seedlings grown under low light and cyp38 mutants have highly diminished levels of IAA in root tissues. IAA treatment rescued the cyp38 lateral root defect, revealing that photosynthesis promotes lateral root emergence partly through IAA biosynthesis. These data directly confirm the importance of CYP38-dependent photosynthetic activity in supporting root growth, and define the specific contributions of two metabolites in refining root architecture under light-limited conditions.

Lateral root emergence is regulated via systemic signaling that incorporates photosynthesis-dependent redox control and auxin biosynthesis.  相似文献   

17.
18.
Nitrate reductase activity (NRA) was found in primary roots, but not in foliage of red spruce (Picea rubens Sarg.) seedlings. Nitrate induced NRA:NH4+ did not induce and slightly depressed NRA in older seedlings. Induction required 8 hours and, once induced, NRA decreased slowly in the absence of exogenous NO3. Seedlings were grown in perlite with a complete nutrient solution containing NH4+ to limit NR induction. Established seedlings were stressed with nutrient solutions at pH 3, 4, or 5 supplemented with Cl salts of Al, Cd, Pb, or Zn each at two concentrations. NRA in primary root tips was measured at 2, 14, 28, and 42 days. NRA induction was greatest at pH 3, and remained high during the period of study. NRA induction at pH 4 was lower. Metal ions suppressed NRA at pH 3 and 5, but enhanced NRA at pH 4. It is concluded that acidity and soluble metals in the root environment of red spruce are unlikely to be important factors in nitrogen transformations in red spruce roots.  相似文献   

19.

Key message

Arabidopsis Ca 2+ -ATPase ACA8 plays a role in sucrose signalling during early seedling development by integrating developmental signals with carbon source availability.

Abstract

Calcium (Ca2+) is an essential signal transduction element in eukaryotic organisms. Changes in the levels of intracellular Ca2+ affect multiple developmental processes in plants, including cell division, polar growth, and organogenesis. Here, we report that the plasma-membrane-localised Arabidopsis Ca2+-ATPase ACA8 plays a role in sucrose signalling during early seedling development. Disruption of the ACA8 gene elevated the expression of genes that encode transporters for Ca2+ efflux. The seedlings that carried a T-DNA insertion mutation in ACA8 experienced water stress during early development. This response was unrelated to inadequate osmoregulatory responses and was most likely caused by disruption of cell membrane integrity and severe ion leakage. In addition, aca8-1 seedlings displayed a significant decline in photosynthetic performance and arrested root growth after removal of sucrose from the growth medium. The two phenomena resulted from impaired photosynthesis, reduced cell proliferation in the root meristem and the sucrose control of cell-cycle events. All of the stress-response phenotypes were rescued when expression of ACA8 was restored in aca8-1 mutant. Taken together, our results indicate that ACA8-mediated Ca2+ signalling contributes to modulate early seedling development and coordinates root development with nutrient availability.  相似文献   

20.
Four cell wall proteins of seedling cotyledons of Prosopis chilensis were characterized by SDS-polyacrylamide gel electrophoresis. The molecular masses of these proteins were 180, 126, 107 and 63 kDa. All of them immuno-crossreacted with polyclonal antibodies raised against extensin from soybean seed coats. Immuno-dot blot analysis demonstrated that the minimum expression of cotyledonary cell wall proteins was 48 h after seed imbibition, while 24 h after wound stress the expression of these wall proteins increased four-fold. Tissue immuno-prints and immuno-histochemistry showed that the proteins are expressed in the cell wall of all tissues. However, the epidermis and vascular bundles of cotyledons, hypocotyls and roots, and the living cells surrounding the wounded areas highly expressed the wall proteins. When the primary roots of the seedlings were injured by performing cuts with razor blades, the seedlings achieved a growth three times faster than control seedlings and secondary roots developed in sites close to the injuries. Immuno-histochemistry of secondary roots revealed that the root tips and the area of the cortical tissue of the primary roots being pressed by the the emerging root tip, highly expressed the cell wall proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号