首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The temporal relation between the fusion of mononucleated myoblasts into multinucleated fibres and the quantitative changes in the activity of creatine kinase isoenzymes was determined in rat skeletal muscle cell cultures. The effect of actinomycin D on the isoenzyme transition was investigated. The activity of creatine kinase in cultures prior to the onset of cell fusion is predominantly of the BB type. During the phase of cell fusion, there is a manyfold increase in creatine kinase activity. This is due to the appearance or great increase in the activity of the MM isoenzyme. During this period, increase in the BB isoenzyme activity is very small. Inhibition of RNA synthesis by actinomycin D shortly before the onset of cell fusion did not prevent cell fusion and isoenzyme transition during the first 6 h following application of the drug.  相似文献   

2.
Properties of human creatine kinase isoenzymes (MM, MB and BB) are investigated. The most pronounced differences in properties of these isoenzymes are found under their urea inactivation, heat denaturation and the inhibition by rabbit antisera to isoenzymes. Differences in values of the Mikhaelis constant and substrate and pH dependencies are much less pronounced. The presence of ADP stabilizes creatine kinase isoenzymes under conditions of urea and heat inactivation. Properties of hybrid MB isoenzymes are found to be intermediate with respect to MM and BB isoenzymes. A mode of the interaction of M and B subunits in dimeric molecules of creatine kinase isoenzymes is discussed.  相似文献   

3.
Creatine Phosphokinase (CPK) in striated muscles shows only small changes in activity before birth. After birth and during the first month of extrauterine life the activity increases rapidly. The largest increase is seen in muscles with a glycolytic energy metabolism (m. long, dorsi) and the smallest in muscles with an oxydative energy metabolism (m. flexor dig. ped. sup.). The differences between these groups of muscles are statistically significant. In heart tissue the increase in CPK activity is lower, the levels amounting to 40 to 47 % of those in striated muscles. Early in fetal life only the BB isoenzyme is found in striated muscles. Synthesis of M subunits of GPK starts between day 76 and 65 before birth and increases rapidly after this time leading to disappearance of the BB isoenzyme 24 days prior to birth and of the MB isoenzyme at birth. In muscles with an oxydative as well as in muscles with a glycolytic metabolism all GPK activity after birth is caused by the MM isoenzyme. All three isoenzymes are present in heart tissue at the earliest prenatal stage investigated, the pattern being dominated by the BB isoenzyme. During further differentiation the MM isoenzyme increases and the BB isoenzyme decreases. The development is completed during the first month after birth with a final isoenzyme composition of 81 % MM and 19 % MB isoenzyme. kw|Keywords|k]pigs; k]ontogenesis; k]creatine phosphokinase; k]activity; k]isoenzymes  相似文献   

4.
Hybrid cells derived from rat L6 myoblasts and mouse primary fibroblasts (M x F hybrids), as well as those derived from rat L6 myoblasts and mouse primary myoblasts (M x M hybrids), were examined for their ability to engage in myogenesis as judged by muscle fiber formation plus the expression of skeletal muscle myosin and creatine kinase (CK). Of 172 primary hybrid colonies scored, 59% were myogenic in the M x F fusion and 97% exhibited muscle fiber formation in the M x M fusion. Individual hybrid clones from each cross were isolated, expanded and analyzed for myogenic capabilities as well. All three M x M and all ten M x F isolated clones exhibited preferential elimination of mouse chromosomes. Nonetheless, all were capable of fusing spontaneously and of elaborating skeletal muscle myosin and CK. The three M x M hybrids expressed only MM-CK whereas nine out of ten M x F hybrids produced all three CK isoenzymes (MM, MB, BB). These results suggest that M X M hybrids express CK patterns reminiscent of the rat L6 parental cells while M X F hybrids apparently mimic mouse muscle fiber CK patterns. Various models are discussed which address these phenomena.  相似文献   

5.
F Morel-Deletraz 《Enzyme》1979,24(4):277-279
Creatine kinase isoenzymes (MM, MB and BB) were isolated from human tissue by ion-exchange chromatography. The B subunit was found to be more heat sensitive than the M subunit. BB and MB isoenzymes respond similarly to heat inactivation. Our results are in contrast with the body temperature inactivation of the brain isoenzyme reported by Lindsey and Diamond.  相似文献   

6.
Abstract: A bioluminescent assay based on the firefly luciferase reaction has been used for determination of creatine kinase activity in CSF. Activities as low as 0.1 U/L can be measured. The coefficient of variation at an activity level of 0.3–0.4 U/L was between 5 and 6%. The assay conditions optimized for serum specimens can be used for CSF. The adenylate kinase activity is almost completely inhibited, which simplifies the procedure. The creatine kinase (CK) isoenzyme distribution was obtained using the bioluminescent assay in combination with immunoinhibition or ion exchange chromatography. All specimens contained both MM and BB activity, but no MB was found. The study indicates that the bioluminescent assay is useful in the determination of CK isoenzymes in CSF. The clinical importance of the observed CK levels will be reported in a separate communication.  相似文献   

7.
Previous studies have suggested that MM creatine kinase is a muscle-specific protein and is not present in adult brain tissue. We have isolated a protein from human brain with an apparent molecular weight of 43,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis which is identical to the muscle M creatine kinase isoenzyme subunit at all 30 sequenced amino acid residues and possesses creatine kinase enzymatic activity following nondenaturing agarose-gel electrophoresis. Immunohistochemistry localizes M creatine kinase to discrete areas of adult human brain. Northern blot analysis of both total and poly(A)-selected RNA isolated from brain did not detect M creatine kinase mRNA. However, polymerase chain reaction amplification of cDNA synthesized from human placenta, heart, and brain mRNA detected M creatine kinase message in both heart and brain but not placenta which contains no detectable M creatine kinase protein. N1E115 and NS20Y, mouse neuroblastoma cell lines which have been used as models of neural cell differentiation, were found also to express MM creatine kinase. Moreover, a transiently transfected reporter gene with 4,800 base pairs of M creatine kinase upstream region fused to chloramphenicol acetyltransferase was expressed during differentiation of these neural cell lines. In summary, MM creatine kinase is present in human brain and we suggest the M creatine kinase upstream region is sufficient to modulate M creatine kinase expression in certain neuronal cells and may be regulated independently from other muscle genes.  相似文献   

8.
The interaction of human creatine phosphokinase isoenzymes with rabbit antibodies and their Fab has been studied. It has been shown that Fab of the antibodies against MM or BB isoenzymes preserve high specificity of intact antibodies and the ability to inhibit creatine kinase isoenzymes. Differences between antibodies and their Fab have been found to exist with respect to the kinetics of binding with homologous isoenzymes: the rate of the complex formation for Fab is significantly higher. The interaction of creatine kinase isoenzymes with intact antibodies and their Fab is not affected by the addition of creatine kinase substrates. The antibodies against MM and BB isoenzymes have been used to study the individual properties of each subunit of the M- and B-type in a hybrid dimer MB. It has been shown that such properties of these subunits as the Michaelis constants, pH dependence and inhibition by homologous antibodies are identical to those of non-hybrid MM and BB isoenzymes, respectively.  相似文献   

9.
Differentiation of embryonic chick muscle and cultured myogenic cells was studied by the quantitative evaluation of the transition from the embryonic form BB-creatine kinase (CK) to the muscle-specific form MM of CK. Immunoadsorption chromatography was used to establish a method for the quantification of the three isoenzymes MM-CK, MB-CK, and BB-CK in extracts containing all three isoenzymes. The immunoadsorbents were shown to be highly specific for homomeric enzymes; either MM or BB could be prepared in pure form by elution of bound CK from the appropriate adsorbent. The early events in the isoenzyme transition in embryonic breast muscle and myogenic cell cultures were found to be similar. At hatching, however, embryonic muscle contains mainly MM-CK and only traces of MB-CK and BB-CK, whereas cells cultured for 11 days still display a substantial amount of MB-CK and BB-CK.  相似文献   

10.
Creatine kinase isoenzymes from Torpedo californica electric organ, skeletal muscle, and brain were purified and characterized. Torpedo electric organ and skeletal muscle creatine kinase have identical apparent Mr, electrophoretic mobility, and cyanogen bromide fragments. The electrophoretic mobility of the Torpedo creatine kinase was anodal as compared to mammalian MM creatine kinase. No creatine kinase isoenzyme with an electrophoretic mobility similar to mammalian BB creatine kinase was seen in any of the Torpedo tissues examined. Hybridization studies demonstrate the Torpedo electric organ creatine kinase to be composed of identical subunits and capable of producing an enzymatically active heterodimer when combined with canine BB creatine kinase. Creatine kinase from sucrose gradient-purified Torpedo electric organ acetylcholine receptor-rich membranes has an electrophoretic mobility identical with the cytoplasmic isoenzyme and an apparent Mr identical with mammalian MM creatine kinase. Western blot analysis showed Torpedo electric organ skeletal muscle creatine kinase and acetylcholine receptor-enriched membrane creatine kinase reacted with antiserum specific for canine MM creatine kinase. NH2-terminal amino acid sequence determinations show considerable sequence homology between human MM, Torpedo electric organ, chicken MM, and porcine MM creatine kinase. The acetylcholine receptor-associated creatine kinase is, therefore, identical with the cytoplasmic form from the electric organ and is composed of M-subunits.  相似文献   

11.
To examine the role of changes in the distribution of the creatine kinase (CK) isoenzymes [BB, MB, MM, and mitochondrial CK (mito-CK)] on the creatine kinase reaction velocity in the intact heart, we measured the creatine kinase reaction velocity and substrate concentrations in hearts from neonatal rabbits at different stages of development. Between 3 and 18 days postpartum, total creatine kinase activity did not change, but the isoenzyme distribution and total creatine content changed. Hearts containing 0, 4, or 9% mito-CK activity were studied at three levels of cardiac performance: KCl arrest and Langendorff and isovolumic beating. The creatine kinase reaction velocity in the direction of MgATP production was measured with 31P magnetization transfer under steady-state conditions. Substrate concentrations were measured with 31P NMR (ATP and creatine phosphate) and conventional biochemical analysis (creatine) or estimated (ADP) by assuming creatine kinase equilibrium. The rate of ATP synthesis by oxidative phosphorylation was estimated with oxygen consumption measurements. These results define three relationships. First, the creatine kinase reaction velocity increased as mito-CK activity increased, suggesting that isoenzyme localization can alter reaction velocity. Second, the reaction velocity increased as the rate of ATP synthesis increased. Third, as predicted by the rate equation, reaction velocity increased with the 3-fold increase in creatine and creatine phosphate contents that occurred during development.  相似文献   

12.
The distribution of creatine phosphokinase isoenzymes differs in extracts of newborn and adult mouse hearts. Electrophoresis on acetate strips reveals the presence of BB, MB, and MM isoenzymes in the 2 day old neonate heart, with relative activities of 4%, 24% and 72% respectively. Beginning at 6 days of age, a fourth isoenzyme, shown to be associated with mitochondria, is seen moving toward the cathode. With age the distribution changes, with BB disappearing by 18 days. By 25 days the relative proportions of MB, MM and mitochondrial CPK have reached 5%, 86% and 9%, respectively, similar to the levels seen in the adult. The late appearance of the mitochondrial isoenzyme may reflect a difference in the requirement of the developing and adult heart for ATP and phosphocreatine.  相似文献   

13.
Mitochondrial creatine kinase was purified from canine myocardium. The preparation exhibited a positively charged isoenzyme free of other creatine kinase isoenzymes and on sodium dodecyl sulfate gel exhibited a single protein band. Amino acid composition showed mitochondrial creatine kinase to be different from that of MM or BB creatine kinase and did not hybridize with the M or B subunits of the cytosolic forms. Antiserum was developed to mitochondrial creatine kinase which did not cross-react with cytosolic creatine kinases. Antiserum to cytosolic creatine kinase exhibited no reaction to mitochondrial creatine kinase. Utilizing the specific antiserum, a radioimmunoassay was developed for the specific detection of mitochondrial creatine kinase. Thus, mitochondrial creatine kinase was purified and shown to be comprised of a unique subunit which is biochemically and immunologically distinct from the cytosolic creatine kinases.  相似文献   

14.
A bound form of creatine kinase associated with brain particulate was characterized by isoelectric focusing, antigenicity and chromatography and compared to muscle (MM), brain (BB), and heart mitochondrial isoenzymes. On partial purification and isoelectric focusing, the solubilized enzyme has a pl of 7.3, similar to the pl of muscle creatine kinase MM, pl 6.8, but different from brain creatine kinase BB, which precipitates on isoelectric focusing in sucrose or glycerol stabilized media at its calculated pl of 5.6. Gel filtration chromatography of deoxycholate solubilized particulate creatine kinase on Sephadex Gl50 reveals an estimated molecular weight of approximately 80,000 daltons. The brain particulate enzyme is antigenically distinct from both muscle and rat heart mitochondrial creatine kinase isoenzymes but has antigenic similarity with soluble cytoplasmic brain BB. The situation may be analogous to that found with rat heart mitochondria and rat heart cytoplasmic isoenzymes which we have shown to exhibit antigenic similarity even though differences in electrophoretic and amino acid composition have been demonstrated; however, the confident determination that the particulate enzyme is a separate isoenzyme will have to await amino acid analysis.  相似文献   

15.
Characterization of myogenic cell lines derived by 5-azacytidine treatment   总被引:1,自引:0,他引:1  
Three myogenic clonal cell lines were isolated from C3H 10T1/2 C18 cells (10T1/2) treated with 5-azacytidine (5-aza-CR). These lines reproducibly underwent fusion at confluence into functional myotubes capable of contracting in response to acetylcholine. The degree of fusion could be increased two- to threefold if the cells were grown on gelatin-coated dishes. All of the cell lines lost some of their myogenic potential after repeated passaging and the percentage of colonies capable of forming muscle was not increased by permissive media containing 2% horse serum. The 10T1/2 cells expressed only the BB form of creatine phosphokinase but all of the myogenic clones expressed additionally the MM and MB forms of the isozyme after fusion. The overall genomic level of 5-methylcytosine was decreased in some but not all of the cell clones tested. Comparisons between the 10T1/2 cells which never form muscle without 5-aza-CR treatment and clonal derivatives of committed cell types might be of value in understanding the molecular basis of the commitment process.  相似文献   

16.
Fusion of cultured chick embryo myoblasts was inhibited by treatment with several lysosomotropic amines. The concentrations required for half-maximal inhibition of fusion were approximately 2 μM for chloroquine, 30 μM for tributylamine, 3.2 mM for ammonium chloride, and 3.3 mM for methylamine. All the amines inhibited fusion appreciably at concentrations lower than those that reduced cell density. Both the rate and extent of fusion were affected by the amines, which had to be present for about 20 hr before the usual onset of fusion. Inhibition of fusion was reversible by transfer of inhibited cells to fresh medium. The amines did not cause accumulation of a nondialyzable inhibitor in the culture medium. Levels of creatine kinase increased by eight-fold or more between 18 and 65 hr in cultures treated with tributylamine or chloroquine, although this increase was not as pronounced as in control cultures. The increased creatine kinase activity in amine-treated cultures was due mainly to the BB and MB isozymes, with relatively little increase in the MM isozyme.  相似文献   

17.
We analyzed the expression profile of isoenzymatic fractions of creatine phosphokinase (EC 2.7.3.2) isotypes MM, MB and BB in three cell lines derived from embryonic rhabdomyosarcomas and a normal counterpart cell line. Electrophoretic data showed that the BB fraction was consistently expressed de novo, in contrast with its counterpart in normal tissue. The BB fraction may serve as new tumoral marker for the diagnosis of rhabdomyosarcoma. In addition, the appearance of macrocreatine kinase type-1 in this type of neoplasm may serve to reinforce the diagnosis when rhabdomyosarcoma is suspected.  相似文献   

18.
It is known that myoblast fusion fails to occur in cultures containing EGTA (a calcium-specific chelator) but occurs very rapidly after EGTA medium is replaced with standard high-calcium medium. On the basis of a careful analysis of the time course of fusion in cultures switched from EGTA to standard medium, it is proposed that this method of synchronization be used routinely in studies of the timing of different processes during in vitro myogenesis. The kinetics of accumulation of total enzyme activity for creatine kinase and fructose diphosphate aldolase indicate that the increases characteristic of terminal muscle differentiation begin prior to the experimentally imposed onset of fusion in EGTA-synchronized cultures. Additionally, the accumulation of M-creatine kinase subunits, also typical for muscle differentiation, is shown by microcomplement fixation to begin before the switch from EGTA to standard medium. Creatine kinase isoenzyme patterns also show that the transition from B- to M-subunit-containing creatine kinases occurs in EGTA cultures not switched to standard medium. Like EGTA, 5-bromodeoxyuridine (BrdUrd) reversibly prevents myoblast fusion. By adding EGTA and BrdUrd in different sequences to muscle cell cultures, it is shown that they act at different stages in the course of in vitro myogenesis. Cells cultured in EGTA from 23 to 69 hr after plating fused very rapidly when switched to medium containing BrdUrd. In the reverse experiment, in which BrdUrd preceded EGTA, no fusion occurred. Parallel experiments with 5-fluorodeoxyuridine suggest that cell division is necessary to reverse the inhibitory effect of BrdUrd, but not that of EGTA; this is consistent with the observed kinetics of fusion after switching to standard medium. These data strongly support a model of myogenesis in vitro in which two processes (one BrdUrd-sensitive, the other EGTA-sensitive) occur sequentially. In the first process, myogenic cells give rise to cells capable of producing molecules necessary for (terminal) skeletal muscle differentiation, including both those required for cell fusion and specific isoenzymes. The second process, fusion itself, can occur in the presence of BrdUrd or in the absence of cell division.  相似文献   

19.
Serum and organ creatine phosphokinase alterations in exercise.   总被引:1,自引:0,他引:1  
Rats that swam for 3 h showed a 6-fold increase in serum creatine phosphokinase (SCPK) activity which declined to control values within 7 h after swimming. Of the excess SCPK, 77% was BB isoenzyme; the remainder was mainly MM with traces of MB. Kidney, liver, brain and lung contain mainly BB (50-80%) and only a trace of MB (0-7%). Heart CPK was composed of little BB (8%) and more MB (28%) and MM (64%). Skeletal muscle CPK was almost entirely MM. CPK activity is highest in skeletal muscle, intermediate in heart and brain and lowest in kidney, liver and lung. It is suggested that skeletal muscle and heart are not involved in CPK release in swimming, and kidney, liver and brain may be sites of release.  相似文献   

20.
Changes in the isoenzyme patterns and activities of the two enzymes creatine kinase (CPK) and fructose diphosphate aldolase have been followed during the course of differentiation of chick skeletal muscle cells in vitro. The characteristic isoenzyme transitions of both of these enzymes known to occur in developing muscle in situ can be demonstrated in extracts of cultured myogenic cells by cellulose polyacetate electrophoresis followed by specific enzymatic staining: MM-CPK replaces the embryonic BB-CPK, while aldolase isoenzymes containing A subunits replace the C-containing forms which predominate at earlier stages. The specific activities of both enzymes increase during in vitro differentiation. Although the major part of these concomitant changes occurs after myoblast fusion has reached a maximum level, analysis of their timing relative to the process of fusion indicates that the increases in the activities of both enzymes, as well as the accumulation of nuclei within myotubes, proceed exponentially from the beginning of the second day in culture. Fusion and enzyme accumulation are unaffected by addition of dibutyryl cyclic AMP (1 × 10?4M) to the medium. In calcium-deficient medium, or in media containing 5-bromodeoxyuridine (BrdUrd) at concentrations from 0.2 to 7 × 10?5M, fusion is almost completely blocked, while cell viability is maintained. The CPK and aldolase isoenzyme transitions fail to occur normally in both fusion-preventing media. This blockage of the normal differentiative changes is, however, less complete in the calcium-deficient cultures, which, in contrast to the BrdUrd containing cultures, contained a number of long bipolar cells thought to be able to differentiate without fusion. These results are interpreted as indicating that for most, but possibly not for all, myogenic cells in typical primary muscle cell cultures, fusion is a prerequisite for the parallel differentiative changes in CPK and aldolase isoenzymes. The possibility is discussed that a “cluster” of proteins, including CPK and aldolase, may be coordinately regulated during myogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号