首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The developmental mechanisms of color patterns formation and its evolution remain unclear in reptilian sauropsids. We, therefore, studied the pigment cell mechanisms of stripe pattern formation during embryonic development of the snake Elaphe quadrivirgata. We identified 10 post‐ovipositional embryonic developmental stages based on external morphological characteristics. Examination for the temporal changes in differentiation, distribution, and density of pigment cells during embryonic development revealed that melanophores first appeared in myotome and body cavity but not in skin surface at Stage 5. Epidermal melanophores were first recognized at Stage 7, and dermal melanophores and iridophores appeared in Stage 9. Stripe pattern first appeared to establish at Stage 8 as a spatial density gradient of epidermal melanophores between the regions of future dark brown longitudinal stripes and light colored background. Our study, thus, provides a comprehensive pigment‐cell‐based understanding of stripe pattern formation during embryonic development. We briefly discuss the importance of the gene expression studies by considering the biologically relevant theoretical models with standard developmental staging for understanding reptilian color pattern evolution.  相似文献   

2.
Postembryonic changes in the dermal and epidermal pigment cell architecture of the striped and nonstriped morph of the Japanese four‐lined snake Elaphe quadrivirgata were examined to reveal stripe pattern formation after hatching. The striped and nonstriped morphs were distinguishable at the hatching, suggesting that the basis of stripe pattern was formed during embryonic development. In the striped morph, the color of stripes changed from red‐brown in juveniles to vivid dark‐brown in adults, and density of dermal melanophore increased much more in the stripe than background dorsal scales with growth. This increase in density of dermal melanophore was accompanied not only by the increased epidermal melanophore density but also by the change in vertical structures of dermal melanophore. By contrast, the density of epidermal and dermal melanophore evenly increased over the dorsal scales in the nonstriped morph. Thus, the increased vividness of the stripe pattern after hatching is achieved through localized increase of melanophore density particularly in the stripe region but not over the whole dorsal scales. J. Morphol. 277:196–203, 2016. © 2015 Wiley Periodicals, Inc.  相似文献   

3.
Molecular mechanisms that produce pigment patterns in the insect cuticle were studied. Larvae of the armyworm Pseudaletia separata have stripe patterns that run longitudinally along the body axis. The pattern in the cuticle became clear by being emphasized by the increasing contrast between the black and white colors of the lines after the last larval molt. We demonstrated that dopa decarboxylase (DDC) mRNA as well as protein are expressed specifically in the epidermal cells under the black stripes. The pigmentation on the stripes was clearly diminished by injection of a DDC inhibitor (m-hydroxybenzylhydrazine) to penultimate instar larvae for 1 day before molting, suggesting that DDC contributes to the production of melanin. Further, electron microscopic observation showed that the epidermal cells under the gap cuticle region (white stripe) between the black stripes contain many uric acid granules, which gives a white color. Our findings suggest that the spatially regulated expression of DDC in the epidermal cells produces the black stripes while abundant granules of uric acid in the cells generate the white stripes in the cuticle. Based on these results, we concluded that this heterogeneity in the epidermal cells forms cuticular stripe patterns in the armyworm larvae.  相似文献   

4.
To provide histological foundation for studying the genetic mechanisms of color‐pattern polymorphisms, we examined light reflectance profiles and cellular architectures of pigment cells that produced striped, nonstriped, and melanistic color patterns in the snake Elaphe quadrivirgata. Both, striped and nonstriped morphs, possessed the same set of epidermal melanophores and three types of dermal pigment cells (yellow xanthophores, iridescent iridophores, and black melanophores), but spatial variations in the densities of epidermal and dermal melanophores produced individual variations in stripe vividness. The densities of epidermal and dermal melanophores were two or three times higher in the dark‐brown‐stripe region than in the yellow background in the striped morph. However, the densities of epidermal and dermal melanophores between the striped and background regions were similar in the nonstriped morph. The melanistic morph had only epidermal and dermal melanophores and neither xanthophores nor iridophores were detected. Ghost stripes in the shed skin of some melanistic morphs suggested that stripe pattern formation and melanism were controlled independently. We proposed complete‐ and incomplete‐dominance heredity models for the stripe‐melanistic variation and striped, pale‐striped, and nonstriped polymorphisms, respectively, according to the differences in pigment‐cell composition and its spatial architecture. J. Morphol. 274:1353–1364, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

5.
To elucidate the relationship between the complex striping patterns of the different species of zebras, a simple conceptual experiment has been performed. Using data from horse embryos, the normal growth of the zebra from early foetus to adult has been reversed to see what happens both to the spacing and to the orientation of the stripes. It turns out that for each species, there is a point in time when all the body stripes would have been perpendicular to the dorsal line and equally spaced. Moreover the spacing is roughly the same (0·4 mm) for the three main species of zebra at this time. This point is during the third week of development for E. burchelli , fourth week for E. zebra and fifth week for E. grevyi. As striping only appears at about the eighth month of foetal development, it seems that the pattern is determined a long time before the cells actually lay down pigment. Further analysis of the pattern so laid down on a rapidly-growing foetus shows how shadow and gridiron stripes can arise. The reason why leg stripes are orthogonal to body stripes cannot however be derived from this phenomenological approach. These results suggest that a single mechanism generating equi-spaced stripes of separation 0·4 mm could lay down the body stripes of zebras and that species differences arise from pattern formation occurring at different times in embryogenesis.  相似文献   

6.
The striped pigment patterns in the flanks of zebrafish result from chromatophores deep within the dermis or hypodermis, while superficial melanophores associated with dermal scales add a dark tint to the dorsal coloration. The responses of these chromatophores were compared during the long-term adaptation of zebrafish to a white or a black background. In superficial skin, melanophores, xanthophores, and two types of iridophores are distributed in a gradient along the dorso-ventral axis independent of the hypodermal pigment patterns. Within one week the superficial melanophores and iridophores changed their density and/or areas of distribution, which adopted the dorsal skin color and the hue of the flank to the background, but did not affect the striped pattern. The increases or decreases in superficial melanophores are thought to be caused by apoptosis or by differentiation, respectively. When the adaptation period was prolonged for more than several months, the striped color pattern was also affected by changes in the width of the black stripes. Some black stripes disappeared and interstripe areas were emphasized with a yellow color within one year on a white background. Such long-term alteration in the pigment pattern was caused by a decrease in the distribution of melanophores and a concomitant increase in xanthophores in the hypodermis. These results indicate that morphological responses of superficial chromatophores contribute to the effective and rapid background adaptation of dorsal skin and while prolonged adaptation also affects hypodermal chromatophores in the flank to alter the striped pigment patterns.  相似文献   

7.
Colour patterns are a prominent feature of many animals and are of high evolutionary relevance. In zebrafish, the adult pigment pattern comprises alternating stripes of two pigment cell types, melanophores and xanthophores. How the stripes are defined and a straight boundary is formed remains elusive. We find that mutants lacking one pigment cell type lack a striped pattern. Instead, cells of one type form characteristic patterns by homotypic interactions. Using mosaic analysis, we show that juxtaposition of melanophores and xanthophores suffices to restore stripe formation locally. Based on this, we have analysed the pigment pattern of two adult specific mutants: leopard and obelix. We demonstrate that obelix is required in melanophores to promote their aggregation and controls boundary integrity. By contrast, leopard regulates homotypic interaction within both melanophores and xanthophores, and interaction between the two, thus controlling boundary shape. These findings support a view in which cell-cell interactions among pigment cells are the major driving force for adult pigment pattern formation.  相似文献   

8.
The pigmentation pattern of Alligator mississippiensis was examined. The number of white stripes on the dorsal side of embryos (stages 21-28) and hatchlings from eggs incubated at 30 degrees C (100% females) and 33 degrees C (100% males) was recorded. Total length, nape-rump length and tail length were recorded for each embryo and hatchling. The number of white stripes was affected by incubation temperature but not sex; hatchlings incubated at 33 degrees C had two more white stripes than those at 30 degrees C, despite being the same length. Five female hatchlings produced at 33 degrees C by manipulation of the temperature, had the same number of stripes as males that developed under the same incubation temperatures. The appearance of the pigmentation was accelerated in embryos incubated at 33 degrees C, occurring eight days earlier than at 30 degrees C. At the time just before the first signs of pigment deposition, embryos from 33 degrees C were longer than those at 30 degrees C. If the stripe formation is size dependent this explains why hatchlings at 33 degrees C have more stripes than hatchlings from 30 degrees C. The mechanism that produces the stripe patterns is unknown. We describe key elements a pattern formation mechanism must possess to produce such stripes and suggest a possible mechanism, based on cell movement driven by chemotaxis. We apply the mathematical model to dorsal patterning on A. mississippiensis. We show how length at pattern formation is the prime factor in determining stripe number and how the pattern can be formed in the observed anterior-posterior sequence. We present numerical simulations and show that the qualitative behaviour is consistent with the experimental results.  相似文献   

9.
Ectothermic vertebrates exhibit a diverse array of adult pigment patterns. A common element of these patterns is alternating dark and light stripes each comprising different classes of neural crest-derived pigment cells. In the zebrafish, Danio rerio, alternating horizontal stripes of black melanophores and yellow xanthophores are a prominent feature of the adult pigment pattern. In fms mutant zebrafish, however, xanthophores fail to develop and melanophore stripes are severely disrupted. fms encodes a type III receptor tyrosine kinase expressed by xanthophores and their precursors and is the closest known homologue of kit, which has long been studied for roles in pigment pattern development in amniotes. In this study we assess the cellular and temporal requirements for Fms activity in promoting adult pigment pattern development. By transplanting cells between fms mutants and either wild-type or nacre mutant zebrafish, we show that fms acts autonomously to the xanthophore lineage in promoting the striped arrangement of adult melanophores. To identify critical periods for fms activity, we isolated temperature sensitive alleles of fms and performed reciprocal temperature shift experiments at a range of stages from embryo to adult. These analyses demonstrate that Fms is essential for maintaining cells of the xanthophore lineage as well as maintaining the organization of melanophore stripes throughout development. Finally, we show that restoring Fms activity even at late larval stages allows essentially complete recovery of xanthophores and the development of a normal melanophore stripe pattern. Our findings suggest that fms is not required for establishing a population of precursor cells during embryogenesis but is required for recruiting pigment cell precursors to xanthophore fates, with concomitant effects on melanophore organization.  相似文献   

10.
A new pomacentrid fish,Chromis okamurai, is described from a single specimen taken from the Okinawa Trough (25°53.4′N, 123°59.4′E), in 135–175 m. This species is most closely related to the deep-dwellingC. mirationis, sharing with it the same meristic data (in particular XIV dorsal spines and 2 upper and lower caudal spinules), large eye, and relatively deep body. It differs in having a small round posterior nostril (large and slit like inmirationis), longer second anal spine, shorter pelvic fins, and in color: two dark brown stripes on body and a pale pectoral-fin axil (mirationis has a single, midlateral, yellow to yellowish brown stripe which extends broadly onto lower part of caudal fin, and a black pectoral axil).  相似文献   

11.
Naidoo Y  Karim T  Heneidak S  Sadashiva CT  Naidoo G 《Planta》2012,236(4):1215-1226
This study was initiated to characterize the distribution, morphology, secretion mode, histochemistry and ultrastructure of the glandular trichomes of Ceratotheca triloba using light and electron microscopy. Its leaves bear two morphologically distinct glandular trichomes. The first type has long trichome with 8-12 basal cells of pedestal, 3-14 stalk cells, a neck cell and a head of four cells in one layer. The second type has short trichome comprising one or two basal epidermal cells, a unicellular or bicellular stalk and a multicellular head of two to eight cells. There is a marked circular area in the upper part of each head cell of the long trichome. This area is provided with micropores to exudate directly the secretory product onto the leaf surface by an eccrine pathway. The secretory product has copious amount of dark microbodies arising from plastids which are positive to Sudan tests and osmium tetroxide for unsaturated lipids. The secretion mode of short trichomes is granulocrine and involves two morphologically and histochemically distinct vesicle types: small Golgi-derived vesicles which are positive to Ruthenium Red test for mucilaginous polysaccharides; the second type is dark large microbodies similar to that of long trichomes with low quantity. These two types are stored in numerous peripheral vacuoles and discharge their contents accompanied by the formation of irregular invaginations of the plasmalemma inside the vacuoles via reverse pinocytosis. These two secretion modes of long and short trichomes are reported for the first time in the family Pedaliaceae. The long trichomes have more unsaturated lipids, while the short trichomes contain more mucilaginous polysaccharides.  相似文献   

12.
The present study investigated thermoelectric phenomena in the cuticle of the Oriental hornet Vespa orientalis (Hymenoptera, Vespinae). This was done in dependence on the pigment extant at various cuticular region, that is, the brown cuticle in which the primary pigment is melanin and embedded within the cuticle, and the yellow stripes in which the yellow pigment is comprised of purines and pteridines that are located in special pockets between the upper part of the cuticle and the basement membrane. The yellow pigment could be separated from the cuticle proper, but the brown pigment was not thus separable. We found that all cuticular regions of the gaster evinced a thermoelectric response, in that with rise in temperature there was a rise in the thermoelectric current, and vice versa. Additionally, the intact hornet displayed a negative photoelectric response in each of its yellow segments, so that upon illumination with UV light, the maximal current dropped by about 40-50%. Measurements taken on individual stripes in the gaster segments revealed that the photoelectric response is elicited only in the yellow stripes. In all the latter the photoelectric response persists but the maximal current level is lower than in the intact whole hornet. If the yellow pigment is detached mechanically or by bacterial incubation, the photoelectric property of the cuticle is abrogated. Likewise the photoelectric property is abrogated upon immersion of the cuticle in alcohol, even though the yellow pigment is still retained. The specific heat of the yellow stripes in the cuticle is about twice as high as that of the same stripes that had been depleted of their yellow pigment, amounting to 1.8-1.9 J/g.K vs. 0.8 J/g.K.  相似文献   

13.
The morphology and anatomy of the labellar epidermal cells and the way in which they are arranged are described in an attempt to locate and characterize the osmophore in Ophrys fusca and O. lutea. The micromorphology of the labellum of these two species is similar. Four types of epidermal cells are present on the adaxial surface of the labellum. Long unicellular trichomes with straight tips cover the basal region of the labellum, whereas short unicellular trichomes with polygonal flattened bases form the reflective median speculum. The apical region of the labellum possesses a villous indumentum of long acuminate trichomes with bent or sinuate tips. Large smooth-walled, dome-shaped papillae occur on the margins and on the distal region of the abaxial surface of the labellum. These remarkable papillae have high polarity; the protoplasm at the apex of each cell contains several small vacuoles, while a prominent nucleus surrounded by numerous hypertrophied amyloplasts occurs at the opposite end of the cell. Positive reactions to Vogel's staining test and to Sudan black B enabled us to conclude that the osmophores of both species are composed of these peculiar secretory epidermal cells and by two or three subsecretory layers of parenchyma cells.  相似文献   

14.
(1)用视网膜电图(ERG)方法测定了9种蝗虫在黑暗、蓝光和橙光适应下的光谱敏感性。(2)9种蝗虫的碚适应光谱敏感曲线峰值均在520—546nm 之间。(3)橙光或蓝光明适应导致不同程度的峰值位移,蓝区的相对敏感性提高,这与光引起屏蔽色素移动效应有关。(4)黑背蝗和稻蝗复眼表面均没有黑白间,橙光适应时出现第二个峰值在蓝区,而蓝光适应则压抑蓝区的敏感性。可能这两种蝗虫还具有蓝敏视色素。(5)佛蝗和黄脊蝗复眼表面均有明显的黑白相间的区域,在有色光适应下这两种蝗虫的光谱敏感性变化最小,没有证据说明多于一种光敏色素。  相似文献   

15.
Two new species, Hypancistrus phantasma and Hypancistrus margaritatus, are described based on material from the Rio Negro drainage. Both species are distinguished from congeners by unique color patterns. Hypancistrus phantasma is described from the Rio Uaupes and differs from congeners by having a tan body with small dark spots (vs. dark with light spots or with saddles or stripes). Hypancistrus margaritatus is described from the Takutu River and differs from congeners by having densely-packed light spots on a dark brown background, with spots about the size of the nasal aperture (vs. sparse light spots either smaller or larger than the nasal aperture, or brown to black spots, saddles, or stripes).  相似文献   

16.
Blues and surface whites of tent caterpillars are structural colours resulting from the scattering of light by small, transparent, cuticular filaments. The filaments are small enough to be Tyndall-active, that is they scatter the short wavelengths of incident light more effectively than the long wavelengths. Immediately beneath the surface filaments of blue-coloured cuticle there is a layer of dark pigment which absorbs transmitted light. Therefore, only Tyndall-scattered light is reflected from the cuticle and since this light is diminished in long wavelengths it appears blue. Cuticle that is surface white lacks the layer of dark pigment. Light passing through the surface layer is therefore subject to scattering within the cuticle and by underlying tissues. Sufficient complementary long wavelengths are backscattered from below the surface mat of filaments that the reflected light appears white. Tyndall blue systems found in other insects are briefly discussed.  相似文献   

17.

Priolepis duostella sp. nov. (Perciformes: Gobiidae) is described based on a single specimen of 28.8 mm in standard length collected from an artificial reef released established for 2.5 years in ca. 100 m depth off Kashiwa-jima Island, Kochi, southern Japan. Within the three species grades of the genus, the new species is included in the “Priolepis profunda” grade, characterized by the presence of predorsal scales and well-developed transverse papillae rows on the cheek. The new species can be clearly distinguished from congeners by its distinctive coloration, including two black blotches, each crossed by a vertical white stripe, on the caudal fin, four white stripes on the head, and six white bars on body, the second bar curved, continuous with the anteriormost diagonal stripe on the first dorsal fin, the third bar bent at the middle, originating on the second dorsal-fin origin, and the fourth bar curved. Although most similar in coloration to Priolepis akihitoi Hoese and Larson 2010, the new species can be distinguished from the latter by the following: a large eye, its diameter 31.4% of head length (HL) (vs. 26.1–30.3), a wide interorbital space, its width 10.9% HL (vs. 5.3–7.8), six bars on the body, second to fourth curve or bent (vs. eight, all straight), black blotches on the lower caudal fin (vs. absent), and three anterior transverse interorbital papillae (ATI) (vs. one or two); and four or five posterior transverse interorbital papillae (PTI) (vs. one or two).

  相似文献   

18.
Honeybees flying repeatedly over the same trajectory link it to an associated visual stimulus such that on viewing the stimulus they perform a trajectory in the habitual direction. To test if trajectory length can also be linked to a visual stimulus, bees were trained to fly through a multi-comparmented maze. Bees flew through a multi-compartmented maze. In one compartment a short trajectory could be linked to a stripe pattern oriented at 45° to the horizontal. In another compartment a longer trajectory could be linked to 135° stripes. Bees made both associations: their trajectories were short when viewing 45° stripes and longer when viewing 135° stripes. 90° stripes evoked trajectories of intermediate length.To test if distance and direction are linked independently to stripe orientation, a bee's trajectory was linked to 135° stripes in one compartment and to 45° stripes in another. These trajectories were the same length but differed in their horizontal direction by 60° or by 120°. 90° stripes evoked trajectories of intermediate direction which were shorter than those elicited by either training pattern. Bees were also trained to generate one long and one short trajectory with directions 120° apart. The trajectories elicited by 90° stripes were then biased towards the direction of the long training vector. Length and direction are not treated separately. The rules for combining trajectories resemble those of vector averaging.  相似文献   

19.
Axis determination in polyspermic Xenopus laevis eggs   总被引:4,自引:0,他引:4  
Polyspermic Xenopus laevis eggs can be identified easily because of regions of pigment accumulation and white stripes, which arise by a nocodazole-sensitive process. Eggs containing up to four sperm are capable of forming a single embryonic axis. Dispermic eggs display two regions of pigment accumulation, one around each sperm entry point (SEP), and one white stripe between the SEPs. Such eggs with a 180 degree separation between the SEPs were bisected before first cleavage along the white stripe, creating dorsal and ventral halves in many cases. Each half cleaved and formed a tadpole. When eggs were bisected early in the period of cytoplasmic reorganization (0.5-0.6 normalized time), each half could form a complete tadpole. When eggs were bisected after the period of reorganization (0.8-0.9), often one half formed a tadpole with a complete head but reduced or absent tail and the other half formed a tadpole with a complete tail but reduced or absent head. These results demonstrate that sperm cooperate to give a single embryonic axis in polyspermic eggs and the development of dorsal and ventral egg halves differs after egg reorganization before first cleavage.  相似文献   

20.
Hierochloe quebrada, Anthoxanthinae, Aveneae, Poaceae, of steep, tropicalpine granitic ravines in northern Peru is described as new; plants had formerly been referred to H. juncifolia but differ from that southern South American species especially in a shorter lemma with long white ascending marginal hairs, and the lemma of the middle floret with a compound awn inserted mid-point, with a long, brown, twisting colum bearing, inflexed or reflexed, a straw-coloured, straight, equally long arista; the flat leaf-blade is deeply grooved adaxially with simple furrows, and lacks a prominent midrib; ecologically H. quebrada on steep tropicalpine granitic soils to 4600 m is in contrast to H. juncifolia of temperate southern latitudes on volcanic, stony, or sandy soils to about 1750 m. Monoecism is exclusive to all species of Hierochloe in South America; pathways towards its evolution are outlined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号