首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In chondrichthyes, the process of spermatogenesis produces a spermatocyst composed of Sertoli cells and their cohort of associated spermatozoa linearly arrayed and embedded in the apical end of the Sertoli cell. The extratesticular ducts consist of paired epididymis, ductus deferens, isthmus, and seminal vesicles. In transit through the ducts, spermatozoa undergo modification by secretions of the extratesticular ducts and associated glands, i.e., Leydig gland. In mature animals, the anterior portion of the mesonephros is specialized as the Leydig gland that connects to both the epididymis and ductus deferens and elaborates seminal fluid and matrix that contribute to the spermatophore or spermatozeugmata, depending on the species. Leydig gland epithelium is simple columnar with secretory and ciliated cells. Secretory cells have periodic acid-Schiff positive (PAS+) apical secretory granules. In the holocephalan elephant fish, Callorhynchus milii, sperm and Sertoli cell fragments enter the first major extratesticular duct, the epididymis. In the epididymis, spermatozoa are initially present as individual sperm but soon begin to laterally associate so that they are aligned head-to-head. The epididymis is a highly convoluted tubule with a small bore lumen and an epithelium consisting of scant ciliated and relatively more secretory cells. Secretory activity of both the Leydig gland and epididymis contribute to the nascent spermatophores, which begin as gel-like aggregations of secretory product in which sperm are embedded. Fully formed spermatophores occur in the ductus. The simple columnar epithelium has both ciliated and secretory cells. The spermatophore is regionalized into a PAS+ and Alcian-blue-positive (AB+) cortex and a distinctively PAS+, and less AB+ medulla. Laterally aligned sperm occupy the medulla and are surrounded by a clear zone separate from the spermatophore matrix. Grossly, the seminal vesicles are characterized by spiral partitions of the epithelium that project into the lumen, much like a spiral staircase. Each partition is staggered with respect to adjacent partitions while the aperture is eccentric. The generally nonsecretory epithelium of the seminal vesicle is simple columnar with both microvillar and ciliated cells.  相似文献   

2.
Testis structure in four species of goodeid teleosts is described. Testicular tubules terminate blindly at the testis periphery where spermatogonia are located. In goodeid teleosts, development of sperm takes place synchronously within cysts whose periphery is made up of a single layer of Sertoli cells. Upon completion of spermiogenesis, spermiation ensues wherein sperm are shed, as spermatozeugmata, into the testis efferent duct system. Subsequently, Sertoli cells, which comprised the cyst periphery, transform into efferent duct cells. Sertoli cells phagocytize residual bodies and are involved in the formation of spermatozeugmata. The structure of the goodeid spermatozeugmatum is quite different from that observed in the related poeciliids. It is concluded, in view of this and other considerations, that the goodeids and poeciliids have independently evolved solutions to the problems of internal fertilization and gestation.  相似文献   

3.
 Testis organization and spermatogenesis, with the emphasis on spermiogenesis, in Opistognathus whitehurstii are described by ultrastructural and histochemical methods. The germinal epithelium is extremely reduced and restricted to the periphery of the testis, while most of the organ is occupied by a highly developed system of testicular efferent ducts. A semicystic type of spermatogenesis is observed and in the germinal epithelium spermatogenesis occurs only until the spermatidal stage. Young spermatids are released into the lumen of the testicular lobules and mature to sperm within the efferent duct system. The epithelial cells of these ducts are involved in protein and glycogen secretion and in phagocytosis of degenerating germ cells and residual bodies cast off by developing spermatids. On the basis of these functions, the testicular efferent duct system cells are considered to be homologous to the Sertoli cells. A correlation between a highly developed testicular efferent duct system and semicystic spermatogenesis is examined and a possible functional meaning of this apparently unusual mode of sperm production is proposed. Accepted: 18 March 1997  相似文献   

4.
Acid phosphatase (AcP) activity was investigated in the testes of two species of teleosts in two seasons: summer and winter. AcP activity was detected in Sertoli cells from tilapia (Oreochromis niloticus) only during the nonreproductive period of its annual cycle, corresponding to the winter months. In kingfish (Odonthestes perugiae), the enzymatic reaction was identified during the non-reproductive period (summer) in epithelial cells of the efferent ducts but not in Sertoli cells. These data suggest that the enzyme is involved in the absorption of residual spermatid cytoplasm and as well as in the removal of spermatozoa remaining after the reproductive period. In kingfish, this heterophagous function is carried out by the efferent duct cells and not by Sertoli cells.  相似文献   

5.
Summary A light and electron microscope immunocytochemical study and Western blotting analysis has been performed on intermediate filaments (vimentin, desmin and cytokeratins) in the testis of the teleost fish Gambusia affinis holbrooki. An immunoreaction to vimentin was observed in the epithelium of the efferent ducts, testicular canal and their surrounding peritubular cells. Positive vimentin immunostaining was also observed in the cells located around seminiferous tubules (boundary cells), Leydig cells, interstitial fibroblasts, chromatophores, and blood vessel endothelial cells. In contrast to mammals, no vimentin immunoreactivity was found in the Sertoli cells. Immunoreactivity to desmin was weak in the epithelial cells of the efferent ducts and testicular canal and intense in the peritubular cells that surrounded these ducts. Desmin immunoreactivity was also observed in the seminiferous tubule boundary cells. The immunoreactivity was weak in the boundary cells that surrounded germ cell cysts containing spermatogonia or spermatocytes and intense in the boundary cells around cysts with elongated or mature spermatids. Immunoreactivity towards cytokeratins was observed only in testicular blood vessels. Cytokeratin immunolabelling was intense in the endothelium and weak in the vascular smooth muscle cells. No cytokeratin immunoreactivity was found in the Sertoli cells, germ cells, interstitial cells or in the efferent duct epithelium. The absence of intermediate filaments in the Sertoli cells, the absence of cytokeratins in the epithelium of the sperm excretory ducts, and the presence of desmin filaments in these epithelial cells are the most important differences with regards to the intermediate filament phenotype in mammalian testes.  相似文献   

6.
The gobiid fish Trimma okinawae changes its sex bi-directionally according to its social status. Morphological changes in the urinogenital papillae (UGP) of this fish have been reported during sex change. However, there have been no detailed observations of such changes. Here, we histologically examined the UGP structure of male- and female-phase fish. UGPs of fish in female and male phase contained both oviducts and sperm ducts. Both ducts were coalesced into one duct within the posterior region of the UGP. Female-phase fish had many longitudinal folds in the hypertrophied tunica mucosa of the oviduct, which was found to be responsible for the transport of eggs and the removal of follicular cells from the oocyte. In contrast, male-phase fish had an immature oviduct and a mature sperm duct in the UGP. In the male-phase fish, the co-existence of spermatozoa and fibrillar secretions was observed in the sperm duct during spermiation.  相似文献   

7.
The resorption of unemitted gametes during the post-spawning period of the male and female reproductive cycles in Lithognathus mormyrus was studied by histochemical, histological and cytological methods. The resorption of residual spermatozoa involved the phagocytotic activity of Sertoli cells bounding the seminiferous cysts of spermatozoa, and those associated with spermatogonia lining the lobular lumen. Spermatozoa remaining in the sperm duct were phagocytozed by the lining epithelial cells. Eosinophilic granulocytes and macrophages were identified in the vicinity of residual spermatozoa. The remnants of oocytes underwent an atretic phenomenon in which follicle cells were firstly involved, inducing a progressive fragmentation of the oocyte cytoplasm. Subsequently, eosinophilic granulocytes invaded oocyte degenerative areas and clung to the remaining vitelline inclusions ensuring their biotransformation into waste products (brown bodies). The analogy of the resorption processes of both male and female unemitted gametes during the post-spawning period of natural reproductive cycle, involving first the enveloping somatic cells and then immune cells, is emphasized.  相似文献   

8.
The female genital organs of the tetrablemmid Indicoblemma lannaianum are astonishingly complex. The copulatory orifice lies anterior to the opening of the uterus externus and leads into a narrow insertion duct that ends in a genital cavity. The genital cavity continues laterally in paired tube-like copulatory ducts, which lead into paired, large, sac-like receptacula. Each receptaculum has a sclerotized pore plate with associated gland cells. Paired small fertilization ducts originate in the receptacula and take their curved course inside the copulatory ducts. The fertilization ducts end in slit-like openings in the sclerotized posterior walls of the copulatory ducts. Huge masses of secretions forming large balls are detectable in the female receptacula. An important function of these secretory balls seems to be the encapsulation of spermatozoa in discrete packages in order to avoid the mixing of sperm from different males. In this way, sperm competition may be completely prevented or at least severely limited. Females seem to have full control over transferred sperm and be able to express preference for spermatozoa of certain males. The lumen of the sperm containing secretory balls is connected with the fertilization duct. Activated spermatozoa are only found in the uterus internus of females, which is an indication of internal fertilization. The sperm cells in the uterus internus are characterized by an extensive cytoplasm and an elongated, cone-shaped nucleus. The male genital system of I. lannaianum consists of thick testes and thin convoluted vasa deferentia that open into the wide ductus ejaculatorius. The voluminous globular palpal bulb is filled with seminal fluid consisting of a globular secretion in which only a few spermatozoa are embedded. The spermatozoa are encapsulated by a sheath produced in the genital system. The secretions in females may at least partly consist of male secretions that could be involved in the building of the secretory balls or play a role in sperm activation. The male secretions could also afford nutriments to the spermatozoa.  相似文献   

9.
The male reproductive tract and accessory glands comprise a complex but interrelated system of tissues that are composed of many distinct cell types, all of which contribute to the ability of spermatozoa to carry out their ultimate function of fertilizing an oocyte. Spermatozoa undergo their final steps of maturation as they pass through the male excurrent duct, which includes efferent ducts, the epididymis and the vas deferens. The composition of the luminal environment in these organs is tightly regulated. Major fluid reabsorption occurs in efferent ducts and in the epididymis, and leads to a significant increase in sperm concentration. In the distal epididymis and vas deferens, fluid secretion controls the final fluidity of the luminal content. Therefore, the process of water movement in the excurrent duct is a crucial step for the establishment of male fertility. Aquaporins contribute to transepithelial water transport in many tissues, including the kidney, the brain, the eye and the respiratory tract. The present article reviews our current knowledge regarding the distribution and function of aquaporins in the male excurrent duct.  相似文献   

10.
The male reproductive tract and accessory glands comprise a complex but interrelated system of tissues that are composed of many distinct cell types, all of which contribute to the ability of spermatozoa to carry out their ultimate function of fertilizing an oocyte. Spermatozoa undergo their final steps of maturation as they pass through the male excurrent duct, which includes efferent ducts, the epididymis and the vas deferens. The composition of the luminal environment in these organs is tightly regulated. Major fluid reabsorption occurs in efferent ducts and in the epididymis, and leads to a significant increase in sperm concentration. In the distal epididymis and vas deferens, fluid secretion controls the final fluidity of the luminal content. Therefore, the process of water movement in the excurrent duct is a crucial step for the establishment of male fertility. Aquaporins contribute to transepithelial water transport in many tissues, including the kidney, the brain, the eye and the respiratory tract. The present article reviews our current knowledge regarding the distribution and function of aquaporins in the male excurrent duct.  相似文献   

11.
The process by which spermatid cytoplasmic volume is reduced and cytoplasm eliminated during spermiogenesis was investigated in the bullfrog Rana catesbeiana. At early phases of spermiogenesis, newly formed, rounded spermatids were found within spermatocysts. As acrosomal development, nuclear elongation, and chromatin condensation occurred, spermatid nuclei became eccentric within the cell. A cytoplasmic lobe formed from the caudal spermatid head and flagellum and extended toward the seminiferous tubule lumen. The cytoplasmic lobe underwent progressive condensation whereby most of its cytoplasm became extremely electron dense and contrasted sharply with numerous electron-translucent vesicles contained therein. At the completion of spermiogenesis, many spermatids with their highly condensed cytoplasm still attached were released from their Sertoli cell into the lumen of the seminiferous tubule. There was no evidence of the phagocytosis of residual bodies by Sertoli cells. Because spermatozoa are normally retained in the testis in winter and are not released until the following breeding season, sperm were induced to traverse the duct system with a single injection of hCG. Some spermatids remained attached to their cytoplasm during the sojourn through the testicular and kidney ducts; however, by the time the sperm reached the Wolffian duct, separation had occurred. The discarded cytoplasmic lobe (residual body) appeared to be degraded with the epithelium of the Wolffian duct. It was determined that the volume of the spermatid was reduced by 87% during spermiogenesis through a nuclear volume decrease of 76% and cytoplasmic volume decrease of 95.3%.  相似文献   

12.
Abstract The ultrastructure of unicellular accessory glands (= prostate glands) and external male ducts of the cestode Cylindrotaenia hickmaniare described. Accessory glands open into the lumen of the external common sperm duct (= external vas deferens). The gland cells contain abundant endoplasmic reticulum, Golgi bodies and secretory bodies, and have elongate necks that pierce the apical cytoplasm of the duct. Cell contact with the apical cytoplasm of the sperm duct is mediated by septate desmosomes. Accessory glands secrete spherical particles, with a diameter of approximately 70 nm, that adhere to spermatozoa. The roles of these accessory glands may relate to activity of the sperm or development of the female system after insemination. Paired sperm ducts arise from testes, and unite to form a common sperm duct. Each duct consists of a tubular anucleate cytoplasmic region which is supported by nucleated cytons that lie sunken in the parenchyma. The apical cytoplasm of the paired sperm ducts (= vasa efferentia) possesses apical microvilli and abundant mitochondria, but few other cytoplasmic features. The apical cytoplasm of the common sperm duct possesses sparse apical microvilli and numerous electronlucent vesicles. The male gonoducts form an elongate syncytium which is markedly polarized along the length of the ducts. The ducts also display apical–basal polarity in that sunken nucleated cytons support the apical cytoplasm which in turn has distinct basal and apical domains.  相似文献   

13.
The histomorphology of the male reproductive system and surface morphology of the “peg-and-socket” in Argulus japonicus are described from serial sagittal and transverse sections and scanning electron micrographs. The prostate complex consists of a glandular part, a reservoir for storing the secretion, and an efferent duct opening into the ejaculatory duct. The openings of both the vas deferens and the prostate duct into the ejaculatory duct are guarded by sphincters. The ejaculatory ducts, which are lined by tall columnar epithelial cells, do not open into the cuticle-lined genital atrium but are blind-ending tubes. This observation and results obtained from observing live specimens, as well as the fact that no spermatophores are formed, suggest that semen could leave the ejaculatory duct only after puncturing of its walls. It is suggested that sperm transfer is accomplished in the following manner: during copulation contraction of the muscular walls of the vas deferens and prostate duct causes semen to be pumped into the ejaculatory duct, which is then closed off by sphincters and a high internal pressure is developed. When a spermathecal spine penetrates the walls of the ejaculatory duct, semen flows from the ejaculatory duct into the spermathecal vesicle due to the higher pressure in the ejaculatory duct. This mechanism is analogous to the sucking up of fluid with a hypodermic syringe. © 1993 Wiley-Liss, Inc.  相似文献   

14.
The testicular organization and semicystic spermatogenesis of Scorpaena porcus and Scorpaena scrofa are analyzed by means of optic and electron microscopy and immunohistochemical techniques. The testicular structure of S. porcus and S. scrofa belongs to the unrestricted spermatogonial type, but has typical features of the restricted type. Moreover, the structure presents an epithelioid arrangement of Sertoli and germ cells rather than the germinal epithelium that appears in the majority of teleosts. After the cysts open, Sertoli cells hypertrophy and remain on the basement membrane, linked by interdigitations and tight junctions and bordering the lumen of the lobule, which at this moment works as an efferent duct. Secretions of Sertoli cells usually function in the nutrition of germ cells, and they seem to contribute in it even in this kind of spermatogenesis in which the free lumen spermatids do not have any connection with Sertoli cells. In addition, Sertoli cells can divide after the cysts have broken apart and hypertrophied, suggesting that they are still important for the final maturation of spermatozoa and seminal fluid formation. J. Morphol. 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

15.
The ameroseiid mite Hattena cometis has a male genital system that consists of an unpaired, u‐shaped testis and paired deferent ducts leading into an unpaired accessory genital gland and ejaculatory duct. The genital opening is located anteriorly immediately in front of the sternal shield. Spermatogenesis is simple, probably due to the haploid nature of the male. Eight stages of spermatogenesis could be roughly distinguished. Mature spermatozoa as found in the deferent duct lumen are peculiar in having a bisected nucleus and numerous peripheral flat chambers, which were formed from indentations of the plasmalemma. In inseminated females, spermatozoa were observed in the syncytial tissue of the sperm access system and in the somatic cells of the ovary. These spermatozoa have achieved a new structure, i.e., an electron‐dense plate dividing the cell into two unequal halves. The dense plate has an intricate substructure. Its function is unknown. These sperm cells are considered to represent capacitated spermatozoa. The peripheral chambers are reduced in number inside the female. Similar sperm cells, containing a dense plate, were seen in vacuoles within the epithelium of the deferent duct of one male. These cells are evidently under destruction, but before being completely dissolved had undergone a development leading beyond that of the mature sperm cells found in the deferent duct. Apparently, entering the cell of the deferent duct epithelium or the syncytium tissue triggers the production of the dense plate (or the capacitation process). Our observations are compared with results obtained from other anactinotrichid Acari, mainly Gamasida, and confirm and complete the interpretation of the correlated evolution of components of gamasid reproductive systems. J. Morphol. 274:1010–1025, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

16.
We describe the histological characteristics of the testis and spermatogenesis of the cave molly Poecilia mexicana, a viviparous teleost inhabiting a sulfur spring cave, Cueva del Azufre, in Tabasco, Southern Mexico. P. mexicana has elongate spermatogonial restricted testes with spermatogonia arranged in the testicular periphery. Germ cell development occurs within spermatocysts. As spermatogenesis proceeds, the spermatocysts move longitudinally from the periphery of the testis to the efferent duct system, where mature spermatozoa are released. The efferent duct system consists of short efferent duct branches connected to a main efferent duct, opened into the genital pore. Spermatogenesis consisted of the following stages: spermatogonia (A and B), spermatocytes (primary and secondary), spermatids, and spermatozoa. The spermatozoa are situated within spermatocysts, with their heads oriented toward the periphery and flagella toward the center. Once in the efferent duct system, mature spermatozoa are packaged as unencapsulated sperm bundles, that is, spermatozeugmata. We suggest that the histological characteristics of the testis and spermatogenesis of P. mexicana from the Cueva del Azufre, and the viviparous condition where the spermatozoa enter in the female without been in the water, have allowed them to invade sulfurous and/or subterranean environments in Southern Mexico, without requiring complex morphofunctional changes in the testis or the spermatogenetic process.  相似文献   

17.
We investigated the structure of the male reproductive system in Ichthyophis supachaii. The testis comprises a series of mulberry‐like lobes, each of which contains testis lobules occupied by germ cysts. A single cyst consists of synchronously developing germ cells. Six spermatogenic cell types, viz. primary spermatogonia, secondary spermatogonia, primary spermatocytes, secondary spermatocytes, spermatids and spermatozoa, have been identified and described. Notably, the testis of I. supachaii encompasses specific organization patterns of spermatids and spermatozoa during spermiogenesis. Spermiating cysts rupture and release spermatozoa to the collecting ducts, which are subsequently transported to the sperm duct, Wolffian duct and cloaca. We report for the first time ciliated cells in the epithelium of the caecilian Wolffian duct. The cloaca is divided into the urodeum and phallodeum. The urodeum has ciliated and glandular epithelia at its dorsolateral and ventral regions, respectively, as the lining of its internal surface. The muscular phallodeum is lined by ciliated epithelium. Paired Mullerian ducts lie parallel to the intestine and join the cloaca. The posterior portion of the duct is modified as the Mullerian gland. The most posterior region is non‐glandular and lined by ciliated epithelium. Our findings contribute further to information on the reproductive biology of caecilians in Thailand.  相似文献   

18.
Spermatozoa undergo important maturational changes as they pass through the epididymal duct. Some domestic cats and many species of wild felids have high proportions of abnormal spermatozoa in their ejaculates. The epididymis has been shown to be able to remove certain abnormal sperm forms in some species while other sperm abnormalities originate in the epididymis. So far, it has not been shown how the epididymis affects sperm morphology in the domestic cat. Therefore, motility and sperm morphology were studied in spermatozoa from the efferent ducts and from the 6 regions of the epididymal duct. There were significant decreases in the proportions of spermatozoa with abnormalities of the sperm head, acrosomal defects, acrosomal abnormalities and in the proportion of midpiece abnormalities. In contrast, there was a small but significant increase in the proportion of spermatozoa with abnormalities of the tail. Spermatozoa acquired the capacity for motility in Region 4, where the cytoplasmic droplet also moved from a proximal to a distal position, indicating that important maturational changes take place in this region. The results of this study demonstrate that the proportions of sperm abnormalities originating in the testes decrease during epididymal transport, while some sperm tail abnormalities may actually originate in the epididymis.  相似文献   

19.
The elongate paired testes of Sebastodes paucispinis consist of tubules which radiate from a single longitudinal sperm duct and terminate blindly at the periphery of the testis. They are lined by an epithelium consisting of columnar cells with distinct elliptical nuclei. During fall and winter, germ cells migrate inward from the fibrous capsule of the testis and become lodged among the tubule-boundary cells of the seminiferous tubules where they mature into primary spermatogonia. Each of these undergoes several mitotic divisions to produce large cysts of secondary spermatogonia. Subsequent spermatogenic divisions within these cysts produce large sperm-filled cysts which rupture, releasing the spermatozoa into the lumina of the seminiferous tubules. Seasonal cycles of cholesterol and carbohydrate production by the tubule-boundary cells suggest that they perform the same functions as the Leydig cells (androgen production) and Sertoli cells (nutrition) of other vertebrates. The paired fusiform ovaries consist of spongy tissue surrounded by thin-walled muscular ovisacs that converge posteriorly to form a genital duct. The spongy tissue is arranged in transverse lamellae composed of fibrovascular trunks which support epithelial and ovigerous tissue. A series of oocytes (up to 150 μ in diameter) is produced continually from oogonial nests distributed throughout each lamella. Vitellogenesis begins in July and continues throughout the summer. The follicle surrounding the mature oocyte consists of a bilaminar striated vitelline membrane, two epithelial layers (granulosa and theca), and a profuse capillary network. Spermatozoa appear within the ovaries from October to March. Ovulation probably precedes fertilization since spermatozoa were never found within pre-ovulatory or post-ovulatory follicles. The follicular epithelium regresses after ovulation but the capillary beds remain intact, thus providing a mechanism for fetal-maternal exchange of gases and nitrogenous wastes.  相似文献   

20.
The light microscopic structure of the testis and genital duct system of the freshwater stingray Himantura signifer was observed. The testis is composed of lobes having numerous spermatocysts in a dorsoventral zonated arrangement. The germinal papilla at the middorsal surface of the testicular lobe is the origin site of spermatocyst development, where mesenchymal-like cells are predominantly found. The association of a Sertoli cell precursor with a spermatogonium marks the onset of spermatocyst formation and development. The newly formed spermatocysts at the dorsal end of the germinal zone replace the older ones, which are sequentially moved to the ventral side and are termed spermatogonial, spermatocyte, spermatid, spermatozoal, and degenerate zones. In the degenerate zone, the spermatocysts deteriorate after releasing the spermatozoa into the intratesticular duct, where they are further transported through the extratesticular duct system and finally stored at the seminal vesicle. The epithelial lining of the genital duct is a pseudostratified ciliated columnar with no muscular layer underneath; thus, sperm are conveyed through ciliary activity. The interesting features of the present study are the finding of mesenchymal-like cells in the germinal papilla and the nonaggregated formation of sperm in the seminal vesicle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号