首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The organization of the nervous system of Archilopsis unipunctata Promonotus schultzei and Paramonotus hamatus (Monocelididae, Proseriata) and Stenostomum leucops (Catenulida) and Microstomum lineare (Macrostomida) was studied by immunocytochemistry, using antibodies to the authentic flatworm neuropeptide F (NPF) (Moniezia expansa). The organization of the nervous system of the Monocelididae was compared to that of the nervous system of Bothriomolus balticus (Otoplanidae), a previously studied species of another family of the Proseriata. The results show that the main nerve cords (MCs), independent of lateral or ventral position in the Monocelididae and the Otoplanidae, correspond to each other. The study also confirms the status of the lateral cords as main cords (MCs) in S. leucops and M. lineare. Common for MCs in the members of the investigated taxa are the following features: MCs consist of many fibres, originate from the brain and are adjoined to 5-HT-positive neurons. In Monocelididae and Otoplanidae, the MCs additionally have the same type of contact to the pharyngeal nervous system. Also common for both proseriate families is the organization of the two lateral nerve cords, with weaker connections to the brain, and the pair of dorsal cords running above the brain. The organization of the minor cords differs. The Monocelididae have a pair of thin ventral cords forming a mirror image of the dorsal pair. Furthermore, an unpaired ventral medial cord connecting medial commissural cells was observed in P. schultzei. Marginal nerve cords, observed in Otoplanidae, are absent in Monocelididae. All minor nerve cords are closely connected to the peripheral nerve plexus. The postulated trends of condensation of plexal fibres to cords and/or the flexibility of the peripheral nerve plexus are discussed. In addition, the immunoreactivity (IR) pattern of NPF was compared to the IR patterns of the neuropeptide RFamide and the indoleamine, 5-HT (serotonin). Significant differences between the distribution of IR to NPF and to 5-HT occur. 5-HT-IR dominates in the submuscular and subepidermal plexuses. In the stomatogastric plexus of M. lineare, only peptidergic IR is observed in the intestinal nerve net. The distribution of NPF-IR in fibres and cells of the intestinal wall in M. lineare indicates a regulatory function for this peptide in the gut, while a relationship with ciliary and muscular locomotion is suggested for the 5-HT-IR occurring in the subepidermal and submuscular nerve, plexuses. In M. lineare, the study revealed an NPF- and RFamide-positive cell pair, marking the finished development of new zooids. This finding indicates that constancy of these cells is maintained in this asexually reproducing and regenerating species.  相似文献   

3.
The microscopic anatomy and ultrastructure of the nervous system of Phoronopsis harmeri was investigated using histological techniques and electron microscopy. The collar nerve ring is basically formed by circular nerve fibers originating from sensitive cells of tentacles. The dorsal nerve plexus principally consists of large motor neurons. It is shown for the first time that the sensitive collar nerve ring immediately passes into the motor dorsal nerve plexus. The basic components of the nervous system have similar cytoarchitectonics and a layered structure. The first layer is formed by numerous nerve fibers surrounded by the processes of glia-like cells. The bodies of glia-like cells constitute the second layer. The third layer consists of neuron bodies overarched by the bodies of epidermal cells. The giant nervous fiber is accompanied by more than one hundred nerve fibers of a common structure and, thus, marks the true longitudinal nerve. The phoronids possess one or two longitudinal nerves. It is supposed that the plexus nature of the nervous system in phoronids may be related to their phylogenesis. A comparison of the nervous system organization and body plans among the Lophophorata suggests that the nervous system of phoronids cannot be considered as a reductive variant of the brachiopod nervous system. At the same time, the structure of the nervous system of bryozoans can be derived from that of phoronids.  相似文献   

4.
The epidermis of the doliolaria larva of the Florometra serratissima is differentiated into distinct structures including an apical organ, adhesive pit, ganglion, ciliary bands, nerve plexus, and vestibular invagination. All these structures possess unique cell-types, suggesting that they are functionally specialized in the larva, except the vestibular invagination that becomes the postmetamorphic stomodeum. The epidermis also contains yellow cells, amoeboid-like cells, and secretory cells. The enteric sac, hydrocoel, axocoel, and somatocoels have differentiated but are probably not functional in the doliolaria stage. Mesenchymal cells, around the enteric sac and coeloms, appear to be actively secreting the endoskeleton and connective tissue fibers. The nervous system is composed of a nerve plexus, ganglion, and sensory receptor cells in the apical organ. The apical organ is a larval specialization of the anterior end; the ganglion is located in the base of the epidermis at the anterior dorsal end of the larva. The nerve plexus underlies most of the epidermis, although it is more prominent in the anterior region. Here, processes from sensory receptor cells of the apical organ, as well as those from nerve cells, contribute to the plexus. These processes contain one or a combination of organelles including vesicles, vacuoles, microtubules, and mitochondria. The configuration of glyoxylic acid-induced fluorescence, revealing catecholamine activity, correlates to the apical organ, nerve cells, and nerve plexus. Morphological evidence suggests that the nervous system may function in initiation and control of settlement, attachment, and metamorphosis. The crinoid larval nervous system is discussed and compared to that found in other larval echinoderms.  相似文献   

5.
The peripheral nervous system and the synapses of G. hermaphroditus are studied with the electron microscope. There is a submuscular as well as a subepithelial plexus. The subepithelial plexus is found among the muscles and between the muscles and the basement membrane. It consists of fibres containing large lucent and lysosome-like vesicles and fibres with only small lucent (synaptic) vesicles. In the deeper lying submuscular plexus also dense and dense-cored vesicles occur in the fibres. Cell bodies are not observed in the plexuses. The separate nerve supplies of the pharynx and the gonads contain nerve cells of the neurosecretory type. Fibres of the same kinds as in the brain are also seen here. The synapses in the neuropile are of two kinds. 1. Symmetrical synapses with an additional presynaptic network are most common. 2. Synapses without thickenings of membranes are observed between lateral membranes of neurites. In the peripheral nervous system are two other kinds of synapses also observed. 1. Asymmertical synapses with a denser and wider postsynaptic thickening and 2. neuromuscular junctions. Neurites containing accumulations of small vesicles against the basement membrane are also described. The organization of the peripheral nervous system is described and discussed in relation to the systematic position of G. hermaphroditus.  相似文献   

6.
The fine structure of the nerve cells and the neuropile in the brain of acoels and the peripheral nervous system and the synapses have been studied. On the basis of the vesicle content, four nerve cell types are distinguished. The presumptive glial cell is also visualized. The synapses appear to be of the following four types: asymmetrical, ribbon, symmetrical and electrical. The peripheral nervous system consists of a subepithelial and a submuscular plexus; they present asymmetrical and symmetrical synapses. In the light of these results, the nervous system of acoels should no longer be considered as primitive.  相似文献   

7.
Very little is known about esophageal innervation in the hamster. In the present study, we used protein gene product 9.5 (PGP 9.5) to determine immunohistochemically the architectural features of the enteric nervous system in the hamster esophagus. The myenteric plexus consisted of a loose and irregular network of ganglia and interganglionic nerve bundles. The density of the neurons in the myenteric plexus was relatively low (479 +/- 75/cm(2), n = 5), with a preferentially higher density in the upper cervical portion than other parts of the esophagus. Regional differences in the number of PGP 9.5-positive neurons and ganglia were observed. PGP 9.5-immunoreactive fibers in the ganglia often branched, giving rise to expanding nerve endings of laminar morphology resembling intraganglionic laminar endings described in rats and cats. Fine varicose fibers originating from the secondary plexus were occasionally observed near the motor endplates, suggested a dual innervation of the striated muscle. The submucosal plexus was free from ganglionated plexus. A regional difference in the submucosal nervous network was observed. The number of motor endplates in the inner muscle layer was higher than that in the outer muscle layer.  相似文献   

8.
The nervous system of the planula larva of Anthopleura elegantissima consists of an apical organ, one type of endodermal receptor cell, two types of ectodermal receptor cells, central neurons and nerve plexus. Both interneural and neuromuscular synapses are found in the nerve plexus. The apical organ is a collection of about 100 long, columnar cells each bearing a long cilium and a collar of about 10 microvilli. The cilia of the apical organ are twisted together to form an apical tuft. The ciliary rootlets of the apical organ cells are extremely long, reaching to the basal processes of the cells adjacent to the mesoglea. All three types of sensory cells are tall and slender in profile and are identified by the presence of one or more of the following features: microtubules, small vesicles, membrane-bound granules and synapses. The interneurons are bipolar cells with somas restricted to the aboral end, adjacent to the apical organ. All synapses observed are polarized or asymmetrical. A diagram including all the elements of the nervous system is presented and the possible functions of the nervous system are discussed in relation to larval behavior.  相似文献   

9.
The organization of the nervous system ofDendrocoelum lacteum (Tricladida, Paludicola, Dendrocelidae) andPolycelis tenuis (Tricladida, Paludicola, Planariidae) was studied by immunocytochemical double staining, using neuropeptide RFamide and serotonin (5-HT) antisera on cryosections. The study confirmed the status of the main nerve cords (MCs) as the most important and stable of the longitudinal cords and supported the hypothesis of a common phylogenetic origin of the MCs in flatworms. The ganglion-like structures along the MCs at the beginning of transverse commissures and laterla branches showed a close contact with ventral fibres of the submuscular nerve plexus indicating an origin from crossing points of insunken ring commissures. The distributional pattern and morphology of the RFamide-IR cell bodies inD. lacteum corresponded to that of neurosecretory cells. Most RFamide-IR cells were unipolar and rounded while 5-HT-IR cells were uni- bi- and multipolar. The neutropile consisted of a dense RFamide-IR and a loose 5-HT-IR network. RFamide dominated in all parts of the genital plexus.  相似文献   

10.
The distribution of cholecystokinin and gastrin-like immunoreactive cell bodies and fibers in the nervous system of 2 annelid worms, Lumbricus terrestris and Eisenia fetida, has been studied by means of immunohistochemistry. The cerebral ganglion contains 170-250, the subesophageal ganglion contains 120-150, and the ventral ganglia contain 50-75 cholecystokinin immunoreactive cells, that represent 8-12%, 8-10% and 4-5% of the total cell number, respectively. The anti-gastrin serum stained 330-360 nerve cells in the cerebral, 32-46 in the subesophageal and 7-25 in the ventral cord ganglia, representing 15-16%, 2-3% and 0.5-2% of the total cell number. Immunopositivity was found with both antisera in the enteric nervous system, where the stomatogastric ganglia and the enteric plexus contain immunoreactive cells and fibers. Immunopositive cells were found in the epithelial and subepithelial cells, as well as in nerve cells innervating the muscular layer of the gastrointestinal tube. Various epidermal sensory cells also displayed strong immunoreactivity. According to our findings and the results of several functional studies, it is suggested that in annelids cholecystokinin- and gastrin-like peptides may be involved in digestive regulation, sensory processes and central integrating processes.  相似文献   

11.
Summary This is a preliminary electron microscope investigation in which the structure of insect neurons, neuropile, and interganglionic fibers are studied.Neurons of insect are pear-shaped and have an unique prolongation which ramifies into the neuropile. Their soma is surrounded by glial prolongations that exclude the possibility of nervous contacts. The neuronal cytoplasm is rich in granular material similar to the one described as R.N.A. by several authors; it is scattered at random or associated with endoplasmic reticulum cysternae. The latter does not adopt the regular array characterizing the vertebrate Nissl bodies.A large number of naked fibers is seen in the neuropile. The content of these fibers is different in fibers of different diameter. The thinner elements appear light and show a loose reticular matrix, few vesicles, and mitochondria. The thick fibers are characterized by a denser neuroplasm constituted by a reticular matrix and rows of tiny vesicles alternating with profils of tubuli. In some of these fibers the tubuli are seen in a central position.Three main types of contact relationships between fibers are described in the neuropile. These are; a) cross contacts; b) longitudinal contacts; and c) endknob contacts. The first type is in turn subdivided into subtypes, namely: minimum-area cross contacts and maximum-area cross contacts.A glial sheath enveloping each connective nerve fiber is described. Inside the cytoplasm of such cells there are bundles of dense, thin fibrils twisted along the nerve fibers.The criteria maintained by several authors in regard to the fine structure of the synaptic region are discussed and compared with facts reported in this paper.  相似文献   

12.
Calbindin D28k, previously demonstrated in the mammalian central nervous system, has been localized to discrete neurons in the enteric nervous system of the rat. Calbindin D28k is present in cell bodies in both the myenteric and submucous plexi and in interganglionic nerve fibers in all regions of the gastrointestinal tract. Immunoreactive nerve fibers were also detected in the mucosal region, although none were observed in the pyloric sphincter, circular or longitudinal muscle layers. The highest concentration of immunoreactivity was present in the submucosal plexus and mucosa of the colon. Western blot analysis of the protein detected by the antiserum confirmed that it comigrated with purified calbindin D28k and the single immunoreactive band seen in extracts from rat brain. The colocalization of calbindin D28k with components of the peptidergic innervation was also investigated. Of the peptides studied the neurons containing both vasoactive intestinal polypeptide and neuropeptide Y in the submucous plexus were seen to exhibit calbindin D28k immunoreactivity. The neurons containing somatostatin, galanin and substance P did not demonstrate co-localization. In the stomach, calbindin D28k was detected within a small number of epithelial cells which were found to correspond to a sub-population of the somatostatin-immunoreactive endocrine cells.  相似文献   

13.
The architecture and neurochemistry of the enteric nervous system was studied by use of whole-mount preparations obtained by microdissection of the horse jejunum. A myenteric plexus and two plexuses within the submucosa were identified. The external submucosal plexus lying in the outermost region of the submucosa had both neural and vascular connections with the inner submucosal plexus situated closer to the mucosa. Counts of neurones stained for NADH-diaphorase demonstrated the wide variation in size, shape and neurone content of individual ganglia in both the external and internal submucosal plexuses. The average number of cells/ganglion was similar in each plexus (about 25 cells). Immunoreactivities for galanin, vasoactive intestinal peptide and neuropeptide Y were observed in nerve cell bodies and fibres of each of the plexuses. Immunoreactivity for substance P was extensive and strong in nerve fibres of all plexuses but was weaker in cell bodies of the submucosal neurones and absent in the cell bodies of the myenteric plexus. Comparative quantitative analysis of immunoreactive cell populations with total cell numbers (enzyme staining) was indicative of neuropeptide colocalization in the external submucosal plexus.  相似文献   

14.
We report a detailed comparative immunocytochemical mapping of enkephalin, CCK and ACTH/beta-endorphin immunoreactive nerves in the central nervous system of rat and guinea pig. Enkephalin immunoreactivity was detected in many groups of nerve cell bodies, fibers and terminals in the limbic system, basal ganglia, hypothalamus, thalamus, brain stem and spinal cord. beta-endorphin and ACTH immunoreactivity was limited to a single group of nerve cell bodies in and around the arcuate nucleus and in fibers and terminals in the midline areas of the hypothalamus, thalamus and mesencephalic periaqueductal gray with lateral extensions to the amygdaloid area. Cholecystokinin immunoreactive nerve fibers and terminals displayed a distribution similar to that of enkephalin in many regions; but striking differences were also found. An immunocytochemical doublestaining technique, which allowed simultaneous detection of two different peptides in the same tissue section, showed that enkephalin-, CCK- and ACTH/beta-endorphin-immunoreactive nerves although closely intermingled in many brain areas, occurred separately. The distributions of nerve terminals containing these neuropeptides showed striking overlaps and also paralleled the distribution of opiate receptors. This may suggest that enkephalin, CCK, ACTH and beta-endorphin may interact with each other and with opiate receptors.  相似文献   

15.
Using enzyme and immunohistochemical methods on whole-mount preparations and cryostat sections, a morphologic and semiquantitative study was performed of the nervous tissue in the appendix and the ileum (areas with and without Peyer's patches) of the rabbit. The plexus submucous externus (Meissner) consists of a network of small ganglia, vaguely associated with the vascular submucosal plexus. From the nerve cell bodies, cell processes occasionally penetrate the lymphoid follicles at the junction between the mucosa and the submucosa while other extensions form a dense plexus in the lamina propria of the mucosa. No nerve fibers are present in the dome of the follicles. The plexus submucous internus (Henle), consisting of large cell bodies and large processes, closely follows the blood vessels. The numeration of the nerve fibers of the submucosal plexus endorses the histological finding that the appendix is a richly innervated lymphoid organ. In addition, the plexus myentericus (Auerbach) of the appendix is a network of small meshes, while in the ileum, in the area of Peyer's patches, the same plexus is composed of a network with large meshes. These differences point to a higher density of innervation in the appendix. Yet a specialized anatomic distribution of the innervation of lymphoepithelial structures cannot be demonstrated.  相似文献   

16.
The system of muscle fibers associated with the brain and lateral nerve cords is present in all major groups of enoplan nemerteans. Unfortunately, very little is known about the functional role and spatial arrangement of these muscles of the central nervous system. This article examines the architecture of the musculature of the central nervous system in two species of monostiliferous nemerteans (Emplectonema gracile and Tetrastemma cf. candidum) using phalloidin staining and confocal microscopy. The article also briefly discusses the body‐wall musculature and the muscles of the cephalic region. In both species, the lateral nerve cords possess two pairs of cardinal muscles that run the length of the nerve cords and pass through the ventral cerebral ganglia. A system of peripheral muscles forms a meshwork around the lateral nerve cords in E. gracile. The actin‐rich processes that ramify within the nerve cords in E. gracile (transverse fibers) might represent a separate population of glia‐like cells or sarcoplasmic projections of the peripheral muscles of the central nervous system. The lateral nerve cords in T. cf. candidum lack peripheral muscles but have muscles similar in their position and orientation to the transverse fibers. The musculature of the central nervous system is hypothesized to function as a support system for the lateral nerve cords and brain, preventing rupturing and herniation of the nervous tissue during locomotion. The occurrence of muscles of the central nervous system in nemerteans and other groups and their possible relevance in taxonomy are discussed. J. Morphol. 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

17.
D. Reiter  M. Wikgren 《Hydrobiologia》1991,227(1):229-229
Immunocytochemical characterization of the neuropeptides FMRF-amide and serotonin (5-HT) is a well-known method successfully applied to demonstrate nervous-system morphology in several platyhelminths (see Wikgren & Reuter, 1985, and Reuter, 1988, for review). We have immunolabeled whole-mount preparations of Macrostomum hystricinum marinum Rieger from cultures (see Rieger et al., 1988) with anti-SALMF-amide, an antibody specific for the C-terminal pentapeptide sequence of the neuropeptide GNFSALMF-amide recently isolated from echinoderms (source M. Thorndyke, England). Immunoreactivity to SALMF-amide gave a more detailed picture of the nervous system of M. hystricinum than FMRF-amide. Conventional light microscopy (Luther, 1905) shows this nervous system to consist of a bilobed brain, a pharyngeal nerve-ring system, a posterior commissure, and two main ventrolateral nerve cords. Immunostaining reveals, in addition, two thin paired longitudinal nerve strands and fine subepithelial and submuscular nerve nets. Anti-SALMF-amide labels a distinct class of neurons, causing the main lateral longitudinal cords and pharyngeal nerve-ring system to appear more filamentous than with other techniques. Recent fine-structural investigations on the nervous system of Macrostomum hystricinum marinum revealed several axon types with characteristic vesicles and neurotubules (D. R. pers. obs.). Partly supported by FWF grant P7816.  相似文献   

18.
Based on the literature and own data, consecutive stages of development of the central nervous system (CNS) in the lower Bilateria are considered - separation of brain from parenchyma, formation of its own envelopes, and development of the stem and orthogonal nervous system. Results of histochemical (cholinergic and catecholaminergic) and immunocytochemical (5-HT- and FMRFamid immunoreactive) studies of the CNS in representatives of Acoela, free living and parasitizing Plathelminthes and Rotifera are considered. The comparative analysis makes it possible to describe development and complication of the initially primitive Bilateria plexus nervous system. A special attention will be paid to the Acoela phylogenesis, based on molecular-biology data and results of study of their nervous system.  相似文献   

19.
The intramural nervous apparatus of rabbit lymphoid organs was examined after 15 and 30 sessions of electric stimulation of the posterior hypothalamus. The function of nerve cells was evaluated by cytophotometry according to the content of catecholamines and acetylcholinesterase (ACE) activity. In the mesenteric lymph nodes, stimulation led to a decrease in the activity of both adrenergic and ACE-containing nerve cells. The spleen demonstrated a reduction in the catecholamine content in the perivascular nerve plexuses, with a simultaneous rise of the catecholamine content in the fibers located in the parenchyma, which evidences inhibition of the neurogenous mechanisms of vasomotor control and possible selective activation of the sympathetic mechanisms involved in the regulation of the immunogenesis. Thymic preparations impregnated with silver salts manifested high argyrophilia of the nerve cells, characteristic of the reactive phase of the destructive process. The problems of the hypothalamic effects on the blood supply and functions of the immune system organs are discussed.  相似文献   

20.
Summary Pancreatic polypeptide (PP) is a candidate hormone of unknown physiological significance. It is produced by a population of endocrine cells in the pancreas. In the present study a PP-like peptide was found to occur in the mammalian and avian central and peripheral nervous systems. Immunoreactive nerve fibres and nerve cell bodies were widely distributed in the brain. Dense accumulations of nerve fibres occurred in the following areas: nucleus accumbens, interstitial nucleus of the stria terminalis, para- and periventricular hypothalamic nuclei, and medial preoptic area. In addition, nerve fibres were regularly seen in cortical areas. Immunoreactive perikarya were observed in the following regions: cortex, nucleus accumbens, neostriatum and septum. In the gut, immunoreactive nerve fibers were distributed in the myenteric plexus, in smooth muscle, around blood vessels, and in the core of the villi. Immunoreactive perikarya occurred in the submucosal and myenteric plexus, suggesting that PP immunoreactive nerves are intrinsic to the gut.In the species examined, the neuronal PP-like peptide could be demonstrated with an antiserum raised against avian PP, but not with those raised against bovine or human PP. Thus, neuronal PP is distinct from the PP that occurs in pancreatic endocrine cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号