首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Retinitis pigmentosa (RP) is a heterogeneous group of inherited retinal degeneration. This group of disorders essentially leads to blindness due to mutations in different genes. The genetic basis affected by sporadic and inherited autosomal dominant, autosomal recessive or X-linked mutations is complex. In humans, RP is in most cases associated with missense mutations in the rhodopsin gene (RHO). RHO plays an important role in phototransduction pathways. So far, few studies have described associations between chromosomal alterations and RP. In this study, we present a case report of a premature, 32-week-old male baby who suffered from retinopathy, facial dysmorphisms and other disorders. His chromosomes were analyzed by conventional and high-resolution chromosomal techniques. This analysis revealed structural aberrations on chromosomes 3 and 5 with an apparently balanced chromosomal translocation with karyotype 46,XY,t(3;5)(q25;q11.2). Remarkably, the 3q breakpoint on the long arm of chromosome 3 is located close to the physical RHO chromosomal gene location. In this study, we describe presumably for the first time a possible association between a 3q;5q chromosomal alteration and RP. We conclude that the new detected chromosomal translocation may lead either to loss or inactivation of the intragenic RHO gene or its respective gene regulatory region. As a consequence, the chromosomal aberration may be responsible for retinitis pigmentosa.  相似文献   

2.
In vivo gene replacement for the treatment of inherited disease is one of the most compelling concepts in modern medicine. Adeno-associated virus (AAV) vectors have been extensively used for this purpose and have shown therapeutic efficacy in a range of animal models. Successful translation to the clinic was initially slow, but long-term expression of donated genes at therapeutic levels has now been achieved in patients with inherited retinal disorders and haemophilia B. Recent exciting results have raised hopes for the treatment of many other diseases. As we discuss here, the prospects and challenges for AAV gene therapy are to a large extent dependent on the target tissue and the specific disease.  相似文献   

3.
RNA interference: potential therapeutic targets   总被引:2,自引:0,他引:2  
One of the most exciting findings in recent years has been the discovery of RNA interference (RNAi). RNAi methodologies hold the promise to selectively inhibit gene expression in mammals. RNAi is an innate cellular process activated when a double-stranded RNA (dsRNA) molecule of greater than 19 duplex nucleotides enters the cell, causing the degradation of not only the invading dsRNA molecule, but also single-stranded (ssRNAs) RNAs of identical sequences, including endogenous mRNAs. The use of RNAi for genetic-based therapies has been widely studied, especially in viral infections, cancers, and inherited genetic disorders. As such, RNAi technology is a potentially useful method to develop highly specific dsRNA-based gene-silencing therapeutics.  相似文献   

4.
Retinitis pigmentosa (RP) is an inherited progressive retinal disease with a complex inheritance pattern affecting about 1 in 3,500 people worldwide. To date, a large number of sequence changes in the causal contributor genes of wide-spectrum heterogeneous RP were reported, including deletions, insertions, or substitutions that lead missense mutations or truncations. Here we present an association between the clinical presentations of adRP and sequence variants involving novel M216L mutation in the RHO gene together with nonsynonimous sequence changes R872H, N985Y, A1670T, S1691P, C2033Y, and synonimous Q1725Q with novel, N1521N, and T1733T SNPs in the RP1 gene of uncertain pathogenicity in a Turkish family with autosomal dominant retinitis pigmentosa.  相似文献   

5.
Retinitis pigmentosa (RP) is a group of inherited disorders affecting 1 in 3000-7000 people and characterized by abnormalities of the photoreceptors (rods and cones) or the retinal pigment epithelium of the retina which lead to progressive visual loss. RP can be inherited in an autosomal dominant, autosomal recessive or X-linked manner. While usually limited to the eye, RP may also occur as part of a syndrome as in the Usher syndrome and Bardet-Biedl syndrome. Over 40 genes have been associated with RP so far, with the majority of them expressed in either the photoreceptors or the retinal pigment epithelium. The tremendous heterogeneity of the disease makes the genetics of RP complicated, thus rendering genotype-phenotype correlations not fully applicable yet. In addition to the multiplicity of mutations, in fact, different mutations in the same gene may cause different diseases. We will here review which genes are involved in the genesis of RP and how mutations can lead to retinal degeneration. In the future, a more thorough analysis of genetic and clinical data together with a better understanding of the genotype-phenotype correlation might allow to reveal important information with respect to the likelihood of disease development and choices of therapy.  相似文献   

6.
Type 1 Usher syndrome (USH1) is a recessively inherited condition, characterized by profound prelingual deafness, vestibular areflexia, and prepubertal onset of retinitis pigmentosa (RP). While the auditory component of USH1 can be treated by cochlear implants, to date there is no effective treatment for RP. USH1 can be caused by mutations in each of at least six genes. While truncating mutations of these genes cause USH1, some missense mutations of the same genes cause nonsyndromic deafness. These observations suggest that partial or low level activity of the encoded proteins may be sufficient for normal retinal function, although not for normal hearing. In individuals with USH1 due to nonsense mutations, interventions enabling partial translation of a full-length functional protein may delay the onset and/or progression of RP. One such possible therapeutic approach is suppression of nonsense mutations by small molecules such as aminoglycosides. We decided to test this approach as a potential therapy for RP in USH1 patients due to nonsense mutations. We initially focused on nonsense mutations of the PCDH15 gene, underlying USH1F. Here, we show suppression of several PCDH15 nonsense mutations, both in vitro and ex vivo. Suppression was achieved both by commercial aminoglycosides and by NB30, a new aminoglycoside-derivative developed by us. NB30 has reduced cytotoxicity in comparison to commercial aminoglycosides, and thus may be more efficiently used for therapeutic purposes. The research described here has important implications for the development of targeted interventions that are effective for patients with USH1 caused by various nonsense mutations. Annie Rebibo-Sabbah and Igor Nudelman contributed equally to this work.  相似文献   

7.
师明磊  赵志虎  王洋  陈惠鹏 《遗传》2009,31(7):683-689
siRNA是一种由siRNA介导的转录后基因沉默。自利用RNAi沉默目的基因获得成功以来, 体内应用RNAi的研究受到高度重视。由于siRNA本身的不稳定性以及体内的复杂环境, siRNA递送的安全性与有效性成为目前关注的重点。文章就目前报道的siRNA体内递送方式进行了综述。  相似文献   

8.
In gene therapy of dominantly inherited diseases with small interfering RNA (siRNA), mutant allele specific suppression may be necessary for diseases in which the defective gene normally has an important role. It is difficult, however, to design a mutant allele-specific siRNA for trinucleotide repeat diseases in which the difference of sequences is only repeat length. To overcome this problem, we use a new RNA interference (RNAi) strategy for selective suppression of mutant alleles. Both mutant and wild-type alleles are inhibited by the most effective siRNA, and wild-type protein is restored using the wild-type mRNA modified to be resistant to the siRNA. Here, we applied this method to spinocerebellar ataxia type 6 (SCA6). We discuss its feasibility and problems for future gene therapy.  相似文献   

9.
Lysosomal storage disorders (LSDs) are monogenic inborn errors of metabolism. Various groups have been delineated according to the affected pathway and the accumulated substrate, and new entities are still being identified. They are severe disorders with a heterogeneous clinical spectrum encompassing visceral, skeletal and neurologic involvement, and high morbidity and mortality. Most of the genes encoding the lysosomal enzymes have been cloned, and animal models have been obtained for almost each disease. In the last decades, LSDs have been models for the development of molecular and cellular therapies for inherited metabolic diseases. Studies in preclinical in vitro systems and animal models have allowed the successful development of bone marrow transplantation, substrate deprivation, enzyme replacement therapy and gene transfer methods as therapeutic options for several LSDs. The aim of this paper is to review the biology of acid hydrolases and lysosomal membrane proteins, to describe the systematic classification of LSDs and the most recently identified entities, and to briefly review novel therapeutic approaches for two lipidoses: Gaucher disease and Fabry disease.  相似文献   

10.
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease resulting in the selective death of motor neurons in the brain and spinal cord. Some familial cases of ALS are caused by dominant mutations in the gene encoding superoxide dismutase (SOD1). The emergence of interfering RNA (RNAi) for specific gene silencing could be therapeutically beneficial for the treatment of such dominantly inherited diseases. We generated a lentiviral vector to mediate expression of RNAi molecules specifically targeting the human SOD1 gene (SOD1). Injection of this vector into various muscle groups of mice engineered to overexpress a mutated form of human SOD1 (SOD1(G93A)) resulted in an efficient and specific reduction of SOD1 expression and improved survival of vulnerable motor neurons in the brainstem and spinal cord. Furthermore, SOD1 silencing mediated an improved motor performance in these animals, resulting in a considerable delay in the onset of ALS symptoms by more than 100% and an extension in survival by nearly 80% of their normal life span. These data are the first to show a substantial extension of survival in an animal model of a fatal, dominantly inherited neurodegenerative condition using RNAi and provide the highest therapeutic efficacy observed in this field to date.  相似文献   

11.
Short hairpin RNA-expressing bacteria elicit RNA interference in mammals   总被引:3,自引:0,他引:3  
RNA-interference (RNAi) is a potent mechanism, conserved from plants to humans for specific silencing of genes, which holds promise for functional genomics and gene-targeted therapies. Here we show that bacteria engineered to produce a short hairpin RNA (shRNA) targeting a mammalian gene induce trans-kingdom RNAi in vitro and in vivo. Nonpathogenic Escherichia coli were engineered to transcribe shRNAs from a plasmid containing the invasin gene Inv and the listeriolysin O gene HlyA, which encode two bacterial factors needed for successful transfer of the shRNAs into mammalian cells. Upon oral or intravenous administration, E. coli encoding shRNA against CTNNB1 (catenin beta-1) induce significant gene silencing in the intestinal epithelium and in human colon cancer xenografts in mice. These results provide an example of trans-kingdom RNAi in higher organisms and suggest the potential of bacteria-mediated RNAi for functional genomics, therapeutic target validation and development of clinically compatible RNAi-based therapies.  相似文献   

12.
A family affected with autosomal dominant retinitis pigmentosa (RP) is presented. Two clinically affected patients (mother and daughter) were heterozygous for the same novel missense mutation (Val137Met) of the rhodopsin gene (RHO). Both heterozygous and homozygous cases were observed among their few symptomatic relatives. Wide clinical variation was exhibited among the individuals with mutations in this family. None of the controls showed this change in RHO, nor has it been previously reported in other RP families. No other RHO mutation was observed. Additional genetic or environmental factors could play a role in modulating the penetrance and clinical expression of this RHO mutation. Received: 20 February 1995 / Revised: 1 September 1995, 27 November 1995, 3 February 1996  相似文献   

13.
The therapeutic potential of RNA interference   总被引:16,自引:0,他引:16  
Uprichard SL 《FEBS letters》2005,579(26):5996-6007
In recent years, we have witnessed the discovery of a new mechanism of gene regulation called RNA interference (RNAi), which has revitalized interest in the development of nucleic acid-based technologies for therapeutic gene suppression. This review focuses on the potential therapeutic use of RNAi, discussing the theoretical advantages of RNAi-based therapeutics over previous technologies as well as the challenges involved in developing RNAi for clinical use. Also reviewed, are the in vivo proof-of principle experiments that provide the preclinical justification for the continued development of RNAi-based therapeutics.  相似文献   

14.
Mutations in the genes necessary for the structure and function of vertebrate photoreceptor cells are associated with multiple forms of inherited retinal degeneration. Mutations in the gene encoding RHO (rhodopsin) are a common cause of autosomal dominant retinitis pigmentosa (adRP), with the Pro23His variant of RHO resulting in a misfolded protein that activates endoplasmic reticulum stress and the unfolded protein response. Stimulating macroautophagy/autophagy has been proposed as a strategy for clearing misfolded RHO and reducing photoreceptor death. We found that retinas from mice heterozygous for the gene encoding the RHOP23H variant (hereafter called P23H) exhibited elevated levels of autophagy flux, and that pharmacological stimulation of autophagy accelerated retinal degeneration. In contrast, reducing autophagy flux pharmacologically or by rod-specific deletion of the autophagy-activating gene Atg5, improved photoreceptor structure and function. Furthermore, proteasome levels and activity were reduced in the P23H retina, and increased when Atg5 was deleted. Our findings suggest that autophagy contributes to photoreceptor cell death in P23H mice, and that decreasing autophagy shifts the degradation of misfolded RHO protein to the proteasome and is protective. These observations suggest that modulating the flux of misfolded proteins from autophagy to the proteasome may represent an important therapeutic strategy for reducing proteotoxicity in adRP and other diseases caused by protein folding defects.  相似文献   

15.
The past decade has witnessed remarkable advances in our ability to treat inherited metabolic disorders, especially the lysosomal storage diseases, a group of more than 40 disorders, each of which is caused by the deficiency of a lysosomal enzyme or protein. During the past few years, both enzyme replacement and enhancement therapies have been developed to treat these disorders. This review discusses the successes and shortcomings of these therapeutic strategies, and the contributions that they have made to treating lysosomal storage diseases.  相似文献   

16.
Lithuanian patients with visual problems were clinically examined for retinitis pigmentosa (RP). A total of 33 unrelated families with autosomal dominant RP (adRP) were identified. Screening for mutations in the rhodopsin (RHO) and peripherin/RDS (RDS) genes was performed using DNA heteroduplex analysis. Direct DNA sequencing in the cases of heteroduplex formation showed the presence of the following mutations and polymorphisms in 14 adRP patients: RHO gene - Lys248Arg (1 case), and Pro347Leu (2 cases); RDS gene - Glu304Gln (12 cases), Lys310Arg (5 cases), and Gly338Asp (12 cases). The presence of these mutations (except Lys248Arg in the RHO gene) was confirmed by relevant restriction enzyme digestion. The frequency of the RDS gene mutations Glu304Gln and Gly338Asp was estimated to be 36.4%, while mutation Lys310Arg was less frequent (15.2%). These 3 RDS gene mutations appear to be polypeptide polymorphisms not related to adRP.  相似文献   

17.
BACKGROUND: We wanted to investigate the ability of recombinant equine infectious anemia virus (EIAV) vectors to transduce photoreceptor cells by developing a series of photoreceptor-specific promoters that drive strong gene expression in photoreceptor cells. METHODS: Promoter fragments derived from the rhodopsin (RHO), the beta phosphodiesterase (PDE) and the retinitis pigmentosa (RP1) genes were cloned in combination with an enhancer element, derived from the interphotoreceptor retinoid-binding protein gene (IRBP), into luciferase reporter plasmids. An in vitro transient reporter assay was carried out in the human Y-79 retinoblastoma cell line. The optimal promoters from this screen were then cloned into the recombinant EIAV vector for evaluation in vivo following subretinal delivery into mice. RESULTS: All promoters maintained a photoreceptor-specific expression profile in vitro and the gene expression was further enhanced in combination with the IRBP enhancer. The use of IRBP-combined RHO or PDE promoters showed modest but exclusive expression in photoreceptors following subretinal delivery to mice. By contrast an EIAV vector containing the cytomegalovirus (CMV) promoter drove reporter gene expression in both photoreceptors and retinal pigment epithelium. CONCLUSIONS: It may be possible to use recombinant EIAV vectors containing photoreceptor-specific promoters to drive therapeutic gene expression to treat a range of retinal degenerative diseases where the photoreceptor cell is the primary disease target.  相似文献   

18.
19.
RNAi has potential for therapeutically downregulating the expression of dominantly inherited genes in a variety of human genetic disorders. Here we used the ROSA26 mouse, which constitutively expresses the bacterial lacZ gene in tissues body wide, as a model to test the ability to downregulate gene expression in striated muscles. Recombinant adeno-associated viral vectors (rAAVs) were generated that express short hairpin RNAs (shRNAs) able to target the lacZ mRNA. Systemic delivery of these rAAV6 vectors led to a decrease of β-galactosidase expression of 30–50-fold in the striated muscles of ROSA26 mice. However, high doses of vectors expressing 21 nucleotide shRNA sequences were associated with significant toxicity in both liver and cardiac muscle. This toxicity was reduced in cardiac muscle using lower vector doses. Furthermore, improved knockdown in the absence of toxicity was obtained by using a shorter (19 nucleotide) shRNA guide sequence. These results support the possibility of using rAAV vectors to deliver RNAi sequences systemically to treat dominantly inherited disorders of striated muscle.  相似文献   

20.
Current prospects for RNA interference-based therapies   总被引:1,自引:0,他引:1  
RNA interference (RNAi) is a powerful approach for reducing expression of endogenously expressed proteins. It is widely used for biological applications and is being harnessed to silence mRNAs encoding pathogenic proteins for therapy. Various methods - including delivering RNA oligonucleotides and expressing RNAi triggers from viral vectors - have been developed for successful RNAi in cell culture and in vivo. Recently, RNAi-based gene silencing approaches have been demonstrated in humans, and ongoing clinical trials hold promise for treating fatal disorders or providing alternatives to traditional small molecule therapies. Here we describe the broad range of approaches to achieve targeted gene silencing for therapy, discuss important considerations when developing RNAi triggers for use in humans, and review the current status of clinical trials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号