首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Fungi which have been previously shown to hydrolyse glycocholic acid, with liberation of the free bile acid, have now been shown to be similarly capable of hydrolysing glycodeoxycholic acid. Sodium taurocholate, however, is much less susceptible and its hydrolysis has been demonstrated with only one of the selected fungi, Penicillium chrysogenum, growing in a medium containing the conjugate as the sole sulphur source. It is concluded that the nature of the amino acid moiety is important in determining the ease of hydrolysis of bile acid conjugates by whole cells of the fungi under test.  相似文献   

2.
The effects of bile salts on the survival of lactobacilli were investigated using glycocholic acid, cholic acid and deoxycholic acid as model compounds and the bile salt hydrolase active Lactobacillus plantarum 80 (BSH+) and its BSH negative mutant. The detrimental effects of cholic acid, i.e. growth inhibition and cytotoxicity at a concentration of 1 and 5 mmol l−1, respectively, were considered to be due to the hydrophobic protonated form of the molecule, which brings about membrane damage. The conversion of glycocholic acid to cholic acid by the BSH active L. plantarum 80 caused a growth inhibition which was comparable with the inhibition observed in the broth supplemented with 1 mmol l−1 cholic acid. Deoxycholic acid caused toxicity through membrane damage when the compound was in solution. Its toxicity disappeared in the culture broth as the molecule precipitated. In case of cholic acid, the toxicity could be removed by buffering the solution at pH 7·0. It was calculated that at this pH most of the cholic acid molecules were ionized. The results led to the formulation of an extended hypothesis about the ecological significance of bile salt transformations. Primary deconjugation is carried out to counteract intracellular acidification. Yet, the deconjugated molecule can be harmful at moderately acidic pH-values. In this case, the BSH+ strains could effectively profit from their activity in case they are associated with 7α-dehydroxylating bacteria which dehydroxylate the deconjugated bile salts. The dehydroxylated molecule has a low solubility and precipitates at moderately acidic pH.  相似文献   

3.
To determine the conditions of cholesterol assimilation, various strains of Bifidobacterium species were cultured in the presence of cholesterol and bile salts. During culturing, Bifidobacterium breve ATCC 15700 assimilates cholesterol in the presence of oxgall at pH values lower than 6. This strain was selected to study the influence of conjugated (taurocholic acid) and deconjugated (cholic acid) bile salts on cholesterol assimilation. B. breve ATCC 15700 assimilated cholesterol (up to 51%) when cultures were undertaken in the presence of taurocholic acid, whereas less than 13% of the initial amount of cholesterol was measured in the cells in the presence of cholic acid. Cultured in the presence of six individual di- or trihydroxyconjugated bile salts, bifidobacteria strains assimilated cholesterol. This assimilation appeared to be more important in the presence of trihydroxyconjugated bile salts (tauro- and glycocholic acids). It is concluded that trihydroxyconjugated bile salts are involved in the assimilation of cholesterol by bifidobacteria. Received: 20 June 1996 / Accepted: 19 July 1996  相似文献   

4.
A crystalline 3α-hydroxysteroid: NAD+-oxidoreductase (EC 1 1.1.50) which had been obtained from the cell-free extracts of Pseudomonas putida NRRL B-11064 in the presence of added polyethylene glycol, was found to be a native monomer form with a specific activity of 63.0 and a molecular weight of 45,000. Isoelectric focusing exhibited the enzyme to be composed of two isoenzymes: one major part focusing at pH 4.75 and a minor part focusing at pH 5.10. Whereas the enzyme was changed from the monomeric form to a dimeric one with a considerable decrease in the specific activity during the course of crystallization in the absence of the added polyethylene glycol.

The enzyme showed an absolute specificity with regard to 3α-hydroxyl group besides a high requirement for cis A: B fusion of steroids. Typical substrates are cholic acid (Km = 1.33 × 10?5 m), deoxycholic acid, chenodeoxycholic acid, 3α-hydroxy-12-keto-9,11-cholanoic acid, and etiocholan-3α-ol-17-one. Conjugated bile acids such as taurocholic acid and glycocholic acid are also rapidly oxidized. The pH optima for oxidation of cholic acid and reduction of etiocholan-3,17-dione were 11.5 and 7.0, respectively. The enzyme could be employed for the sensitive and specific assay of bile acids.  相似文献   

5.
Solubilization of cholesterol by sodium salts of cholic, glycocholic, deoxycholic, lithocholic and oleic acids was studied. Dynamics of the solubilization process is described and a comparative characteristic of solubilizing ability of the substances under investigation is given. Cholesterole solubilization is studied as dependent on the concentration of the given substances. The possible mechanisms of solubilization is discussed.  相似文献   

6.
Binding of bile acids by 100 000g supernatants from rat liver.   总被引:5,自引:4,他引:1       下载免费PDF全文
1. The binding of glycocholic acid, chenodeoxycholic acid and lithocholic acid to rat liver 1000 000g supernatants was studied by equilibrium dialysis. 2. The binding characteristics of the bile acids suggest that the binding components are involved in bile acid transport. 3. When mixtures of [14C]lithocholic acid and liver supernatants were eluted from columns of Sephadex G-75, a prominent peak of [14C]lithocholic acid appeared with proteins of mol.wt. approx. 40000. A second, smaller, peak of [14C]lithocholic acid was eluted with proteins of mol.wt. approx. 100000. 4. The inclusion of cholic acid, glycocholic acid or chenodeoxycholic acid in the eluting buffer decreased the amount of [14C]lithocholic acid that was eluted with the higher-molecular-weight component.  相似文献   

7.
Bile acid synthesis: down-regulation by monohydroxy bile acids   总被引:3,自引:0,他引:3  
R Hall  E Kok  N B Javitt 《FASEB journal》1988,2(2):152-156
The regulation of bile acid synthesis was studied in rabbits after interruption of the enterohepatic circulation by choledochoureteral anastomosis. Total daily bile acid output was 772 +/- 130 (SD) mumol/24 h, of which greater than 95% was glycocholic acid. Administration of deoxycholic or cholic acid or their conjugates (300-800 mumol) or gall-bladder bile failed to down-regulate endogenous bile acid synthesis. In contrast, chenodeoxycholic acid administration did down-regulate bile acid synthesis, but this effect was related to the formation and excretion of lithocholic acid. This observation was confirmed by the finding that i.v. infusion of 10-20 mumol of either lithocholic acid or 3 beta-hydroxy-5-cholenoic acid significantly reduced cholic acid synthesis. Thus monohydroxy bile acids, derived from either hepatic or intestinal sources, participate in the down-regulation of bile acid synthesis.  相似文献   

8.
SYNOPSIS. Oocysts of Eimeria bovis were found to undergo excystation when subjected at 39 C to a pretreatment consisting of exposure for 24 hr to CO2 and air (50–50), and a treatment for 7 hr with a mixture of bile and trypsin. At pH's of 6.0 thru 10.0 with tris-maleate buffer, excystation occurred over the entire range of pH tested, with the highest levels at pH 7.5-8.5. No adverse or inhibitive effect on excystation or the viability of the sporozoites was observed. Disintegration of sporozoites occurred within the sporocysts of intact oocysts at each of the pH levels studied when boric acid-borax, ammediol, and glycine-sodium hydroxide buffers were used in the treatment medium. Phosphate buffer inhibited excystation when used in the excysting medium. Excystation occurred at levels above 90% in all dilutions of taurocholic, glycocholic, glycotaurocholic, and cholic acids included in the study (0.5-10.0%) except for the 10% and 5% dilutions of cholic acid and the 10% dilution of glycotaurocholic acid. In the latter 3 dilutions, sporozoites within the sporocysts of intact oocysts disintegrated. Excystation levels above 90% were observed in the 50% and 10% dilutions of fresh bovine bile, and in the 5% dilution of lyophilized bovine bile. Lower levels of excystation occurred in greater dilutions of both kinds of bile. No excystation occurred when any of the bile acids, fresh bovine bile or lyophilized bile were used without trypsin, except for fresh bile that contained a heavy suspension of bacteria and fungi. In a medium containing trypsin and heat-treated bile, heat-treated bile acids, or no bile, 2.5–8% of the oocysts excysted. The findings indicate that satisfactory excystation can be obtained with a treatment medium containing tris-maleate at pH 7.5–8.5, 0.25% trypsin, and 1% of one of the bile acids.  相似文献   

9.
A family of conjugates has been synthesized from spermine, putrescine, lysine, gamma-aminobutyric acid, sarcosine, cholic acid, glycocholic acid, 3alpha,7alpha-dihydroxycholic acid, and 3alpha,12alpha-dihydroxycholic acid, based on a design principle previously reported (Bandyopadhyay, P., Janout, V., Zhang, L., Regen, S. L. (2001) J. Am. Chem. Soc. 123, 7691). Each of these conjugates was found to exhibit significant activity in promoting the transport of Na(+) across liposomal membranes derived from 1,2-dimyristoleoyl-sn-glycero-3-phosphocholine, and also from 1,2-dipalmitoleoyl-sn-glycero-3-phosphocholine. In all cases, plots of pseudo first-order rate constants, k(obsd) vs (mol % of ion conductor)(2) were found to be linear, indicating that transport-active dimers are involved and that only a small fraction of the conjugates are in an aggregated form. An operational comparison that has been made within this series of conjugates indicates that Na(+) transport activity and membrane selectivity have a moderate dependency on the composition and the structure of the ion conductor.  相似文献   

10.
Hypercholesterolemia has been reported to be the main cause of cardiovascular diseases and the leading cause of death. Therefore, decreasing serum cholesterol level is very important for preventing the cardiovascular diseases. It has been supposed that probiotics in human gastrointestinal tract have the ability to decrease serum cholesterol level by reducing the absorption of cholesterol from the intestinal tract and the bile salt deconjugation. In this study, 28 strains of Lactobacillus spp., isolated from breast-fed infant’s feces, were identified and investigated for their bile salt deconjugation ability. The deconjugation ability of the strains was determined by the release of cholic acid resulting from the deconjugation of conjugated bile salts. Research results showed that four of the strains had bile salt deconjugation ability. The strains with deconjugation ability have been identified in species level by using biochemical test, and molecular techniques, API 50CHL test and 16S rRNA gene sequence analysis respectively. LP1, E3, and E9 strains with deconjugation activity were identified as Lactobacillus rhamnosus and GD2 strain as Lactobacillus plantarum. Even if oxgall decreases the viability of bacteria, the highest amount of cholesterol precipitation (42%) was performed by GD2 strain in the presence of 0.3% (w/v) bile. This study demonstrated that the identified Lactobacillus strains had an excellent ability to survive at low pH, a high bile deconjugation ability, and hypocholesterolemic effect in in vitro conditions.  相似文献   

11.
Summary Two strains of Clostridium bifermentans have been investigated for their ability to hydrolyse bile acid conjugates under conditions suited to further transformation of the free acids liberated. In batch fermentation at 0.5 g/l substrate concentration, growing cells effected the near-quantitative hydrolysis of glycodeoxycholate, taurodeoxycholate and taurocholate within 48 h; glycocholate was 88% hydrolysed. At substrate concentration greater than 1.0 g/l however, taurine conjugates were less well hydrolysed. Further transformation of the liberated cholic acid to deoxycholic acid and/or 7-ketodeoxycholic acid was achieved, but quantitative conversion was not observed.  相似文献   

12.
Three approaches to the synthesis of ursodeoxycholic acid (UDC) from cholic acid have been investigated: (i) oxidation of cholic acid to 3α,7α-dihydroxy-12 keto-5β-cholanoic acid (12K-CDC) with Clostridium group P 12α-hydroxysteroid dehydrogenase (HSDH), isomerization of 12K-CDC to 3α, 7β-dihydroxy-12 keto-5β-cholanoic acid (12K-UDC) with Clostridium absonum 7α- and 7β-HSDH and reduction of 12K-UDC by Wolff-Kishner to UDC; (ii) isomerization of cholic acid to ursocholic acid (UC) by C. absonum 7α- and 7β-HSDH, oxidation of UC to 12K-UDC with Clostridium group P 12α-HSDH and Wolff-Kishner reduction of 12K-UDC to UDC; (iii) oxidation of cholic acid to 12K-CDC by Clostridium group P 12α-HSDH, Wolff-Kishner reduction of 12K-CDC to chenodeoxycholic acid (CDC) and isomerization of CDC to UDC using whole cell cultures of C. absonum. In the first two approaches (using cell free systems) the yields of desired product were relatively low primarily due to the formation of various side products. The third method proved the most successful giving an overall yield of 37% (UDC) whose structure was verified by mass spectroscopy of the methyl ester.  相似文献   

13.
Methods for isolation of fecal 7α-dehydroxylating bacteria are presented. A total of 219 strains were isolated from feces of healthy humans, and their ability to 7-dehydroxylate cholic, chenodeoxycholic, and ursodeoxycholic acids were examined. Of all the isolates, 14 strains were found to be capable of eliminating the hydroxy group at C-7α and/or C-7β. All the isolates were strictly anaerobic, Gram-positive rods. Thirteen isolates were non-sporeforming bacteria showing certain saccharolytic properties with the production of acid and gas from dextrose, and were catalase-positive but indole-, lecithinase-, urease- and oxidase-negative. Based on the data available at present, it was concluded that they could be regarded as members of the genus Eubacterium. One strain, however was identified as Clostridium sordellii. The isolated strains capable of 7α-dehydroxylating cholic acid and chenodeoxycholic acid were also able to oxidize the hydroxy group at C-7α. Nine strains (10, 12, 36S, M-2, M-17, M-18, Y-98, Y-1112, and Y-1113) of the 7α-dehydroxylating bacteria were confirmed to have 7β-dehydroxylation ability, but five strains (O-51, O-52, O-71, O-72, and Y-67) could not transform ursodeoxycholic acid to lithocholic acid.  相似文献   

14.
Four dimeric sterol? polyamine conjugates have been synthesized from the homo‐ and hetero‐connection of monomeric sterol? polyamine analogs in a head‐to‐tail manner. These dimeric conjugates show strong antibacterial activity against a broad spectrum of Gram‐positive bacteria, whereas their corresponding activities against Gram‐negative bacteria are relatively moderate. Though no significant difference was observed in the activities of these conjugates, cholic acid‐containing dimeric conjugates generally exhibit higher activities than the corresponding deoxycholic acid‐derived analogs. This is in contrast to the finding that a monomeric deoxycholic acid‐spermine conjugate was more active than the corresponding cholic acid‐derived analog.  相似文献   

15.
Hu X  Zhang Z  Zhang X  Li Z  Zhu XX 《Steroids》2005,70(8):531-537
Bile acids in the family of steroid compounds can be chemically modified for biochemical and other applications. Derivatives of cholic acid with multiple methacrylate groups can be prepared by the use of methacrylic acid, methacryloyl chloride and methacryloyl anhydride as the acylating agents. The hydroxyl groups of cholic acid methyl ester and cholic acid ethylene glycol ester have been selectively acylated by changing the acylating agents and the number of substitutions have been varied by changing the amount of the acylating agents used. In the acylation reactions with methacryloyl chloride, the reactivity of secondary hydroxyl groups on the steroid skeleton of cholic acid derivatives follows the order of C3>C12>C7.  相似文献   

16.
The conversion of cholesterol to bile acids is a key pathway for elimination of cholesterol from the body, thereby reducing the risk of arteriosclerosis. Moderate consumption of ethanol has been shown to have preventive effects on cardiovascular disease and decrease the risk of gallstone formation. In the present study primary human hepatocytes were used to investigate if ethanol affected bile acid synthesis. Hepatocytes were prepared from donor liver (n = 11) and treated with ethanol, 7.7 or 50 mM, for 24 h. mRNA levels for enzymes in bile acid synthesis pathways were studied and bile acid synthesis was analyzed. Treatment with 7.7 mM ethanol increased cholic acid synthesis by 20% and treatment with 50 mM ethanol up-regulated cholic acid formation by 60%. The synthesis of cholic acid increased more than that of chenodeoxycholic acid, indicating that the classical pathway for bile acid synthesis was up-regulated. Increased bile acid levels in the cells treated with ethanol were seen after approximately 20 h. mRNA expression of CYP7A1, CYP27A1, and CYP8B1 in the hepatocytes was not affected by alcohol exposure.  相似文献   

17.
Mutualistic roles of ectomycorrhizal (ECM) fungi have been linked to their ability to produce organic acids that aid in the dissolution of insoluble minerals in the rhizosphere. This ability of ECM fungi was utilised to investigate their potential participation in the mobilisation of nutrients such as phosphorus (P) and potassium (K) from a typical insoluble ore—iron ore. In vitro pure cultures of four different ECM fungi; Pisolithus tinctorius, Paxillus involutus, Phialocephala fortini, and Suillus tomentosus were screened for their ability to mobilise P and K from two types of non-exportable Sishen iron ore. When present in iron ore, these elements are deleterious and reduce the commercial values of the ore. Experiment was set up with different treatments that included two ore types (KGT and SK) and five particle sizes of each ore type. Results indicated the potential of the four fungi to mobilise P and K from the two iron ore types though at different levels. Ore type, particle size, organic acid production and attachment of the fungi to the iron ore were all found to play important roles in the mobilisation of nutrients from these ores.  相似文献   

18.
Dangate PS  Salunke CL  Akamanchi KG 《Steroids》2011,76(12):1397-1399
Rational exploration directed by DFT (density functional theory) based atomic Fukui indices, lead to development of regioselective oxidation of cholic acid and its 7β epimer by o-iodoxybenzoic acid. In case of cholic acid only, 7α-hydroxyl underwent oxidation, where as in its 7β epimer the selectivity was towards 12α-hydroxy group. Since these oxidations are the key steps in synthesis of ursodeoxycholic acid starting from cholic acid these findings may be useful in devising a protection free synthetic route.  相似文献   

19.
12 alpha-Hydroxy-3-oxo-4-cholenoic acid coupled to an adenosine nucleotide has been shown to be a metabolite of cholic acid in the intestinal anaerobic bacteria, Eubacterium species VPI 12708 (1987. J. Biol. Chem. 262: 4701-4707) and it has been suggested that this may be an intermediate in the conversion of cholic acid into deoxycholic acid. The possibility that the intestinal conversion of cholic acid into deoxycholic acid involves a 3-oxo-delta 4-steroid as an intermediate has been studied in the present work by use of [3 beta-3H]- and [5-3H]-labeled cholic acid. Whole cells as well as cell extracts of Eubacterium sp. VPI 12708 catalyzed conversion of [3 beta-3H] + [24-14C]cholic acid into deoxycholic acid with loss of about 50% of 3H label. When unlabeled chenodeoxycholic acid (20 microM) was added along with [3 beta-3] + [24-14C]cholic acid, then approximately 85% of the [3 beta-3H]-labeled was lost from deoxycholic acid. After administration of the same mixture to two healthy volunteers, deoxycholic acid could be isolated that had lost 81 and 84%, respectively, of the 3H label. Conversion of a mixture of [5-3H]- and [24-14C]labeled cholic acid by the above intestinal bacteria or cell extracts led to loss of 79-94 of the [5-3H] label.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
I A Sytnik  E V Puzakova 《Antibiotiki》1975,20(12):1104-1107
Sensitivity of 25 fresh isolates of Proteus to some nitrofuran drugs most widely used in the clinical practice, such as furacillin, furagin, furazolidone and nitrofurantoin was studied. When the drugs were used in combination with some bile acids, i.e. desoxycholic, dehydrocholic, cholic and glycocholic acids, significant in vitro potentiation of the antibacterial activity of the nitrofurans against the isolates was observed. The combinations of the drugs with desoxycholic acid proved to be most effective. In the presence of this acid the bacteriostatic dose of the drugs decreased several thousand times. Combination of the nitrofurans with the other acids resulted in an increase in the antimicrobial activity amounting to several hundred times. The combinations of the drugs with the bile acids had not only bacteriostatic but also bactericidal effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号