首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Selenoprotein W (SelW) was thought to play an antioxidant role in mammals. Because chicken SelW has no cysteine (Cys) at the residue 37 (Cys37) that is required for the presumed antioxidant function in mammals, this study was conducted to determine whether chicken SelW possessed the same function.

Methods

Small interfering RNAs (siRNAs) technology was applied to suppress the SelW expression in chicken embryonic myoblasts. Thereafter, these myoblasts were treated with different concentrations of H2O2 and assayed for cell viability, apoptosis rate, reactive oxygen species (ROS) status, and expression levels of apoptosis-related genes and proteins (Bax, Bcl-2, and caspase-3).

Results

Silencing of the myoblast SelW gene decreased their cell viability, and increased their apoptosis rate and susceptibility to H2O2. While the knockout down of SelW up-regulated Bax and caspase-3 and down-regulated Bcl-2, the induced oxidative injuries were alleviated by treatment with a ROS scavenger, N-acetyl-l-cysteine (NAC).

Conclusion

Chicken SelW protected embryonic myoblasts against cell apoptosis mediated by endogenous and exogenous H2O2.

General significance

Chicken SelW possesses antioxidant function similar to the mammalian homologues despite the lack of Cys37 in the peptide.  相似文献   

2.
Selenoprotein W (SeW) is a small selenoprotein (85 to 88 amino acids) first identified in sheep suffering from selenium deficiency. The levels are highest in muscle, heart (except rodents) spleen and brain. The deduced amino acid sequence has been obtained for mice, rats, monkeys, humans, sheep, pigs, fish and chickens. The sequences of SeW are identical in rats and mice as well as monkeys and humans. In all eight species of animals cysteine is present at residue number 9 and selenocysteine at residue number 13. Residue number 37 is cysteine in six species of animal with fish and chickens as the exceptions. Of those examined, the rodent SeW is the only one containing four cysteines whereas the others contain only two cysteines. Glutathionylaltion has been shown for SeW from rats and monkeys but has not been confirmed for this selenoprotein from the other six animals. The biological function of SeW has not been definitely identified. Evidence has been obtained that it can serve as an antioxidant, responds to stress, involved in cell immunity, specific target for methylmercury, and has thioredoxin-like function.  相似文献   

3.
Selenoprotein W during development and oxidative stress   总被引:1,自引:0,他引:1  
Selenium is involved in prevention of cancer, heart and muscle diseases, is implicated in immune function, fertility and in delaying the aging process. Selenium deficiency is harmful to brain, heart and skeletal muscles. Selenoprotein W, a member of the selenoprotein family was expressed in developing nervous system, skeletal muscles and heart in mice. Selenoprotein W was highly expressed in proliferating myoblasts and less or not in differentiated myotubes. Selenoprotein W exhibited an immediate response to oxidative stress in proliferating myoblasts, after exposure to hydrogen peroxide, similar to gluteraldehyde-3-phosphate dehydrogenase. We suggest that Selenoprotein W is involved in muscle growth and differentiation by protecting the developing myoblasts from oxidative stress.  相似文献   

4.
5.
The glutathione-dependent system of antioxidant defense was studied in the chorionic and placental tissues of women with miscarriage. In the case of spontaneous abortion, the level of glutathione peroxidase reached the maximum even in trimester I and remained more than 1.5-fold higher during the whole gestation period than in the placental tissue of women with physiological pregnancy and delivery. The activity of glutathione reductase in miscarriage was insignificantly different from that in the control group. The activity of glutathione S-transferase in miscarriage was similar to that in the control group during trimester I and remained low during the whole gestation, contributing to a decrease in nonspecific defense in the mother-placenta-fetus system, leading to pathology of the fetus and infant. It is concluded that oxidative stress in the placental tissues is an essential pathogenic factor of miscarriage.  相似文献   

6.
7.
Methylmercury (MeHg) is well known as a neurotoxic chemical. However, little is mentioned about its neurotoxic mechanism or molecular target in human neuronal cells in particular. We show in this study that exposure of human neuronal cell line, SH-SY5Y, to MeHg dose- and time-dependently impairs viability and mRNA expression of selenoprotein W (SeW) with a significant difference, unlike other selenoenzymes such as, SeP, GPX4, 5DI, and 5'DI. Using real-time RT PCR, the influence of selenium (Se) and glutathione (GSH) on SeW expression was also investigated. While Se depletion caused a weakly reduced SeW mRNA levels, additional Se caused an increase of SeW mRNA levels. Although 2 mM GSH had induced a weak shift on SeW level, the expression of SeW mRNA was down-regulated in SH-SY5Y cells treated with 25 microM BSO, an inhibitor of GSH synthesis. To understand the relationship between a decrease of SeW expression and intracellular GSH and ROS, we measured the concentration of intracellular GSH and ROS in cells treated to 1.4 microM MeHg using fluorescence based assays. A positive correlation was found between SeW mRNA level and intracellular GSH but no significant correlation was observed between intracellular ROS and SeW mRNA level or intracellular GSH contents. Therefore, we suggest that SeW is the novel molecular target of MeHg in human neuronal cells and down-regulation of this selenoenzyme by MeHg is dependent not on generation of ROS but on depletion of GSH.  相似文献   

8.
The effect of enalapril and captopril on total glutathione content (GSSG + GSH) and selenium-dependent glutathione peroxidase (Se-GPx) and glutathione reductase (GSSG-Rd) activities was investigated in mouse tissues. CF-1 mice (4-mo-old females) received water containing enalapril (20 mg/l) or captopril (50 mg/l) for 11 wk. Enalapril increased GSSG + GSH content (P < 0.05) in erythrocytes (147%), brain (112%), and lung (67%), and captopril increased GSSG + GSH content in erythrocytes (190%) and brain (132%). Enalapril enhanced Se-GPx activity in kidney cortex (42%) and kidney medulla (23%) and captopril in kidney cortex (30%). GSSG-Rd activity was enhanced by enalapril in erythrocytes (21%), brain (21%), liver (18%), and kidney cortex (53%) and by captopril in erythrocytes (25%), brain (19%), and liver (34%). In vitro erythrocyte oxidant stress was evaluated by thiobarbituric acid-reactive substances (TBARS) production (control 365 +/- 11, enalapril 221 +/- 26, captopril 206 +/- 17 nmol TBARS x g Hb(-1) x h(-1); both P < 0.05 vs. control) and phenylhydrazine-induced methemoglobin (MetHb) formation (control 66.5 +/- 3.5, enalapril 52.9 +/- 0.4, captopril: 56.4 +/- 2.9 micromol MetHb/g Hb; both P < 0.05 vs. control). Both angiotensin-converting enzyme inhibitor treatments were associated with increased nitric oxide production, as assessed by plasma NO-(3) + NO-(2) level determination (control 9.22 +/- 0.64, enalapril 13.7 +/- 1.9, captopril 17.3 +/- 3.0 micromol NO-(3) + NO-(2)/l plasma; both P < 0.05 vs. control). These findings support our previous reports on the enalapril- and captopril-induced enhancement of endogenous antioxidant defenses and include new data on glutathione-dependent defenses, thus furthering current knowledge on the association of ACE inhibition and antioxidants.  相似文献   

9.
10.
Selenium deficiency results in undetectable levels of selenoprotein W (SeW) in muscle but has very little effect upon its content in the brain and thus rat glial cells were studied. Previous work showed that glutathione (GSH) is bound to SeW and this study was undertaken to elucidate its possible antioxidant functions. Full length cDNA of SeW was cloned to inducible LacSwitch expression vector and stably transfected in C6 rat glial cells. After induction, SeW and its mRNA were expressed 22- and 11-fold higher respectively than control. The cDNA coding region of SeW was cloned to the vector in the antisense direction and stably transfected in C6 cells for underexpression of the protein. After induction, SeW expression was reduced to 20% of the control cells. Glutathione peroxidase activity and GSH levels were not significantly different between induced and control cells. There was a greater survival rate of overexpressed than control cells when incubated with 2,2'-Azobis (2-amidinopropane) dihydrochloride (AAPH), suggesting SeW possibly has an antioxidant function.  相似文献   

11.
Selenoprotein W (SelW) is an existing form of selenium (Se). Se influences the levels of SelW in mammals. However, little is known about the pattern of SelW expression in the gastrointestinal tract tissue of bird. The present paper describes the effects of different dietary levels of Se on the SelW mRNA expression in the gastrointestinal tract tissue of chicken. The expression levels of SelW mRNA and the Se contents in the gastrointestinal tract tissues (glandular stomach, gizzard, duodenum, small intestine, and rectum) were determined on days 15, 25, 35, 45, and 55, respectively. The results showed that the Se contents and the SelW mRNA expression were significantly higher (p < 0.05) in the high-Se group, and the Se contents and SelW mRNA expression in the low-Se group were significantly lower (p < 0.05) than in the controls. The Se contents were the highest in the duodenum and the lowest in the rectum, while the SelW mRNA expression was the highest in the gizzard and the lowest in the rectum. In addition, the SelW mRNA levels in the gastrointestinal tract tissue were found to increase in a time-dependent manner with increasing feeding time. Furthermore, the expression of the SelW mRNA in the gastrointestinal tract tissues of chickens was found to correlate with the dietary Se concentrations, but not with the tissue Se contents.  相似文献   

12.
Hepatically-derived selenoprotein P (SePP) transports selenium (Se) via blood to other tissues including the testes. Male Sepp-knockout mice are infertile. SePP-mediated Se transport to Sertoli cells is needed for supporting biosynthesis of the selenoenzyme glutathione peroxidase-4 (GPX4) in spermatozoa. GPX4 becomes a structural component of sperm midpiece during sperm maturation, and its expression correlates to semen quality. We tested whether SePP is also present in seminal plasma, potentially correlating to fertility parameters. Semen quality was assessed by sperm density, morphology and motility. SePP was measured by an immunoluminometric assay, and trace elements were determined by X-ray fluorescence spectroscopy. SePP levels were considerably lower in seminal plasma as compared to serum (0.4 ± 0.1 mg/l vs. 3.5 ± 1.0 mg/l); Se concentrations showed a similar but less pronounced difference (48.9 ± 20.7 μg/l vs. 106.7 ± 17.3 μg/l). Se and Zn correlated positively in seminal fluid but not in serum. Seminal plasma SePP concentrations were independent of serum SePP concentrations, but correlated positively to sperm density and fraction of vital sperm. SePP concentrations in seminal plasma of vasectomized men were similar to controls indicating that accessory sex glands are a testes-independent source of SePP. This notion was corroborated by histochemical analyses localizing SePP in epithelial cells of seminal vesicles. We conclude that SePP is not only involved in Se transport to testes supporting GPX4 biosynthesis but it also becomes secreted into seminal plasma, likely important to protect sperm during storage, genital tract passage and final journey.  相似文献   

13.
The human selenoproteome consists of 25 known selenoproteins, but functions of many of these proteins are not known. Selenoprotein H (SelH) is a recently discovered 14-kDa mammalian protein with no sequence homology to functionally characterized proteins. By sensitive sequence and structure analyses, we identified SelH as a thioredoxin fold-like protein in which a conserved CXXU motif (cysteine separated by two other residues from selenocysteine) corresponds to the CXXC motif in thioredoxins. These data suggest a redox function of SelH. Indeed, a recombinant SelH shows significant glutathione peroxidase activity. In addition, SelH has a conserved RKRK motif in the N-terminal sequence. We cloned wild-type and cysteine mutant forms of SelH either upstream or downstream of green fluorescent protein (GFP) and localized this fusion protein to the nucleus in transfected mammalian cells, whereas mutations in the RKRK motif resulted in the cytosolic protein. Interestingly, the full-length SelH-GFP fusion protein localized specifically to nucleoli, whereas the N-terminal sequence of SelH fused to GFP had a diffuse nucleoplasm location. Northern blot analyses revealed low expression levels of SelH mRNA in various mouse tissues, but it was elevated in the early stages of embryonic development. In addition, SelH mRNA was overexpressed in human prostate cancer LNCaP and mouse lung cancer LCC1 cells. Down-regulation of SelH by RNA interference made LCC1 cells more sensitive to hydrogen peroxide but not to other peroxides tested. Overall, these data establish SelH as a novel nucleolar oxidoreductase and suggest that some functions in this compartment are regulated by redox and dependent on the trace element selenium.  相似文献   

14.
The aim of the present study was to investigate the possible correlation of selenoprotein W (SelW) with inflammatory injury induced by dietary selenium (Se) deficiency in chicken. One-day-old male chickens were fed either a commercial diet or a Se-deficient diet for 55 days. Then, the expression levels of SelW messenger RNA (mRNA) and inflammation-related genes (NF-κB, TNF-α, iNOS, COX-2, and PTGES) in chicken skeletal muscles (wing muscle, pectoral muscle, and thigh muscle) were determined at 15, 25, 35, 45, and 55 days old, respectively. In addition, the correlation between SelW mRNA expression and inflammation-related genes were assessed. The results showed that dietary Se deficiency reduced the mRNA expression of SelW in chicken wing, pectorals, and thigh muscles. In contrast, Se deficiency increased the mRNA expression levels of inflammation-related genes in chicken skeletal muscle tissues at different time points. The Pearson’s correlation coefficients showed that the mRNA expression levels of inflammation-related genes were significantly negative related to SelW (p?相似文献   

15.
Selenoprotein W (SelW) is abundantly expressed in skeletal muscles of mammals and necessary for the metabolism of skeletal muscles. However, its expression pattern in skeletal muscle system of birds is still uncovered. Herein, to investigate the distribution of SelW mRNA in chicken skeletal muscle system and its response to different selenium (Se) status, 1-day-old chickens were exposed to various concentrations of Se as sodium selenite in the feed for 35 days. In addition, myoblasts were treated with different concentrations of Se in the medium for 72 h. Then the levels of SelW mRNA in skeletal muscles (wing muscle, pectoral muscle, thigh muscle) and myoblasts were determined on days 1, 15, 25, and 35 and at 0, 24, 48, and 72 h, respectively. The results showed that SelW was detected in all these muscle components and it increased both along with the growth of organism and the differentiation process of myoblasts. The thigh muscle is more responsive to Se intake than the other two skeletal muscle tissues while the optimal Se supplementation for SelW mRNA expression in chicken myoblasts was 10−7 M. In summary, Se plays important roles in the development of chicken skeletal muscles. To effect optimal SelW gene expression, Se must be provided in the diet and the media in adequate amounts and neither at excessive nor deficient levels.  相似文献   

16.
17.
Cold temperature generally induces an enhancement of oxidative capacities, a greater content of intracellular lipids, and a remodeling of lipids in biological membranes. These physiological responses may pose a heightened risk of lipid peroxidation (LPO), while warm temperature could result in greater risk of LPO since rates involving reactive oxygen species and LPO will be elevated. The current study examines responses of the glutathione system of antioxidant defense after temperature acclimation. We measured total glutathione (tGSH), and protein levels of GPx1, GPx4, and GST (cardiac and skeletal muscles), and enzymatic activity (skeletal muscle) of glutathione-dependent antioxidants (GPx, GPx4, and GST) in tissues from striped bass (Morone saxatilis) acclimated for six weeks to 7 °C or 25 °C. tGSH of cardiac muscle from cold-acclimated animals was 1.2-times higher than in warm-bodied counterparts, but unchanged with temperature acclimation in skeletal muscle. A second low molecular weight antioxidant, ascorbate was 1.4- and 1.5-times higher in cardiac and skeletal muscle, respectively in warm- than cold-acclimated animals. Despite 1.2-times higher oxidative capacities (as indicated by citrate synthase activity), in skeletal muscle from cold- versus warm-acclimated fish, levels and activities of antioxidant enzymes were similar between acclimation groups. Lipid peroxidation products (as indicated by TBARS), normalized to tissue wet weight, were more than 2-times higher in skeletal muscle from cold- than warm-acclimated animals, however, when normalized to phospholipid content there was no statistical difference between acclimation groups. Our results demonstrate that the physiological changes, associated with acclimation to low temperature in the eurythermal striped bass, are not accompanied by an enhanced antioxidant defense in the glutathione-dependent system.  相似文献   

18.
Selenoprotein P (SEPP1), an extracellular glycoprotein of unknown function, is a unique member of the selenoprotein family that, depending on species, contains 10-17 selenocysteines in its primary structure; in contrast, all other family members contain a single selenocysteine residue. The SEPP1-null (Sepp1(-/-)) male but not the female mice are infertile, but the cellular basis of this male phenotype has not been defined. In this study, we demonstrate that mature spermatozoa of Sepp1(-/-) males display a specific set of flagellar structural defects that develop temporally during spermiogenesis and after testicular maturation in the epididymis. The flagellar defects include a development of a truncated mitochondrial sheath, an extrusion of a specific set of axonemal microtubules and outer dense fibers from the principal piece, and ultimately a hairpin-like bend formation at the midpiece-principal piece junction. The sperm defects found in Sepp1(-/-) males appear to be the same as those observed in wild-type (Sepp1(+/+)) males fed a low selenium diet. Supplementation of dietary selenium levels for Sepp1(-/-) males neither reverses the development of sperm defects nor restores fertility. These data demonstrate that SEPP1 is required for development of functional spermatozoa and indicate that it is an essential component of the selenium delivery pathway for developing germ cells.  相似文献   

19.
The biological function of selenium (Se) is mainly elicited through Se-containing proteins. Selenoprotein W (SelW), one member of the selenoprotein family, is essential for the normal function of the skeletal muscle system. To investigate the possible relationship of Se in the process of differentiation in chicken myoblasts and the expression of SelW, the cultured chicken embryonic myoblasts were incubated with sodium selenite at different concentrations for 72?h, and then the mRNA levels of SelW and myogenic regulatory factors (MRFs) in myoblasts were determined at 12, 24, 48, and 72?h, respectively. Furthermore, the correlation between SelW mRNA expression and MRF mRNA expression was assessed. The results showed that the sodium selenite medium enhanced the mRNA expression of SelW, Myf-5, MRF4, and myogenin in chicken myoblasts. The mRNA expression levels of MRFs were significantly correlated with those of SelW at 24, 48, and 72?h. These data demonstrate that Se is involved in the differentiation of chicken embryonic myoblasts, and SelW showed correlation with MRFs.  相似文献   

20.
Due to a production error,some mistakes have been introduced in labels of Figure 1C,Figure 2C,and Figure 4B.The  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号