首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract.  1. Mark–release–recapture studies were conducted on two species of chequerspot butterfly, Euphydryas aurinia and Melitaea phoebe , in the same habitat patch network in Yanjiaping, a small basin in the Taihang Mountains, north-west of Beijing, China, in 2000.
2. Euphydryas aurinia tended to stay in the habitat patches and to move to neighbouring patches, whereas M. phoebe moved widely among patches in the entire network.
3. The parameters of the virtual migration model showed higher daily emigration propensity in M. phoebe and in E. aurinia males than in E. aurinia females, and significantly greater average daily movement distance in M. phoebe than in E. aurinia .
4. The results are consistent with the previous findings showing genetic structuring among local populations of E. aurinia but not among local populations of M. phoebe .
5. Based on the genetic and ecological results, it was concluded that E. aurinia has a classic metapopulation in the study area, whereas M. phoebe appears to have a source–sink metapopulation.
6. In 2000, when there was an overall increase in the abundance of the two species, the limited mobility of E. aurinia resulted in an increase in the average local population size, whereas the increase in the number of local populations in M. phoebe was due to its high mobility .  相似文献   

2.
1.  Habitat fragmentation can affect pollinator and plant population structure in terms of species composition, abundance, area covered and density of flowering plants. This, in turn, may affect pollinator visitation frequency, pollen deposition, seed set and plant fitness.
2.  A reduction in the quantity of flower visits can be coupled with a reduction in the quality of pollination service and hence the plants' overall reproductive success and long-term survival. Understanding the relationship between plant population size and/or isolation and pollination limitation is of fundamental importance for plant conservation.
3.  We examined flower visitation and seed set of 10 different plant species from five European countries to investigate the general effects of plant populations size and density, both within (patch level) and between populations (population level), on seed set and pollination limitation.
4.  We found evidence that the effects of area and density of flowering plant assemblages were generally more pronounced at the patch level than at the population level. We also found that patch and population level together influenced flower visitation and seed set, and the latter increased with increasing patch area and density, but this effect was only apparent in small populations.
5.   Synthesis. By using an extensive pan-European data set on flower visitation and seed set we have identified a general pattern in the interplay between the attractiveness of flowering plant patches for pollinators and density dependence of flower visitation, and also a strong plant species-specific response to habitat fragmentation effects. This can guide efforts to conserve plant–pollinator interactions, ecosystem functioning and plant fitness in fragmented habitats.  相似文献   

3.
Abstract  1. Many butterfly populations persist in networks of naturally fragmented habitat patches. Movement and reproductive decisions made by adult females are critical to the persistence of these populations because colonisation of extinct habitat patches in the network requires emigration of fecund adult females from their natal meadow and their subsequent establishment in the extinct patch.
2. Movement and oviposition behaviours of mated Parnassius smintheus females released in suitable meadows (a good- and a poor-quality meadow) and an unsuitable meadow were compared, to determine whether adult females consider meadow suitability for their offspring despite frequent oviposition events off the larval host plant.
3. Bootstrap and correlated random walk analyses of female step lengths and turn angles demonstrated that females flew more randomly in the unsuitable meadow than in the suitable meadows. Although females tended to turn the sharpest angle between landing sites in the good-quality meadow, and fly the smallest distance between landing sites and displace the smallest distance from the release site in the suitable meadows, no significant differences were detected in turn angle, step length, and dispersal rates between suitable and unsuitable meadows.
4. Results from female flight observations and a caged oviposition study suggest that females lay significantly more eggs in suitable habitat than in unsuitable habitat despite not ovipositing on the host plant, and support the above findings.
5. Movement and oviposition behaviours of adult female P. smintheus promote their retention within meadows that can support their offspring.  相似文献   

4.
Stephen F. Matter 《Oecologia》1997,110(4):533-538
The relationship between population density and the size of host plant patches was investigated for the red milkweed beetle Tetraopestetraophthalmus inhabiting unmanipulated patches of Asclepias syriaca. The resource concentration hypothesis proposes that density-area patterns, specifically that of increasing herbivore density with patch size, are primarily a function of movement between host plant patches. This research investigated the degree to which movement accounted for density-area patterns. Poisson regression analysis of beetle abundance versus milkweed patch size revealed that beetle density tended to increase with patch size. The pattern of density and patch size resulted from local reproduction and residence time. The density of emerging beetles tended to increase with patch size while emigration rates were unrelated to patch size. Immigration rates were constant with patch size for male beetles, and decreased with patch size for female beetles. Net flux of beetles (immigration – emigration) did not vary with patch size for male beetles and decreased with patch size for female beetles. Comparisons are made between this system and previously studied systems where movement plays a significant role in forming density area patterns. Additionally, several hypotheses are presented which may account for greater in situ recruitment and residence time in large patches. Received: 23 February 1996 / Accepted: 8 January 1997  相似文献   

5.
Abstract.  1. Dispersal capabilities of organisms are critical in determining the landscape population structure of species as well as their likelihood of survival in fragmented landscapes. Using mark–recapture techniques on the monophagous weevil Rhyssomatus lineaticollis Say (Curculionidae), within- and between-patch dispersal capabilities, landscape level population structure, and the role of beetle density and host patch characteristics in setting distances, amounts, and timing of dispersal were studied.
2. The data indicate that R. lineaticollis is sedentary, with 50% of recaptured beetles moving < 1 m and the maximum distance moved < 1 km. Within- and between-patch movement of beetles was unrelated to host plant patch characteristics and beetle densities.
3. Despite limited dispersal, R. lineaticollis probably functions as a patchy population in east-central Iowa, U.S.A. because dispersals between patches are common and because all host patches surveyed contained this herbivore, indicating a lack of suitable vacant patches, a prerequisite for metapopulation structure.
4. Between-patch distances are well within the dispersal capabilities of R. lineaticollis , although this may be the result of an increase in the density of patches of its host, Asclepias syriaca , in the landscape over the last 150 years as a result of human disturbance and this species' weedy habit.
5. Metapopulation structure in monophagous prairie herbivores may be most likely in species whose non-weedy host plants form highly predictable resources in space and time, but which are now widely scattered in habitat fragments.  相似文献   

6.
1. The movement of adults of the endangered Apollo butterfly, Parnassius apollo, was studied using mark–recapture data, within a population consisting of discrete patches of the species’ host plant (n = 43), which were segregated spatially from patches of the species’ main nectar plants (n = 14). 2. The Apollo routinely moved large distances (median 260 m, maximum 1840 m), and moved frequently between the two types of patches. Only 27% (28/105) of the recaptures were made on the same host plant patch as the release. 3. The population acts as a patchy population where the adults mix over the whole area, but successful reproduction can only take place in the discrete host plant patches. 4. Occurrence on a host plant patch was restricted by the area size of the host plant patch and the spatial configuration of nectar plant patches. Thus, although the Apollo is a good flyer, its movement over the patches is still constrained by the segregation of adult and larval resources.  相似文献   

7.
Abstract.  1. The effects of host-plant resistance on the population dynamics of the Diamondback moth, Plutella xylostella L., and its solitary parasitoid, Cotesia plutellae (Kurdjumov), were studied in replicated time-series experiments.
2. Host-plant resistance did not affect the equilibrial abundance of the Diamondback moth, but it affected the dynamics of Diamondback moth populations.
3. The mean population size of Diamondback moth showed no significant difference between Brassica rapa (a susceptible host plant) and Brassica napus (a partially resistant host plant) either in the presence or absence of the parasitoid.
4. Time-series analysis suggests that the dynamics of Diamondback moth on B. rapa were underpinned by delayed density-dependent processes. In contrast, the dynamics of the moth on B. napus were influenced by a direct density-dependent process.
5. Although measures of short-term parasitism showed a significantly higher rate of parasitism by C. plutellae on Diamondback moth feeding on B. napus compared with B. rapa , this individual performance does not translate into differences in the population dynamics. Analysis shows no significant difference in the persistence time of the population-level interaction between the host and parasitoid on the two different host plants.  相似文献   

8.
The clouded Apollo Parnassius mnemosyne is a food plant specialist with short but frequent movements between habitat patches. The short average dispersal distances suggest that the probability of colonisation of vacant patches decreases rapidly as the distance between the source and target patches increases, which means that a dense habitat network is needed for the conservation of the species. Both emigration rate and the number of immigrants varied among patches and were not affected only by isolation but also by several other patch characteristics. The model that explained most of the variation in emigration rates among patches included patch area and the number of conspecifics. The area and the population density of the target patch had significant effects on the number of arriving immigrants. Thus, the colonisation of vacant patches is dependent on these patch characteristics. Generally, emigration rates were lower and residence times longer in large patches with many conspecifics. Butterfly density was the most important single factor explaining the variation in the number of immigrants among patches, although the positive effect of the area of the target patch was also significant. As a consequence of the marked positive density dependence caused by conspecific attraction, small patches with higher than average butterfly density, receive more immigrants than could be expected based on the patch area only. Due to conspecific attraction, per capita immigration rates are higher in small than large patches. Thus, immigration may have a more significant effect on the local dynamics of small than large populations.  相似文献   

9.
Abstract.  1. For animal species that forage on patchily distributed resources, patch time allocation is of prime importance to their reproductive success. According to Charnov's marginal value theorem (MVT), the rate of patch encounter should influence negatively the patch residence time: as the rate of patch encounter decreases, the patch residence time increases. Moreover, the MVT predicts that animals should stay longer in high quality patches.
2. Using the aphid parasitoid Aphidius rhopalosiphi (Hymenoptera: Aphidiinae), the effects of these two factors (patch encounter rate and host density) were combined in order to test if the increment in patch residence time for a given decrease in patch encounter rate was larger for high quality patches than for low quality patches.
3. The results show a significant effect of the interaction between the two factors. In high host density patches, parasitoids spent more time if they experienced a low patch encounter rate, while in low host density patches, patch encounter rate had no significant effect on the patch residence time. This suggests that the response of A. rhopalosiphi females to patch encounter rate varied with host density in the patch. Moreover, the same interaction effect was observed for the number of ovipositor contacts on aphids.
4. Parasitoid females can use patch encounter rate to estimate patch density in the habitat but the effect of this estimate on their patch residence time is modulated by patch quality. Staying longer in a patch when patches are rare is more advantageous when the fitness gained by doing so is large. In low quality patches, the expected fitness gain is small and the female may gain more by leaving and taking her chance at finding another patch.  相似文献   

10.
Experimental data on the relationship between plant patch size and population density of herbivores within fields often deviates from predictions of the theory of island biogeography and the resource concentration hypothesis. Here we argue that basic features of foraging behaviour can explain different responses of specialist herbivores to habitat heterogeneity. In a combination of field and simulation studies, we applied basic knowledge on the foraging strategies of three specialist herbivores: the cabbage aphid (Brevicoryne brassicae), the cabbage butterfly (Pieris rapae L.) and the diamondback moth (Plutella xylostella L.), to explain differences in their responses to small scale fragmentation of their habitat. In our field study, populations of the three species responded to different sizes of host plant patches (9 plants and 100 plants) in different ways. Densities of winged cabbage aphids were independent of patch size. Egg‐densities of the cabbage butterfly were higher in small than in large patches. Densities of diamondback moth adults were higher in large patches than in small patches. When patches in a background of barley were compared with those in grass, densities of the cabbage aphid and the diamondback moth were reduced, but not cabbage butterfly densities. To explore the role of foraging behaviour of herbivores on their response to patch size, a spatially explicit individual‐based simulation framework was used. The sensory abilities of the insects to detect and respond to contact, olfactory or visual cues were varied. Species with a post‐alighting host recognition behaviour (cabbage aphid) could only use contact cues from host plants encountered after landing. In contrast, species capable with a pre‐alighting recognition behaviour, based on visual (cabbage butterfly) or olfactory (diamondback moth) cues, were able to recognise a preferred host plant whilst in flight. These three searching modalities were studied by varying the in flight detection abilities, the displacement speed and the arrestment response to host plants by individuals. Simulated patch size – density relationships were similar to those observed in the field. The importance of pre‐ and post‐ alighting detection in the responses of herbivores to spatial heterogeneity of the habitat is discussed.  相似文献   

11.
Abstract. 1.  Movement patterns of two butterfly species (meadow brown Maniola jurtina L. and scarce copper Lycaenae virgaureae L.) were studied in a 172 ha area within a landscape with a high percentage of suitable habitats for mark–release–recapture experiments.
2.  Adult resource density, but not patch size or larval food plant abundance, influenced the numbers and the fractions of residents, emigrants, and immigrants.
3.  Differences between species were observed in movement frequency and maximum distances moved but not in mean distances moved.
4.  The scarce copper showed much greater movement ability than expected from the results of published studies. This is believed to be a result of the comparatively large size of the study area and the high cover of suitable habitat (>50%).
5.  The mean and maximum distances travelled by butterflies reflected differences in the size of the study area.  相似文献   

12.
1. I present a stochastic simulation model that describes individual movements of Metrioptera bicolor Philippi in a heterogeneous landscape, consisting of patches of suitable habitat surrounded by a matrix of unprofitable habitats. Although the model is parameterized with information about daily movement behaviour, it can generate spatially explicit predictions about inter-patch dispersal rates for much longer periods, e.g. one generation.
2. Long-term dispersal experiments were conducted to evaluate model predictions. Patch-specific emigration rates and the total distance moved by individuals could be predicted with satisfactory precision. Because of the stochastic nature of the model, it failed to predict which recipient patches emigrating individuals actually chose in a particular situation.
3. Spatially explicit simulations of the movement model were made for the whole natural distribution area of M. bicolor . The results suggest that emigration rates are negatively correlated with patch size. Local populations occurring on small patches may be more prone to extinction than those on large patches, by losing more emigrants than are compensated for by immigration.  相似文献   

13.
Abstract.  1.  Maculinea alcon , a myrmecophilic, stenotopic lycaenid butterfly is restricted to wet heathlands, bogs, and nutrient-poor hay meadows. Due to intensification of agriculture and decrease of extensively grazed meadows, many suitable habitats have disappeared and the remaining ones are highly fragmented and deteriorated.
2. Historical distribution data and a comparison with the present occupation of patches show the decline of this critically endangered butterfly in north-west Germany. Most of the populations in north-west Germany are small and often geographically isolated.
3. In summer 2002, two-thirds of 77 investigated potential patches were unoccupied as a result of unsuitable habitat structure and habitat fragmentation.
4. Several habitat parameters were highly significantly correlated with the presence of M. alcon , in particular the distribution pattern of the host plant Gentiana pneumonanthe. Furthermore, butterflies were absent from many patches with an incidence probability below 50% with respect to patch size and isolation.
5. In the nature reserve Lüneburger Heide, part of the study area, M. alcon populations have been observed since 1995. Typical turnover of local populations could be detected during these years. Extinctions and re-colonisations have stabilised the presence of this species in a metapopulation in this nature reserve.
6. These data show the importance of different factors on different spatial levels influencing the presence of this endangered butterfly.  相似文献   

14.
Interpretation of spatially structured population systems is critically dependent on levels of migration between habitat patches. If there is considerable movement, with each individual visiting several patches, there is one ”patchy population”; if there is intermediate movement, with most individuals staying within their natal patch, there is a metapopulation; and if (virtually) no movement occurs, then the populations are separate (Harrison 1991, 1994). These population types actually represent points along a continuum of much to no mobility in relation to patch structure. Therefore, interpretation of the effects of spatial structure on the dynamics of a population system must be accompanied by information on mobility. We use empirical data on movements by ringlet butterflies, Aphantopus hyperantus, to investigate two key issues that need to be resolved in spatially-structured population systems. First, do local habitat patches contain largely independent local populations (the unit of a metapopulation), or merely aggregations of adult butterflies (as in patchy populations)? Second, what are the effects of patch area on migration in and out of the patches, since patch area varies considerably within most real population systems, and because human landscape modification usually results in changes in habitat patch sizes? Mark-release-recapture (MRR) data from two spatially structured study systems showed that 63% and 79% of recaptures remained in the same patch, and thus it seems reasonable to call both systems metapopulations, with some capacity for separate local dynamics to take place in different local patches. Per capita immigration and emigration rates declined with increasing patch area, while the resident fraction increased. Actual numbers of emigrants either stayed the same or increased with area. The effect of patch area on movement of individuals in the system are exactly what we would have expected if A. hyperantus were responding to habitat geometry. Large patches acted as local populations (metapopulation units) and small patches simply as locations with aggregations (units of patchy populations), all within 0.5 km2. Perhaps not unusually, our study system appears to contain a mixture of metapopulation and patchy-population attributes.  相似文献   

15.
Abstract.  1. Spatial habitat structure can influence the likelihood of patch colonisation by dispersing individuals, and this likelihood may differ according to trophic position, potentially leading to a refuge from parasitism for hosts.
2. Whether habitat patch size, isolation, and host-plant heterogeneity differentially affected host and parasitoid abundance, and parasitism rates was tested using a tri-trophic thistle–herbivore–parasitoid system.
3.  Cirsium palustre thistles ( n = 240) were transplanted in 24 blocks replicated in two sites, creating a range of habitat patch sizes at increasing distance from a pre-existing source population. Plant architecture and phenological stage were measured for each plant and the numbers of the herbivore Tephritis conura and parasitoid Pteromalus elevatus recorded.
4. Mean herbivore numbers per plant increased with host-plant density per patch, but parasitoid numbers and parasitism rates were unaffected. Patch distance from the source population did not influence insect abundance or parasitism rates. Parasitoid abundance was positively correlated with host insect number, and parasitism rates were negatively density dependent. Host-plant phenological stage was positively correlated with herbivore and parasitoid abundance, and parasitism rates at both patch and host-plant scales.
5. The differential response between herbivore and parasitoid to host-plant density did not lead to a spatial refuge but may have contributed to the observed parasitism rates being negatively density dependent. Heterogeneity in patch quality, mediated by variation in host-plant phenology, was more important than spatial habitat structure for both the herbivore and parasitoid populations, and for parasitism rates.  相似文献   

16.
1. How organisms locate their hosts is of fundamental importance in a variety of basic and applied ecological fields, including population dynamics, invasive species management and biological control. However, tracking movement of small organisms, such as insects, poses significant logistical challenges. 2. Mass‐release and individual–mark–recapture techniques were combined in an individually mark–mass release–resight (IMMRR) approach to track the movement of over 2000 adult insects in an economically important plant–herbivore system. Despite its widespread use for the biological control of the invasive thistle Carduus nutans, the host‐finding behaviour of the thistle head weevil Rhinocyllus conicus has not previously been studied. Insects were released at different distances from a mosaic of artificially created host patches with different areas and number of plants to assess the ecological determinants of patch finding. 3. The study was able to characterize the within‐season dispersal abilities and between‐patch movement patterns of R. conicus. Weevils found host plant patches over 900 m away. Large patches, with tall plants, situated close to the nearest release point had the highest first R. conicus resights. Patch area and plant density had no effect on the number of weevils resighted per plant; however, R. conicus individuals were more likely to disperse out of small patches and into large patches. 4. By understanding how R. conicus locates host patches of C. nutans, management activities for the control of this invasive thistle can be better informed. A deeper mechanistic understanding of host location will also improve prediction of coupled plant–herbivore spatial dynamics in general.  相似文献   

17.
Abstract. 1. Attributes of patches with strawberry plants were manipulated experimentally to assess the impact of patch size and host density on the abundance of tarnished plant bug (Hemiptera: Miridae) and incidence of fruit damage.
2. The density of nymphs per inflorescence increased with patch size and host density for some but not all generations of plant bug, providing partial support for the resource concentration hypothesis, while emphasising the importance of replicating experiments across several generations of herbivore.
3. Increasing density of nymphs with increasing patch size and host density did not translate into a high incidence of damage, which may be due to the relatively low feeding impact of nymphs in patches with numerous fruits and to the relatively high perimeter-to-area ratio in small patches resulting in a relatively high proportion of damaged fruits.
4. The decreasing proportion of damaged fruits with increasing density of fruits per patch suggests that nymphs exhibit a saturating functional response to density of strawberry fruits. Functional responses of herbivores may be a critical yet overlooked component that influences interactions between insects and their host plant. In particular, concentrated plant resources may result in increased numbers of herbivores yet sill have a negligible influence on plant damage and/or fitness.  相似文献   

18.
Abstract.  1. Dispersal plays an integral role in determining spatial population structure and, consequently, the long-term survival of many species. Theoretical studies indicate that dispersal increases with population density and decreasing habitat stability. In the case of monophagous insect herbivores, the stability of host-plant populations may influence their spatial population structure.
2. The tallgrass prairie in Iowa, U.S.A. is highly fragmented and most prairie insects face a landscape with fewer habitat patches and smaller host-plant populations than 150 years ago, potentially making dispersal between patches difficult. Some herbivores, however, use native plant species with weedy characteristics that have increased in abundance because of disturbances.
3. Mark–recapture data and presence–absence surveys were used to examine dispersal and spatial population structure of two monophagous beetles with host plants that exhibit different population stability and have responded differently to fragmentation of tallgrass prairie.
4. Chrysochus auratus Fabricius exhibits a patchy population structure and has relatively large dispersal distances and frequencies. Its host plant is variable locally in time and space, but is more abundant than 150 years ago. The other species, Anomoea laticlavia Forster, exhibits a metapopulation or non-equilibrium population structure and has relatively small dispersal distances and frequencies. Its host-plant populations are stable in time and space.
5. The results indicate that dispersal ability of monophagous beetles reflects the life-history dynamics of their host plants, but the spatial population structure exhibited today is strongly influenced by how the host plants have responded to the fragmentation process over both time and space.  相似文献   

19.
Abstract.  1. Herbivory can induce resistance in a plant and the induced phenotype may be disfavoured by subsequent herbivores. Yet, as the distance between plants in a population increases, limited mobility may make a herbivore more likely to feed and oviposit on host plants in its immediate surroundings.
2. The present study tested whether a herbivore's preference and distribution across plants with different induced phenotypes was influenced by the spatial distribution of plants. A fragmented population of Solanum dulcamara plants was created. This consisted of discrete, spatially separated patches with different histories of damage, either herbivory from adult flea beetles ( Psylliodes affinis ), tortoise beetles ( Plagiometriona clavata ), or mechanical damage. Each patch was separated by 7 m and consisted of 12 plants that were spaced 30 cm apart. Then a fixed number of adult tortoise beetles were introduced to each patch, and movement and oviposition within and between spatially separate homogeneous patches (receiving one type of damage) were compared with movement and oviposition within heterogeneous patches (containing all three types of damage) over the growing season.
3. Flea beetle and tortoise beetle herbivory consistently induced different phytochemical responses in S. dulcamara (polyphenol oxidase and peroxidase), and adult tortoise beetles avoided oviposition on the flea beetle induced plants within heterogeneous patches. However, between homogeneous patches, plant phenotype did not influence oviposition. Colonisation by naturally occurring flea beetle adults followed a similar pattern.
4. These results suggest that the heterogeneity of plant phenotypes can influence herbivore choice and distribution at small but not large spatial scales.  相似文献   

20.
Population structure of a monophagous moth in a patchy landscape   总被引:4,自引:0,他引:4  
1. The population structure of a monophagous noctuid moth, Abrostola asclepiadis , living on a patchily distributed perennial herb, Vincetoxicum hirundinaria is described. The study took place over 5 years at a landscape scale (about 12 km2).
2. Patch occupancy rates and population densities were studied in relation to patch size, degree of patch isolation, level of sun exposure and distance from the coast. In addition, flight tests in the laboratory were performed to estimate the potential dispersal capacity of the moth.
3. Occupancy rates were high and the likelihood of extinction depended on patch size. Small patches were less likely to be occupied than were large patches (> 10 m2). Sun-exposed patches were occupied for a lower proportion of years than were shaded patches. No distance effects could be discerned at the spatial scale of study, presumably because the insect is a strong flier.
4. Population densities in occupied patches decreased with increasing patch size. Furthermore, insect densities tended to increase with distance from the coast. Density changes in patches were synchronized.
5. The studied insect population can be described as a 'patchy population' sensu Harrison (1991) with spatially correlated population dynamics. These dynamics are superimposed on a landscape gradient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号