首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
I used data from a 13-year study of eastern kingbirds Tyrannus tyrannus from central New York, USA, to evaluate the relative impact of female age and body size on reproduction. I also calculated repeatabilities of reproductive traits for both females and the sites where they bred in an attempt to evaluate the relative contribution of each to intrapopulation variation in reproduction. Female age had a strong influence on timing of breeding (breeding date advanced by one day for each year of life), but was not a significant source of variation for clutch size, egg mass, number of young to hatch or fledge, or total seasonal production. Repeatabilities of breeding date for females and sites were both significant (0.284 and 0.181, respectively), but the only other significant repeatabilities were for female clutch size (0.282) and female egg mass (0.746). Among-year repeatabilities of breeding date for females who bred at two or more sites over their lifetime were as high as those for females that were site faithful. Thus, breeding date was probably affected independently by the female and site. No measure of productivity exhibited a repeatable pattern in comparisons made among females or sites. All reproductive traits were entered as dependent variables in a series of stepwise multiple regression analyses in an attempt to identify female properties (size, lifespan and condition) that might be linked proximately to differences in breeding statistics. I found that (a) large birds tended to breed the earliest, (b) clutch size was independent of female size, condition and lifespan, (c) female body size and egg size were correlated positively, but (d) production of young was independent of all measured female properties. Reproduction appears to be linked more closely to the female than to the site. Body size accounts for a portion of the repeatable portion of breeding date and egg mass, but most of the intrapopulation variation in these and other traits remained unexplained.  相似文献   

2.
Life history theory is an essential framework to understand the evolution of reproductive allocation. It predicts that individuals of long‐lived species favour their own survival over current reproduction, leading individuals to refrain from reproducing under harsh conditions. Here we test this prediction in a long‐lived bird species, the Siberian jay Perisoreus infaustus. Long‐term data revealed that females rarely refrain from breeding, but lay smaller clutches in unfavourable years. Neither offspring body size, female survival nor offspring survival until the next year was influenced by annual condition, habitat quality, clutch size, female age or female phenotype. Given that many nests failed due to nest predation, the variance in the number of fledglings was higher than the variance in the number of eggs and female survival. An experimental challenge with a novel pathogen before egg laying largely replicated these patterns in two consecutive years with contrasting conditions. Challenged females refrained from breeding only in the unfavourable year, but no downstream effects were found in either year. Taken together, these findings demonstrate that condition‐dependent reproductive allocation may serve to maintain female survival and offspring quality, supporting patterns found in long‐lived mammals. We discuss avenues to develop life history theory concerning strategies to offset reproductive costs.  相似文献   

3.
Nurul Izza Ab Ghani  Juha Merilä 《Oikos》2014,123(12):1489-1498
Compensatory growth (CG) is a form of phenotypic plasticity allowing individuals’ growth trajectories to rebound after a period of resource limitation, but little is known about the reproductive and cross‐generational costs of CG. We studied the potential costs of CG by exposing female nine‐spined sticklebacks Pungitius pungitius to 1) high (favourable), 2) low (stressful), and 3) recovery (initially stressful, subsequently favourable) feeding treatments, and quantified the effects of these treatments on female reproductive traits (clutch, egg and yolk size), and on the size of their offspring. The low feeding treatment reduced female size relative to the high and recovery feeding treatments, which produced equally large females. Hence, females from the recovery treatment demonstrated CG and full growth compensation. Feeding treatments had significant effects on clutch, yolk, egg and larval size, also when the effect of female size was controlled for. However, these effects came about mostly because females from the low feeding treatment produced small clutches with large eggs (containing little yolk) and larvae, whereas females from the recovery feeding treatment produced as large clutches, eggs (with similar amounts of yolk) and larvae as females from the high feeding treatment. Yet, structural equation modelling revealed that while a direct effect of female size on offspring size was positive in the low and high feeding treatments, it was negative in the recovery feeding treatment, independently of egg and clutch size. This indicates a cross‐generational tradeoff between female and offspring sizes in the recovery feeding treatment. Also the tradeoff between clutch and larval size was more pronounced in recovery than in low or high feeding treatments. Hence, apart from demonstrating that environmental influences experienced by females during their development have the potential to influence their size, fecundity and reproductive traits, the results also provide evidence for complex cross‐generational costs of recovery growth.  相似文献   

4.
Grass Wrens Cistothorus platensis build two types of non-breeding nest structures: platforms and dummy nests. Platforms are rudimentary accumulations of grasses concealed between vegetation. Dummy and breeding nests are dome-shaped with a similar structural layer. We used a nest-removal experiment and observational data to evaluate several hypotheses regarding the adaptive significance of building multiple nests in a south temperate population of Grass Wrens. Building non-breeding nests was not a strategy of males to attract additional females, as most of these nests were built after pair formation and both sexes collaborated during building. Building non-breeding nests was not a post-pairing display as the presence of multiple nests did not increase female investment in the breeding attempt: clutch size and female provisioning to nestlings did not differ between experimental and control territories where no non-breeding nests were removed. Similarly, in non-manipulated territories, clutch size and female provisioning were not correlated with the number of non-breeding nests or with males’ nest-building effort. Contrary to this hypothesis, the number of non-breeding nests was associated with delayed clutch initiation and reduced hatching success. The presence of non-breeding nests did not reduce nest predation and brood parasitism, which did not differ between experimental and control territories. We did not detect differences in concealment between non-breeding and breeding nests, suggesting that non-breeding nests were not the result of abandonment before egg-laying to reduce subsequent nest predation. Dummy nests did not provide shelter; they were not used frequently for roosting over the breeding season and were not maintained during the non-breeding season. We suggest that building non-breeding nests may be an attempt by males to manipulate the decision of females to breed with a mate they might otherwise reject or to start reproduction earlier than optimal for the females.  相似文献   

5.
Abstract In many egg-laying animals, some females spread their clutch among several nests. The fitness effects of this reproductive tactic are obscure. Using mathematical modeling and field observations, we analyze an unexplored benefit of egg spreading in brood parasitic and other breeding systems: reduced time at risk for offspring. If a clutch takes many days to lay until incubation and embryo development starts after the last egg, by spreading her eggs a parasitic female can reduce offspring time in the vulnerable nest at risk of predation or other destruction. The model suggests that she can achieve much of this benefit by spreading her eggs among a few nests, even if her total clutch is large. Field data from goldeneye ducks Bucephala clangula show that egg spreading enables a fecund female to lay a clutch that is much larger than average without increasing offspring time at risk in a nest. This advantage increases with female condition (fecundity) and can markedly raise female reproductive success. These results help explain the puzzle of nesting parasites in some precocial birds, which lay eggs in the nests of other females before laying eggs in their own nest. Risk reduction by egg spreading may also play a role in the evolution of other breeding systems and taxa-for instance, polyandry with male parental care in some birds and fishes.  相似文献   

6.
J. C. COULSON 《Ibis》1984,126(4):525-543
The dynamics of an Eider Duck population have been investigated over 25 years, using census and capture-mark-recapture methods. During the study the population increased two and a half fold, with two periods of major increases in numbers, giving a stepped growth pattern. Mean clutch size showed considerable annual variation, the extremes being 5.40 and 3.78 eggs. The variation in clutch size was greater than that recorded in the Netherlands. Adult female Eiders had a high annual survival rate, averaging 0.895, and varying between 0.75 and 1.00 in individual years. The survival rate decreased markedly in the old ducks. There was no indication of any change in the survival rate during the study. Recruitment of ducks to the breeding group was irregular, with most years showing little recruitment and a few years high recruitment. However, recruitment, associated with good duckling survival, appears to have been the main factor associated with increase in the population. In many years, an appreciable proportion of the surviving ducks, which had already bred in a previous year, failed to nest. The extent of non-breeding increased during the study and in one year, 1973, this reached 65%. Lower clutch size and adult survival were associated with years of high non-breeding. The ‘red-tides’ in 1968 and 1975 appeared to have little effect on the Eider. It is suggested that the Eider missed breeding in years in which its survival was potentially poor, in order to maximize its reproductive output during its life span. This is supported by the smaller clutch size laid by those females which nest in years when many females fail to breed. It is suggested that young ducks may also miss breeding in the year after first nesting but this is not associated with the non-breeding in older ducks, although it may he related to body condition. It is suggested that non-breeding by adults of long-lived birds may be widespread. This has important implications in survey work based on nest counts.  相似文献   

7.
Age‐specific variation in reproductive effort can affect population dynamics, and is a key component of the evolution of reproductive tactics. Late‐life declines are a typical feature of variation in reproduction. However, the cause of these declines, and thus their implications for the evolution of life‐history tactics, may differ. Some prior studies have shown late‐life reproductive declines to be tied to chronological age, whereas other studies have found declines associated with terminal reproduction irrespective of chronological age. We investigated the extent to which declines in late life reproduction are related to chronological age, terminal reproductive attempt or a combination of both in the thorn‐tailed rayadito Aphrastura spinicauda, a small passerine bird that inhabits the temperate forest of South America. To this end we used long‐term data (10 years) obtained on reproductive success (laying date, clutch size and nestling weight) of females in a Chilean population. Neither chronological age nor terminal reproductive attempt explained variation in clutch size or nestling weight, however we observed that during the terminal reproductive attempt older females tended to lay later in the breeding season and younger females laid early in the breeding season, but this was not the case when the reproductive attempt was not the last. These results suggests that both age‐dependent and age‐independent effects influence reproductive output and therefore that the combined effects of age and physiological condition may be more relevant than previously thought.  相似文献   

8.
Among invertebrates, scorpions possess a relatively unique set of reproductive traits. The interrelationships of these traits may have important implications for life history theory, yet there have been few studies of these traits in scorpions. Our data indicate that larger female Centruroides vittatus produce more offspring and have a higher total litter mass than smaller females. There was, however, no significant relationship between offspring size and female or litter size. Mean offspring mass increased with increases in total litter mass and within litter variation in offspring size (coefficients of variation) decreased with increasing total litter mass. These results suggest that large female scorpions with a larger investment in reproduction produced more offspring that were more uniform in size, but not significantly larger, than small females with less investment. The fractional clutch principle and physiological and functional constraints on size and number of offspring are suggested as possible explanations for the relationships we found among offspring size, variation in offspring size and total investment in offspring in C. vittatus.  相似文献   

9.
Conspecific brood parasitism (CBP) is an alternative reproductive tactic found in many animals with parental care. Parasitizing females lay eggs in the nests of other females (hosts) of the same species, which incubate and raise both their own and the foreign offspring. The causes and consequences of CBP are debated. Using albumen fingerprinting of eggs for accurately detecting parasitism, we here analyse its relation to female condition and clutch size in High Arctic common eiders Somateria mollissima borealis. Among 166 clutches in a Svalbard colony, 31 (19%) contained eggs from more than one female, and 40 of 670 eggs (6%) were parasitic. In 6 cases an active nest with egg(s) was taken over by another female. Many suitable nest sites were unoccupied, indicating that CBP and nest takeover are reproductive tactics, not only consequences of nest site shortage. Similarity in body mass between female categories suggests that condition does not determine whether a nesting female becomes parasitised. There was no evidence of low condition in parasites: egg size was similar in hosts and parasites, and parasitism was equally frequent early and late in the laying season. Meta‐analysis of this and 3 other eider studies shows that there is a cost of being parasitised in this precocial species: host females laid on average 7% fewer eggs than other females.  相似文献   

10.
ABSTRACT The effects of colony size on individual fitness and its components were investigated in artificially established and natural colonies of the social spider Anelosimus eximius (Araneae: Theridiidae). In the tropical rain forest understory at a site in eastern Ecuador, females in colonies containing between 23-107 females had india significantly higher lifetime reproductive success than females in smaller colonies. Among larger colonies, this trend apparently reversed. This overall fitness function was a result of the conflicting effects of colony size on different components of fitness. In particular, the probability of offspring survival to maturity increased with colony size while the probability of a female reproducing within the colonies decreased with colony size. Average clutch size increased with colony size when few or no wasp parasitoids were present in the egg sacs. With a high incidence of egg sac parasitoids, this effect disappeared because larger colonies were more likely to be infected. The product of the three fitness components measured-probability of female reproduction, average clutch size, and offspring survival-produced a function that is consistent with direct estimates of the average female lifetime reproductive success obtained by dividing the total number of offspring maturing in a colony by the number of females in the parental generation. Selection, therefore, should favor group living and itermediate colony sizes in this social spider.  相似文献   

11.
Organisms seek to maximize fitness by balancing reproductive allocations against mortality risk, given selection pressures inherent to the environment. However, environmental conditions are often dynamic and unpredictable, which complicates the ability to achieve such a balance, and may require reproductive adjustments depending on prevailing conditions. We evaluated the effects of density‐dependent, density‐independent (drought), and individual (age, body condition) factors on nesting decisions of female greater sage‐grouse in the American Great Basin. We obtained relocations and recorded reproductive histories from 287 radio‐marked females over a period of 10 yr, and applied these data to a multi‐state model that estimated probabilities of initiating a first nest (primary nesting rate) or a second nest, given loss of a first (secondary nesting rate). This approach allowed us to evaluate the relative association between nesting rates and covariates while accounting for imperfect detection of nests. Sage‐grouse primary and secondary nesting were influenced differently by density dependence and drought. Primary nesting was high and relatively constant among years despite variable drought conditions, but was negatively associated with population size (density dependence). Secondary nesting was lower and more variable compared to primary nesting, was similarly influenced by density‐dependence, and was also sensitive to drought conditions. Females known to initiate second nests were in better body condition than females that only initiated first nests, and females of intermediate age had higher primary nesting rates, whereas secondary nesting was unaffected by age. Our results suggest that females were more flexible and responded more readily to changing conditions when allocating resources to second nests. These results are consistent with patterns that have been demonstrated for female allocation to clutch size in this system, and suggest that when conditions are poor second nests reflect a tipping point where reproductive costs (increased mortality) outweigh benefits (offspring reproductive value).  相似文献   

12.
Life-history theory predicts that older females will increase reproductive effort through increased fecundity. Unless offspring survival is density dependent or female size constrains offspring size, theory does not predict variation in offspring size. However, empirical data suggest that females of differing age or condition produce offspring of different sizes. We used a dynamic state-variable model to determine when variable offspring sizes can be explained by an interaction between female age, female state and survival costs of reproduction. We found that when costs depend on fecundity, young females with surplus state increase offspring size and reduce number to minimize fitness penalties. When costs depend on total reproductive effort, only older females increase offspring size. Young females produce small offspring, because decreasing offspring size is less expensive than number, as fitness from offspring investment is nonlinear. Finally, allocation patterns are relatively stable when older females are better at acquiring food and are therefore in better condition. Our approach revealed an interaction between female state, age and survival costs, providing a novel explanation for observed variation in reproductive traits.  相似文献   

13.
Although information concerning variation among and within populations is essential to understanding an organism's life history, little is known of such variation in any species of scorpion. We show that reproductive investment by the scorpion Centruroides vittatus varied among three Texas populations during one reproductive season. Females from the Kickapoo population produced smaller offspring and larger litters than females from the Independence Creek or Decatur populations; this pattern remained when adjusting for among population variation in either female mass or total litter mass. Relative clutch mass (RCM) and within-litter variability in offspring mass (V*) did not differ among populations. Among-population variation may result from genetic differences or from phenotypically plastic responses to differing environments. Within populations, the interrelationships among reproductive variables were similar for Decatur and Independence Creek: females investing more in reproduction (measured by total litter mass, TLM) produced larger litters and larger offspring, and V* decreased with increased mean offspring mass (and with decreased litter size at Decatur). At Kickapoo, larger females produced larger litters and had larger TLM; females investing more in reproduction produced larger litters but not larger offspring. Within litter variability in offspring mass was not correlated with any reproductive variables in this latter population. These patterns may be explained by the fractional clutch hypothesis, the inability of females precisely to control investment among offspring or morphological constraints on reproduction.  相似文献   

14.
Maternal investment in reproduction by oviparous non-avian reptiles is usually limited to pre-ovipositional allocations to the number and size of eggs and clutches, thus making these species good subjects for testing hypotheses of reproductive optimality models. Because leatherback turtles (Dermochelys coriacea) stand out among oviparous amniotes by having the highest clutch frequency and producing the largest mass of eggs per reproductive season, we quantified maternal investment of 146 female leatherbacks over four nesting seasons (2001–2004) and found high inter- and intra-female variation in several reproductive characteristics. Estimated clutch frequency [coefficient of variation (CV) = 31%] and clutch size (CV = 26%) varied more among females than did egg mass (CV = 9%) and hatchling mass (CV = 7%). Moreover, clutch size had an approximately threefold higher effect on clutch mass than did egg mass. These results generally support predictions of reproductive optimality models in which species that lay several, large clutches per reproductive season should exhibit low variation in egg size and instead maximize egg number (clutch frequency and/or size). The number of hatchlings emerging per nest was positively correlated with clutch size, but fraction of eggs in a clutch yielding hatchlings (emergence success) was not correlated with clutch size and varied highly among females. In addition, seasonal fecundity and seasonal hatchling production increased with the frequency and the size of clutches (in order of effect size). Our results demonstrate that female leatherbacks exhibit high phenotypic variation in reproductive traits, possibly in response to environmental variability and/or resulting from genotypic variability within the population. Furthermore, high seasonal and lifetime fecundity of leatherbacks probably reflect compensation for high and unpredictable mortality during early life history stages in this species.  相似文献   

15.
When mortality is high, animals run a risk if they wait to accumulate resources for improved reproduction so they may trade-off the time of reproduction with number and size of offspring. Animals may attempt to improve food acquisition by relocation, even in 'sit and wait' predators. We examine these factors in an isolated population of an orb-web spider Zygiella x-notata . The population was monitored for 200 days from first egg laying until all adults had died. Large females produced their first clutch earlier than did small females and there was a positive correlation between female size and the number and size of eggs produced. Many females, presumably without eggs, abandoned their web site and relocated their web position. This is presumed because female Zygiella typically guard their eggs. In total, c . 25% of females reproduced but those that relocated were less likely to do so, and if they did, they produced the clutch at a later date than those that remained. When the date of lay was controlled there was no effect of relocation on egg number but relocated females produced smaller eggs. The data are consistent with the idea that females in resource-poor sites are more likely to relocate. Relocation seems to be a gamble to find a more productive site but one that achieves only a late clutch of small eggs and few achieve that.  相似文献   

16.
Spatio-temporal variations of lifetime reproductive succes (LRS) of both male and female individuals of a coreid bugColpula lativentris were measured and analyzed using the multiple regression method of Arnold and Wade (1984a, b). The standardized variance of LRS was larger in males than that in females as males often to secure mates for a long period whereas females could easily find mates and oviposit simply dependent on ovarial maturation. LRS was partitioned into 4 consecutive fitness components: (1) reproductive lifespan, (2) copulating efficiency, (3) guarding efficiency (for males) or oviposition efficiency (for females), and (4) number of eggs per clutch. In males copulating efficiency was the largest determining factor of LRS, whereas in females reproductive lifespan was the most important factor. Such tendencies were stable on both a yearly and local basis. Patterns of relative contribution of natural selection (reproductive lifespan and number of eggs per clutch) and sexual selection (copulating efficiency and guarding or oviposition efficiency) to LRS were clearly different between males and females. This sexual difference is, at least to some extent, thought to be brought about by sexual selection among males for mating opportunity, though no physical fight was observed among males. Directional selection on body length was found only in relation to the clutch size of females because large females tended to lay larger clutches. No significant directional selection was found in other fitness components.  相似文献   

17.
Disentangling the relationship between age and reproduction is central to understand life‐history evolution, and recent evidence shows that considering condition‐dependent mortality is a crucial piece of this puzzle. For example, nonrandom mortality of ‘low‐condition’ individuals can lead to an increase in average lifespan. However, selective disappearance of such low‐condition individuals may also affect reproductive senescence at the population level due to trade‐offs between physiological functions related to survival/lifespan and the maintenance of reproductive functions. Here, we address the idea that condition‐dependent extrinsic mortality (i.e. simulated predation) may increase the age‐related decline in male reproductive success and with it the potential for sexual conflict, by comparing reproductive ageing in Drosophila melanogaster male/female cohorts exposed (or not) to condition‐dependent simulated predation across time. Although female reproductive senescence was not affected by predation, male reproductive senescence was considerably higher under predation, due mainly to an accelerated decline in offspring viability of ‘surviving’ males with age. This sex‐specific effect suggests that condition‐dependent extrinsic mortality can exacerbate survival‐reproduction trade‐offs in males, which are typically under stronger condition‐dependent selection than females. Interestingly, condition‐dependent extrinsic mortality did not affect mating success, hinting that accelerated reproductive senescence is due to a decrease in male post‐copulatory fitness components. Our results support the recent proposal that male ageing can be an important source of sexual conflict, further suggesting this effect could be exacerbated under more natural conditions.  相似文献   

18.
MARTIN WEGGLER 《Ibis》2006,148(2):273-284
With reference to models predicting patterns of reproduction in multi-brooded species, I analysed some of the factors potentially affecting the number of breeding attempts per season made by female Black Redstarts Phoenicurus ochruros in the central Swiss Alps. The maximum number of successful broods per female per season was three, the median two. The proportion of females initiating only a single clutch per season varied from 16 to 58% over 10 years. Variation in the frequency of single brooding between years was positively related to the date of the onset of breeding. Egg-laying started after a temperature-related threshold value was crossed in April. Females frequently re-nested before fledglings of the previous brood were independent. Short interbrood intervals were associated with triple brooding. The interbrood interval shortened during the breeding season. Intra-individual variation in the number of breeding attempts per season was partitioned according to female age, laying date of the season's first egg (standardized in relation to the median date of first laying within a year) and the occurrence of breeding failures before the ultimate nesting attempt. However, mortality during the season often terminated breeding early, in particular among novice breeder females. Seasonal reproductive success increased linearly with each additional breeding attempt. The productivity of a breeding attempt was independent of the time in the season. Increased reproductive effort affected neither current or future survival nor reproduction of females. The reproductive patterns and trade-offs in multi-brooded Black Redstarts contrast in many aspects with those found in single-brooded species. They are in accordance with models predicting that multi-brooded species are selected to start breeding as early as possible, continue breeding for as long as conditions are suitable, and save time by overlapping broods.  相似文献   

19.
Animals invest energy in reproduction that is obtained at two distinct times relative to the reproductive cycle. Energy obtained during egg production is referred to as income energy whereas stored energy acquired prior to reproduction is capital energy. Similar to most ectotherms, squamate reptiles are generally hypothesized to be capital breeders. Nearly all squamates in which income/capital energy investment has been examined thus far produce only one clutch per reproductive season. Although it is likely that squamates producing multiple seasonal clutches fuel first clutches with capital energy, either capital or income energy may be used to produce later clutches. We first monitored female eastern collared lizards over 14 reproductive seasons to confirm that the number of clutches females produce seasonally is a plastic response to variable environmental parameters, and to examine the effects of female body condition at the beginning of the reproductive season on clutch production. Clutch production varied annually and both the size and number of clutches were positively correlated with body condition. We then tested the competing predictions of the income and capital hypotheses experimentally by supplementing the diets of female collared lizards in situ for one season. Diet‐supplementation had no effect on the number of clutches produced but increased growth rates of gravid females. We further tested the competing predictions of these two hypotheses by examining variation in maternal energy investment per clutch using preserved specimens collected near our primary field site. Clutch size was highly correlated with female body size. Together, our results suggest that variation in reproductive output by female collared lizards is linked to stored capital energy rather than income energy, similar to most ectotherms.  相似文献   

20.
Wei-Guo Du 《Oikos》2006,112(2):363-369
Understanding the proximate determinants of phenotypic variations in life-history traits can provide powerful insights into a species' life-history strategies. I experimentally manipulated availability of food (high vs low) to examine plasticity in the reproductive traits of northern grass lizards, Takydromus septentrionalis (Lacertidae), from eastern China. Food availability significantly affected reproductive frequency and thereby seasonal reproductive output, but had little effect on reproductive output per clutch. Low-food females postponed reproduction and produced less clutches in the reproductive season than did high-food females. After producing their second clutches, low-food females were in lower body condition than the high-food counterparts. By the end of the experiment, however, all females exhibited similar body condition. Clutch size and clutch mass differed between the first and second clutches but not between the treatments. Egg size and phenotypic traits of hatchlings (body size, morphology and locomotor performance) in T. septentrionalis did not vary significantly from first to second clutches nor between the two treatments. These results support optimal egg size (offspring) theory. Female T. septentrionali s "decide" whether or not to reproduce largely based on current energy intake; lowered feeding rates thus delay oviposition and reduce reproductive frequency. In contrast, clutch size, egg size and relative clutch mass remain unchanged.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号