首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The risk of both predation and food level has been shown to affect phenotypic development of organisms. However, these two factors also influence animal behavior that in turn may influence phenotypic development. Hence, it might be difficult to disentangle the behavioral effect from the predator or resource‐level effects. This is because the presence of predators and high resource levels usually results in a lower activity, which in turn affects energy expenditure that is used for development and growth. It is therefore necessary to study how behavior interacts with changes in body shape with regard to resource density and predators. Here, we use the classic predator‐induced morphological defense in fish to study the interaction between predator cues, resource availability, and behavioral activity with the aim to determine their relative contribution to changes in body shape. We show that all three variables, the presence of a predator, food level, and activity, both additively and interactively, affected the body shape of perch. In general, the presence of predators, lower swimming activity, and higher food levels induced a deep body shape, with predation and behavior having similar effect and food treatment the smallest effect. The shape changes seemed to be mediated by changes in growth rate as body condition showed a similar effect as shape with regard to food‐level and predator treatments. Our results suggests that shape changes in animals to one environmental factor, for example, predation risk, can be context dependent, and depend on food levels or behavioral responses. Theoretical and empirical studies should further explore how this context dependence affects fitness components such as resource gain and mortality and their implications for population dynamics.  相似文献   

2.
In natural systems, organisms are frequently exposed to spatial and temporal variation in predation risk. Prey organisms are known to develop a wide array of plastic defences to avoid being eaten. If inducible plastic defences are costly, prey living under fluctuating predation risk should be strongly selected to develop reversible plastic traits and adjust their defences to the current predation risk. Here, we studied the induction and reversibility of antipredator defences in common frog Rana temporaria tadpoles when confronted with a temporal switch in predation risk by dragonfly larvae. We examined the behaviour and morphology of tadpoles in experimental treatments where predators were added or withdrawn at mid larval development, and compared these to treatments with constant absence or presence of predators. As previous studies have overlooked the effects that developing reversible anti‐predator responses could have later in life (e.g. at life history switch points), we also estimated the impact that changes in antipredator responses had on the timing of and size at metamorphosis. In the presence of predators, tadpoles reduced their activity and developed wider bodies, and shorter and wider tails. When predators were removed tadpoles switched their behaviour within one hour to match that found in the constant environments. The morphology matched that in the constant environments in one week after treatment reversal. All these responses were highly symmetrical. Short time lags and symmetrical responses for the induction/reversal of defences suggest that a strategy with fast switches between phenotypes could be favoured in order to maximise growth opportunities even at the potential cost of phenotypic mismatches. We found no costs of developing reversible responses to predators in terms of life‐history traits, but a general cost of the induction of the defences for all the individuals experiencing predation risk during some part of the larval development (delayed metamorphosis). More studies examining the reversibility of plastic defences, including other type of costs (e.g. physiological), are needed to better understand the adaptive value of these flexible strategies.  相似文献   

3.
Relyea RA  Hoverman JT 《Oecologia》2003,134(4):596-604
Studies of phenotypic plasticity typically focus on traits in single ontogenetic stages. However, plastic responses can be induced in multiple ontogenetic stages and traits induced early in ontogeny may have lasting effects. We examined how gray treefrog larvae altered their morphology in four different larval environments and whether different larval environments affected the survival, growth, development, and morphology of juvenile frogs at metamorphosis. We then reared these juveniles in terrestrial environments under high and low intraspecific competition to determine whether the initial differences in traits at metamorphosis affected subsequent survival and growth, whether the initial phenotypic differences converged over time, and whether competition in the terrestrial environment induced further phenotypic changes. Larval and juvenile environments both affected treefrog traits. Larval predators induced relatively deep tail fins and short bodies, but there was no impact on larval development. In contrast, larval competitors induced relatively short tails and long bodies, reduced larval growth, and slowed larval development. At metamorphosis, larval predators had no effect on juvenile growth or relative morphology while larval competitors produced juveniles that were smaller and possessed relatively shorter limbs and shorter bodies. After 1 month of terrestrial competition among the juvenile frogs, the initial differences in juvenile morphology did not converge. There were no differences in growth due to larval treatment but there were differences in survival. Individuals that experienced low competition as tadpoles experienced near perfect survival as juvenile frogs but individuals that experienced high competition as tadpoles suffered an 18% decrease in survival as juvenile frogs. There were also morphological responses to juvenile competition, but these changes appear to be due, at least in part, to allometric effects. Collectively, these results demonstrate that larval environments can have profound impacts on the traits and fitness of organisms later in ontogeny.  相似文献   

4.
Understanding the role of history in the formation of communities has been a major challenge in community ecology. Here, we explore the role of phenotypic plasticity and its associated trait‐mediated indirect interactions as a mechanism behind priority effects. Using organisms with inducible defenses as a model system, we examine how aquatic communities initially containing different predator environments are affected at the individual and community level by the colonization of a second predator. Snails and tadpoles were established in four different caged‐predator environments (no predator, fish, crayfish or water bugs). These four communities were then crossed with three predator colonization treatments (no colonization, early colonization, or late colonization) using lethal water bugs as the predator. The snails responded to the caged predator environments with predator‐specific behavioral and morphological defenses. In the colonization treatments, snails possessing the wrong phenotype attempted to induce phenotypic changes to defend themselves against the new risk. However, snails initially induced by a different predator environment often suffered high predation rates. Hence, temporal variation in predation risk not only challenged the snail prey to try to track this environmental variation through time by adjusting their defensive phenotypes, but also caused trait‐mediated interactions between snails and the colonizing predator. For tadpoles within these communities, there was little evidence that the morphological responses of snails indirectly effected tadpole predation rates by colonizing water bugs. Unexpectedly, predation rates on tadpoles by colonizing water bugs were generally higher in the three caged‐predator treatments, suggesting that water bugs elevated their foraging activity in response to potentially competing predators. In summary, we demonstrate an important priority effect in which the initial occurrence of one species of predator can facilitate predation by a second predator that colonizes at a later date (i.e. a TMII) suggesting that phenotypic plasticity can be an important driver behind priority effects (i.e. historical exposure to predators).  相似文献   

5.
Animals often alter their behaviour, morphology and physiology in the presence of predators. These induced defences can be fine‐tuned by a variety of environmental factors such as predator species, acute predation risk or food availability. It has, however, remained unclear what cues influence the extent and quality of induced defences and how the information content of these cues interact to determine the development of antipredator defences. We performed an experiment to study the significance of direct chemical cues, originating from the predators themselves, and indirect cues, released by attacked or consumed prey, for phenotypic responses in Rana dalmatina tadpoles. We reared tadpoles in the presence of caged predators (Triturus vulgaris, Aeshna cyanea) fed either one or three tadpoles every other day outside the tadpole‐rearing tanks. Fifteen hours after food provisioning, predators were put back into the tanks containing focal tadpoles either after washing (direct + digestion‐released cues) or with the water containing remnants of the prey (direct + all types of indirect cues). Our results suggest that direct cues together with digestion‐released cues can be sufficient to induce strong antipredator responses. Induced defences depended on both direct cues, affecting predator‐specific responses, and the quantity of indirect cues, resulting in graded responses to differences in predation threat. Moreover, direct and indirect cues interacted in behaviour, resulting in predator‐specific graded responses. We also observed a decrease in the extent of predator‐induced responses in large tadpoles as compared to small ones. Our results, thus, suggest that prey integrate multiple cues about predators to optimize induced defences and that this process changes during ontogeny.  相似文献   

6.
While it is well documented that organisms can express phenotypic plasticity in response to single gradients of environmental variation, our understanding of how organisms integrate information along multiple environmental gradients is limited in many systems. Using the freshwater snail Helisoma trivolvis and two common predators (water bugs Belostoma flumineum and crayfish Orconectes rusticus), we explored how prey integrate information along multiple predation risk gradients (i.e. caged predators fed increasing amounts of prey biomass) that induce opposing phenotypes. When exposed to single predators fed increasing amounts of prey biomass, we detected threshold responses; intermediate amounts of consumed biomass induced phenotypic responses, but higher amounts induced little additional induction. This suggests that additional increases in predator‐induced traits with greater predator risk offer minimal increases in fitness or that a limit in the response magnitude was reached. Additionally, the response thresholds were contingent on the predator and focal trait. For shell width, responses were generally detected at a lower amount of consumed biomass by water bugs compared to crayfish. Within the crayfish treatments, we found that the shell thickness response threshold was lower than the shell width response threshold. When we combined gradients of consumed biomass from both predators, we found that the magnitude of response to one predator was often reduced when the other predator was present. Interestingly, these effects were often detected at consumed biomass levels that were lower than the threshold concentration necessary to elicit a response in the single‐predator treatments. Moreover, our combined predator treatments revealed that snails shifted from discrete responses to more continuous (i.e. graded) responses. Together, our results reveal that organisms experiencing multiple environmental gradients can integrate this information to make phenotypic decisions and demonstrate the novel result that an exposure to multiple species of predators can lower the response threshold of prey.  相似文献   

7.
Experimental studies in temperate regions have revealed that competition and predation interact to shape aquatic communities. Predators typically reduce the effect of competition on growth and competitors provide alternative prey subjects, which may also alter predation. Here, we examine the independent and combined effects of competition and predation on the survival and growth of hatchling tadpoles of two widespread co‐occurring Neotropical hylid frogs (Agalychnis callidryas and Dendropsophus ebraccatus). Using 400 L mesocosms, we used a 2 × 3 factorial substitutive design, which crossed tadpole species composition with the presence or absence of a free‐roaming predator (Anax amazili dragonfly larva). Dragonflies were effective predators of both species, but had larger effects on A. callidryas survival. Both species had similar growth rates when alone, whereas A. callidryas grew 30 percent faster than D. ebraccatus when they co‐occurred, suggesting interspecific rather than intraspecific competition had relatively stronger effects on D. ebraccatus growth, while the opposite was true for A. callidryas. Predator presence dramatically reduced growth rates of both species and erased this asymmetry. Results suggest that the effects of predator induction (i.e., nonconsumptive effects) on growth were larger than both consumptive and competitive effects. Our study demonstrates that predators have strong effects on both survival and growth of prey, highlighting the potential importance of predators in shaping prey populations and tropical aquatic food web interactions. Abstract in Spanish is available at http://www.blackwell‐synergy.com/loi/btp .  相似文献   

8.
Many organisms use inducible defenses as protection against predators. In animals, inducible defenses may manifest as changes in behavior, morphology, physiology, or life history, and prey species can adjust their defensive responses based on the dangerousness of predators. Analogously, prey may also change the composition and quantity of defensive chemicals when they coexist with different predators, but such predator‐induced plasticity in chemical defenses remains elusive in vertebrates. In this study, we investigated whether tadpoles of the common toad (Bufo bufo) adjust their chemical defenses to predation risk in general and specifically to the presence of different predator species; furthermore, we assessed the adaptive value of the induced defense. We reared tadpoles in the presence or absence of one of four caged predator species in a mesocosm experiment, analyzed the composition and quantity of their bufadienolide toxins, and exposed them to free‐ranging predators. We found that toad tadpoles did not respond to predation risk by upregulating their bufadienolide synthesis. Fishes and newts consumed only a small percentage of toad tadpoles, suggesting that bufadienolides provided protection against vertebrate predators, irrespective of the rearing environment. Backswimmers consumed toad tadpoles regardless of treatment. Dragonfly larvae were the most voracious predators and consumed more predator‐naïve toad tadpoles than tadpoles raised in the presence of dragonfly cues. These results suggest that tadpoles in our experiment had high enough toxin levels for an effective defense against vertebrate predators even in the absence of predator cues. The lack of predator‐induced phenotypic plasticity in bufadienolide synthesis may be due to local adaptation for constantly high chemical defense against fishes in the study population and/or due to the high density of conspecifics.  相似文献   

9.
Divergent selection pressures across environments can result in phenotypic differentiation that is due to local adaptation, phenotypic plasticity, or both. Trinidadian guppies exhibit local adaptation to the presence or absence of predators, but the degree to which predator‐induced plasticity contributes to population differentiation is less clear. We conducted common garden experiments on guppies obtained from two drainages containing populations adapted to high‐ and low‐predation environments. We reared full‐siblings from all populations in treatments simulating the presumed ancestral (predator cues present) and derived (predator cues absent) conditions and measured water column use, head morphology, and size at maturity. When reared in presence of predator cues, all populations had phenotypes that were typical of a high‐predation ecotype. However, when reared in the absence of predator cues, guppies from high‐ and low‐predation regimes differed in head morphology and size at maturity; the qualitative nature of these differences corresponded to those that characterize adaptive phenotypes in high‐ versus low‐predation environments. Thus, divergence in plasticity is due to phenotypic differences between high‐ and low‐predation populations when reared in the absence of predator cues. These results suggest that plasticity might initially play an important role during colonization of novel environments, and then evolve as a by‐product of adaptation to the derived environment.  相似文献   

10.
Theoretical work on intraguild predation suggests that if a top predator and an intermediate predator share prey, the system will be stable only if the intermediate predator is better at exploiting the prey, and the top predator gains significantly from consuming the intermediate predator. In mammalian carnivore systems, however, there are examples of top predator species that attack intermediate predator species, but rarely or never consume the intermediate predator. We suggest that top predators attacking intermediate predators without consuming them may not only reduce competition with the intermediate predators, but may also increase the vigilance of the intermediate predators or alter the vigilance of their shared prey, and that this behavioral response may help to maintain the stability of the system. We examine two models of intraguild predation, one that incorporates prey vigilance, and a second that incorporates intermediate predator vigilance. We find that stable coexistence can occur when the top predator has a very low consumption rate on the intermediate predator, as long as the attack rate on the intermediate predator is relatively large. However, the system is stable when the top predator never consumes the intermediate predator only if the two predators share more than one prey species. If the predators do share two prey species, and those prey are vigilant, increasing top predator attack rates on the intermediate predator reduces competition with the intermediate predator and reduces vigilance by the prey, thereby leading to higher top predator densities. These results suggest that predator and prey behavior may play an important dynamical role in systems with intraguild predation.  相似文献   

11.
Inducible defenses of prey and inducible offenses of predators are drastic phenotypic changes activated by the interaction between a prey and predator. Inducible defenses occur in many taxa and occur more frequently than inducible offenses. Recent empirical studies have reported reciprocal phenotypic changes in both predator and prey. Here, we model the coevolution of inducible plasticity in both prey and predator, and examine how the evolutionary dynamics of inducible plasticity affect the population dynamics of a predator-prey system. Under a broad range of parameter values, the proportion of predators with an offensive phenotype is smaller than the proportion of prey with a defensive phenotype, and the offense level is relatively lower than the defense level at evolutionary end points. Our model also predicts that inducible plasticity evolves in both species when predation success depends sensitively on the difference in the inducible trait value between the two species. Reciprocal phenotypic plasticity may be widespread in nature but may have been overlooked by field studies because offensive phenotypes are rare and inconspicuous.  相似文献   

12.
The probability of individuals being targeted as prey often decreases as they grow in size. Such size‐dependent predation risk is very common in systems with intraguild predation (IGP), i.e. when predatory species interact through predation and competition. Theory on IGP predicts that community composition depends on productivity. When recently testing this prediction using a terrestrial experimental system consisting of two phytoseiid mite species, Iphiseius degenerans as the IG‐predator and Neoseiulus cucumeris as the IG‐prey, and pollen (Typha latifolia) as the shared resource, we could not find the predicted community shift. Instead, we observed that IG‐prey excluded IG‐predators when the initial IG‐prey/IG‐predator ratio was high, whereas the opposite held when the initial ratio was low, which is also not predicted by theory. We therefore hypothesized that the existence of vulnerable and invulnerable stages in the two populations could be an important driver of the community composition. To test this, we first demonstrate that IG‐prey adults indeed attacked IG‐predator juveniles in the presence of the shared resource. Second, we show that the invasion capacity of IG‐predators at high productivity levels indeed depended on the structure of resident IG‐prey populations. Third, we further confirmed our hypothesis by mimicking successive invasion events of IG‐predators into an established population of IG‐prey at high productivity levels, which consistently failed. Our results show that the interplay between stage structure of populations and reciprocal intraguild predation is decisive at determining the species composition of communities with intraguild predation.  相似文献   

13.
Phenotypically plastic changes in response to variation in perceived predation risk are widespread, but little is known about if and how social environment modulates induced responses to predation risk. We investigated the influence of perceived predation risk (i.e. chemical cues from a predator) and social environment (i.e. one, two or 20 individuals reared together) on three‐spined stickleback (Gasterosteus aculeatus) morphology in a factorial common garden experiment. We found that exposure to chemical cues from potential predators did not influence growth or body condition or induce more robust morphological defences (i.e. lateral plate numbers and dorsal spine lengths). However, sticklebacks exposed to predator cues developed longer caudal peduncles and larger eyes as compared with fish from the control treatment. As these responses may improve sticklebacks’ ability to avoid piscine predation, they might be adaptive. Social environment/density also influenced expression of some traits, but these effects were independent of predation‐risk treatment effects. In general, these results suggest that apart from the classic morphological defence structures, which appear mostly constitutive, three‐spined sticklebacks are capable of expressing potentially adaptive morphological responses to chemical cues from potential predators.  相似文献   

14.
There is a critical need to understand patterns and causes of intraspecific variation in physiological performance in order to predict the distribution and dynamics of wild populations under natural and human‐induced environmental change. However, the usual explanation for trait differences, local adaptation, fails to account for the small‐scale phenotypic and genetic divergence observed in fishes and other species with dispersive early life stages. We tested the hypothesis that local‐scale variation in the strength of selective mortality in early life mediates the trait composition in later life stages. Through in situ experiments, we manipulated exposure to predators in the coral reef damselfish Dascyllus aruanus and examined consequences for subsequent growth performance under common garden conditions. Groups of 20 recently settled D. aruanus were outplanted to experimental coral colonies in Moorea lagoon and either exposed to natural predation mortality (52% mortality in three days) or protected from predators with cages for three days. After postsettlement mortality, predator‐exposed groups were shorter than predator‐protected ones, while groups with lower survival were in better condition, suggesting that predators removed the longer, thinner individuals. Growth of both treatment groups was subsequently compared under common conditions. We did not detect consequences of predator exposure for subsequent growth performance: Growth over the following 37 days was not affected by the prior predator treatment or survival. Genotyping at 10 microsatellite loci did indicate, however, that predator exposure significantly influenced the genetic composition of groups. We conclude that postsettlement mortality did not have carryover effects on the subsequent growth performance of cohorts in this instance, despite evidence for directional selection during the initial mortality phase.  相似文献   

15.
1. General theory from aquatic ecology predicts that smaller aquatic habitats have shorter hydroperiods favouring species that are better resource competitors and complete development quickly. Larger habitats are predicted to have longer hydroperiods enabling longer‐lived predators to persist. Habitats with long hydroperiods and predators are predicted to favour slower‐developing, predator‐resistant species, rather than competitive species. 2. In a field experiment, habitat size and hydroperiod were manipulated independently in water‐filled containers, to test these hypotheses about processes structuring aquatic communities. Human‐made containers were used that are dominated by mosquitoes that vary in desiccation resistance, competitive ability, and predation resistance. 3. Habitat size and drying had significant effects on abundances of larvae of the common species in these communities. There was sorting of species by habitat size and by drying, with species that are better competitors relatively more abundant in smaller, more ephemeral habitats, and predator‐resistant, slower‐developing species relatively more abundant in larger or permanently flooded habitats. There were no detectable effects of habitat size or drying on the dominant predator. 4. Habitat size and its interaction with drying affected inputs of eggs to containers. Habitat size also affected relative abundances of the two dominant species in the egg population. 5. Although habitat size and hydroperiod significantly affected composition of these communities, these impacts did not appear to be mediated through effects on predator abundance. Species‐specific differences in habitat size and drying regime preferences, and habitat‐dependent larval performance appear to be the main forces shaping these communities.  相似文献   

16.
17.
Ecological communities are partly structured by indirect interactions, where one species can indirectly affect another by altering its interactions with a third species. In the absence of direct predation, nonconsumptive effects of predators on prey have important implications for subsequent community interactions. To better understand these interactions, we used a Daphnia‐parasite‐predator cue system to evaluate if predation risk affects Daphnia responses to a parasite. We investigated the effects of predator cues on two aspects of host–parasite interactions (susceptibility to infection and infection intensity), and whether or not these effects differed between sexes. Our results show that changes in response to predator cues caused an increase in the prevalence and intensity of parasite infections in female predator‐exposed Daphnia. Importantly, the magnitude of infection risk depended on how long Daphnia were exposed to the cues. Additionally, heavily infected Daphnia that were constantly exposed to cues produced relatively more offspring. While males were ~5× less likely to become infected compared to females, we were unable to detect effects of predator cues on male Daphnia–parasite interactions. In sum, predators, prey, and their parasites can form complex subnetworks in food webs, necessitating a nuanced understanding of how nonconsumptive effects may mediate these interactions.  相似文献   

18.
Non-lethal effects of predation in birds   总被引:2,自引:2,他引:0  
WILL CRESSWELL 《Ibis》2008,150(1):3-17
Predators can affect individual fitness and population and community processes through lethal effects (direct consumption or ‘density’ effects), where prey is consumed, or through non‐lethal effects (trait‐mediated effects or interactions), where behavioural compensation to predation risk occurs, such as animals avoiding areas of high predation risk. Studies of invertebrates, fish and amphibians have shown that non‐lethal effects may be larger than lethal effects in determining the behaviour, condition, density and distribution of animals over a range of trophic levels. Although non‐lethal effects have been well described in the behavioural ecology of birds (and also mammals) within the context of anti‐predation behaviour, their role relative to lethal effects is probably underestimated. Birds show many behavioural and physiological changes to reduce direct mortality from predation and these are likely to have negative effects on other aspects of their fitness and population dynamics, as well as affecting the ecology of their own prey and their predators. As a consequence, the effects of predation in birds are best measured by trade‐offs between maximizing instantaneous survival in the presence of predators and acquiring or maintaining resources for long‐term survival or reproduction. Because avoiding predation imposes foraging costs, and foraging behaviour is relatively easy to measure in birds, the foraging–predation risk trade‐off is probably an effective framework for understanding the importance of non‐lethal effects, and so the population and community effects of predation risk in birds and other animals. Using a trade‐off approach allows us to predict better how changes in predator density will impact on population and community dynamics, and how animals perceive and respond to predation risk, when non‐lethal effects decouple the relationship between predator density and direct mortality rate. The trade‐off approach also allows us to identify where predation risk is structuring communities because of avoidance of predators, even when this results in no observable direct mortality rate.  相似文献   

19.
Prey modify their behaviour to avoid predation, but dilemmas arise when predators vary in hunting style. Behaviours that successfully evade one predator sometimes facilitate exposure to another predator, forcing the prey to choose the lesser of two evils. In such cases, we need to quantify behavioural strategies in a mix of predators. We model optimal behaviour of Atlantic cod Gadus morhua larvae in a water column, and find the minimal vulnerability from three common predator groups with different hunting modes; 1) ambush predators that sit‐and‐wait for approaching fish larvae; 2) cruising invertebrates that eat larvae in their path; and 3) fish which are visually hunting predators. We use a state‐dependent model to find optimal behaviours (vertical position and swimming speed over a diel light cycle) under any given exposure to the three distinct modes of predation. We then vary abundance of each predator and quantify direct and indirect effects of predation. The nature and strength of direct and indirect effects varied with predator type and abundance. Larvae escaped about half the mortality from fish by swimming deeper to avoid light, but their activity level and cumulative predation from ambush predators increased. When ambush invertebrates dominated, it was optimal to be less active but in more lit habitats, and predation from fish increased. Against cruising predators, there was no remedy. In all cases, the shift in behaviour allowed growth to remain almost the same, while total predation were cut by one third. In early life stages with high and size‐dependent mortality rates, growth rate can be a poor measure of the importance of behavioural strategies.  相似文献   

20.
Theory holds that adaptive phenotypic plasticity evolves under spatial or temporal variation in natural selection. I tested this prediction in a classic system of predator‐induced plasticity: frog tadpoles (Rana temporaria) reacting to predaceous aquatic insects. An outdoor mesocosm experiment manipulating exposure to Aeshna dragonfly larvae revealed plasticity in most characters: growth, development, behavior, and external morphology. I measured selection by placing 1927 tadpoles into enclosures within natural ponds; photographs permitted identification of the survivors six to nine days later. Fitness was defined as a linear combination of growth, development, and survival that correlates with survival to age 2 in another anuran species. In enclosures with many predators, selection‐favored character values similar to those induced by exposure to Aeshna in mesocosms. The shift in selection along the predation gradient was strongest for characters that exhibited high predator‐induced plasticity. A field survey of 50 ponds revealed that predator density changes over a spatial scale relevant for movement of individual adults and larvae: 17% of variation in predation risk was among ponds separated by tens to thousands of meters and 81% was among sites ≤10 m apart within ponds. These results on heterogeneity in the selection regime confirm a key tenant of the standard model for the evolution of plasticity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号