首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
In most cases of E. coli high cell density fermentation process, maximizing cell concentration helps in increasing the volumetric productivity of recombinant proteins usually at the cost of lower specific cellular protein yield. In this report, we describe a process for maintaining the specific cellular yield of Ovine growth hormone (oGH) from E. coli by optimal feeding of yeast extract during high cell density fermentation process. Recombinant oGH was produced as inclusion bodies in Escherichia coli. Specific cellular yield of recombinant oGH was maintained by feeding yeast extract along with glucose during fed-batch fermentation. Glucose to yeast extract ratio of 0.75 was found to be optimum for maintaining the specific cellular oGH yield of 66 mg/g of E. coli cells. Continuous feeding of yeast extract along with glucose helped in reducing acetic acid secretion and promoted higher cell growth during fed-batch fermentation. High cell growth of E. coli and high specific yield of recombinant oGH thus helped in achieving high volumetric productivity of the expressed protein. A maximum of 2 g/l of ovine growth hormone was expressed as inclusion bodies in 12 h of fed-batch fermentation.  相似文献   

2.
A fed-batch process for the high cell density cultivation of E. coli TG1 and the production of the recombinant protein phenylalanine dehydrogenase (PheDH) was developed. A model based on Monod kinetics with overflow metabolism and incorporating acetate utilization kinetics was used to generate simulations that describe cell growth, acetate production and reconsumption, and glucose consumption during fed-batch cultivation. Using these simulations a predetermined feeding profile was elaborated that would maintain carbon-limited growth at a growth rate below the critical growth rate for acetate formation (mu < mu(crit)). Two starvation periods are incorporated into the feed profile in order to induce acetate utilization. Cell concentrations of 53 g dry cell weight (DCW)/L were obtained with a final intracellular product concentration of recombinant protein corresponding to approximately 38% of the total cell protein. The yield of PheDH was 129 U/mL with a specific activity of 1.2 U/mg DCW and a maximum product formation rate of 0.41 U/mg DCW x h. The concentration of aectate was maintained below growth inhibitory levels until 3 h before the end of the fermentation when the concentration reached a maximum of 10.7 g/L due to IPTG induction of the recombinant protein.  相似文献   

3.
During fed-batch cultivation of Escherichia coli K-12, the proteomic response to a temperature downshift from 37 to 20°C was quantitatively monitored and analyzed by using two-dimensional electrophoresis. When the temperature of exponentially growing E. coli K-12 culture was downshifted to 20°C, the synthesis level of 57 intracellular proteins showed significant changes for a prolonged period of time, compared to the fed-batch culture controlled at 37°C. Thus, these proteins are regarded as important stress proteins responsive to cold shock, which were analyzed by using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and identified using the E. coli SWISS-2DPAGE database. Most of the identified proteins were shown to be involved in energy metabolism, several cellular molecule biosynthetic pathways and catabolism, cell processes, flagellar biosynthesis and motility, and protein translation and folding. The systematic approach to the monitoring of proteomic responses and the detailed analysis results reported in this article would be useful in understanding the metabolic adaptation to lowered culture temperature and designing efficient fermentation strategies for the production of recombinant proteins and metabolites using E. coli strains.  相似文献   

4.
Pyruvate oxidase (PyOD) is a very powerful enzyme for clinical diagnostic applications and environmental monitoring. Influences of temperature on cell growth, plasmid stability, and PyOD expression during the PyOD fermentation process by recombinant Escherichia coli were investigated. Based on the influences of temperature on the physiological metabolism, a novel high-cell density fed-batch cultivation with gradient temperature decrease strategy for effective PyOD production was achieved, under which the biomass (OD600) of recombinant E. coli could reach to 71 and the highest PyOD activity in broth could reach to 3,307 U/L in 26?hr fermentation.  相似文献   

5.
Chikungunya, a mosquito-borne viral disease caused by Chikungunya virus (CHIKV), has drawn substantial attention after its reemergence causing massive outbreaks in tropical regions of Asia and Africa. The recombinant envelope 2 (rE2) protein of CHIKV is a potential diagnostic as well as vaccine candidate. Development of cost-effective cultivation media and appropriate culture conditions are generally favorable for large-scale production of recombinant proteins in Escherichia coli. The effects of medium composition and cultivation conditions on the production of recombinant Chikungunya virus E2 (rCHIKV E2) protein were investigated in shake flask culture as well as batch cultivation of Escherichia coli. Further, the fed-batch process was also carried out for high cell density cultivation of E. coli expressing rE2 protein. Expression of rCHIKV E2 protein in E. coli was induced with 1 mM isopropyl-beta-thiogalactoside (IPTG) at ~23 g dry cell weight (DCW) per liter of culture and yielded an insoluble protein aggregating to form inclusion bodies. The final DCW after fed-batch cultivation was ~35 g/l. The inclusion bodies were isolated, solubilized in 8 M urea and purified through affinity chromatography to give a final product yield of ~190 mg/l. The reactivity of purified E2 protein was confirmed by Western blotting and enzyme-linked immunosorbent assay. These results show that rE2 protein of CHIKV may be used as a diagnostic reagent or for further prophylactic studies. This approach of producing rE2 protein in E. coli with high yield may also offer a promising method for production of other viral recombinant proteins.  相似文献   

6.
Overflow metabolism is an undesirable characteristic of aerobic cultures of Escherichia coli. It results from elevated glucose consumption rates that cause a high substrate conversion to acetate, severely affecting cell physiology and bioprocess performance. Such phenomenon typically occurs in batch cultures under high glucose concentration. Fed-batch culture, where glucose uptake rate is controlled by external addition of glucose, is the classical bioprocessing alternative to prevent overflow metabolism. Despite its wide-spread use, fed-batch mode presents drawbacks that could be overcome by simpler batch cultures at high initial glucose concentration, only if overflow metabolism is effectively prevented. In this study, an E. coli strain (VH32) lacking the phosphoenolpyruvate: carbohydrate phosphotransferase system (PTS) with a modified glucose transport system was cultured at glucose concentrations of up to 100 g/L in batch mode, while expressing the recombinant green fluorescence protein (GFP). At the highest glucose concentration tested, acetate accumulated to a maximum of 13.6 g/L for the parental strain (W3110), whereas a maximum concentration of only 2 g/L was observed for VH32. Consequently, high cell and GFP concentrations of 52 and 8.2 g/L, respectively, were achieved in VH32 cultures at 100 g/L of glucose. In contrast, maximum biomass and GFP in W3110 cultures only reached 65 and 48%, respectively, of the values attained by the engineered strain. A comparison of this culture strategy against traditional fed-batch culture of W3110 is presented. This study shows that high cell and recombinant protein concentrations are attainable in simple batch cultures by circumventing overflow metabolism through metabolic engineering. This represents a novel and valuable alternative to classical bioprocessing approaches.  相似文献   

7.
The green fluorescent protein (GFP) was used as a model protein to study the recombinant protein production by the strain Methylobacterium extorquens ATCC 55366. Scale-up from shake flasks to 20 l fed-batch fermentation was achieved using methanol as a sole carbon and energy source and a completely minimal culture medium. Two different expression vectors were used to express GFP. Clone PCM-GFP containing the vector pCM110 with native promoter of the methanol dehydrogenase PmxaF produced approximately 100-fold more GFP than the clone PRK-GFP containing the vector pRK310 with the heterogeneous promoter Plac. Several fed-batch fermentations with and without selective pressure (tetracycline) were run in a 20 l stirred tank fermenter using the two different clones of M. extorquens. The methanol concentration was monitored with an on-line semiconductor gas sensor in the culture broth. It was maintained at a non-toxic level of 1.4 g l(-1) with an adaptative control which regulates the methanol feed rate. The same growth profile was achieved in all fermentations. The maximum growth rate (micro(max)) was 0.18 h(-1) with an overall yield (Y(X/S)) of 0.3 g g(-1) methanol. With this high cell density fermentation process, we obtained high levels (up to 4 g l(-1)) of GFP with the clone PCM-GFP. The maximum specific GFP production (Y(GFP/X)) with this clone was 80 mg g(-1) representing approximately 16% of the total cell protein. Additional feeding of pure oxygen to the fermenter permitted a longer phase of exponential growth but had no effect on the total yields of biomass and GFP. The specific GFP production of clone PCM-GFP remained unaffected in the presence or absence of selective pressure (tetracycline), within the initial 50 h of the fermentation culture. These results suggest that M. extorquens ATCC 55366 could be an interesting candidate for overexpression of recombinant proteins.  相似文献   

8.
Recently, the feasibility of using Escherichia coli for the heterologous biosynthesis of complex polyketides has been demonstrated. In this report, the development of a robust high-cell-density fed-batch procedure for the efficient production of complex polyketides is described. The effects of various physiological conditions on the productivity and titers of 6-deoxyerythronolide B (6dEB; the macrocyclic core of the antibiotic erythromycin) in recombinant cultures of E. coli were studied in shake flask cultures. The resulting data were used as a foundation to develop a high-cell-density fermentation procedure by building upon procedures reported earlier for recombinant protein production in E. coli. The fermentation strategy employed consistently produced ~100 mg of 6dEB per liter, whereas shake flask conditions generated between 1 and 10 mg per liter. The utility of an accessory thioesterase (TEII from Saccharopolyspora erythraea) for enhancing the productivity of 6dEB in E. coli was also demonstrated (increasing the final titer of 6dEB to 180 mg per liter). In addition to reinforcing the potential for using E. coli as a heterologous host for wild-type- and engineered-polyketide biosynthesis, the procedures described in this study may be useful for the production of secondary metabolites that are difficult to access by other routes.  相似文献   

9.
The present Influenza vaccine manufacturing process has posed a clear impediment to initiation of rapid mass vaccination against spreading pandemic influenza. New vaccine strategies are therefore needed that can accelerate the vaccine production. Pichia offers several advantages for rapid and economical bulk production of recombinant proteins and, hence, can be attractive alternative for producing an effective influenza HA based subunit vaccine. The recombinant Pichia harboring the transgene was subjected to fed-batch fermentation at 10 L scale. A simple fermentation and downstream processing strategy is developed for high-yield secretory expression of the recombinant Hemagglutinin protein of pandemic Swine Origin Influenza A virus using Pichia pastoris via fed-batch fermentation. Expression and purification were optimized and the expressed recombinant Hemagglutinin protein was verified by sodium dodecyl sulfate polyacrylamide gel electrophoresis, Western blot and MALDI-TOF analysis. In this paper, we describe a fed-batch fermentation protocol for the secreted production of Swine Influenza A Hemagglutinin protein in the P. pastoris GS115 strain. We have shown that there is a clear relationship between product yield and specific growth rate. The fed-batch fermentation and downstream processing methods optimized in the present study have immense practical application for high-level production of the recombinant H1N1 HA protein in a cost effective way using P. pastoris.  相似文献   

10.
Synthesis of two recombinant proteins (human glucagon and human growth hormone) was investigated in fed-batch cultures at high cell concentrations of recombinant Escherichia coli. The glucose-limited growth was achieved without accumulation of metabolic by-products and hence the cellular environment is presumed invariable during growth and recombinant protein synthesis. Via exponential feeding in the two-phase fed-batch operation, the specific cell growth rate was successfully controlled at the desired rates and the fed-batch mode employed is considered appropriate for examining the correlation between the specific growth rate and the efficiency of recombinant product formation in the recombinant E. coli strains. The two recombinant proteins were expressed as fusion proteins and the concentration in the culture broth was increased to 15 g fusion growth hormone l−1 and 7 g fusion glucagon l−1. The fusion growth hormone was initially expressed as soluble protein but seemed to be gradually aggregated into inclusion bodies as the expression level increased, whereas the synthesized fusion glucagon existed as a cytoplasmic soluble protein during the whole induction period. The stressful conditions of cultivation employed (i.e. high-cell-density cultivation at low growth rate) may induce the increased production of various host-derived chaperones and thereby enhance the folding efficiency of synthesized heterologous proteins. The synthesis of the recombinant fusion proteins was strongly growth-dependent and more efficient at a higher specific growth rate. The mechanism linking specific growth rate with recombinant protein productivity is likely to be related to the change in cellular ribosomal content. Received: 27 May 1997 / Received last revision: 31 October 1997 / Accepted: 21 November 1997  相似文献   

11.
An new cascade control system is presented that reproducibly keeps the cultivation part of recombinant protein production processes on its predetermined track. While the system directly controls carbon dioxide production mass and carbon dioxide production rates along their setpoint profiles in fed-batch cultivation, it simultaneously keeps the specific biomass growth rates and the biomass profiles on their desired paths. The control scheme was designed and tuned using a virtual plant environment based on the industrial process control system SIMATIC PCS 7 (Siemens AG). It is shown by means of validation experiments that the simulations in this straightforward approach directly reflect the experimentally observed controller behaviour. Within the virtual plant environment, it was shown that the cascade control is considerably better than previously used control approaches. The controller significantly improved the batch-to-batch reproducibility of the fermentations. Experimental tests confirmed that it is particularly suited for cultivation processes suffering from long response times and delays. The performance of the new controller is demonstrated during its application in Escherichia coli fed-batch cultivations as well as in animal cell cultures with CHO cells. The technique is a simple and reliable alternative to more sophisticate model-supported controllers.  相似文献   

12.
Fed-batch production of recombinant fuculose-1-phosphate aldolase (FucA) by Escherichia coli XL1 Blue MRF′ (pTrcfuc) has been automated by using a simple feedback specific growth rate control strategy. Non-induced continuous cultures were conducted in order to characterize substrate consumption and carbon dioxide production yields and rates. In fed-batch cultures, substrate feeding rate was adjusted using on-line biomass estimation based on exhaust gas analysis and macroscopic mass balances. Overexpression of recombinant protein induced by isopropyl-β-d-thiogalactopyranoside (IPTG) under trc promoter did not affect significantly the control of specific growth rate during 7 h after induction. Growth and protein production curves were parallel until high level of protein expression started to inhibit cell growth. The proposed specific growth rate control strategy has been successfully applied to both non-induced and induced fed-batch cultures that do not exhibit severe growth rate depression.  相似文献   

13.
The aerobic fed-batch production of recombinant human growth hormone (rhGH) by Escherichia coli was studied. The goal was to determine the production and protein degradation pattern of this product during fed-batch cultivation and to what extent scale differences depend on the presence of a fed-batch glucose feed zone. Results of laboratory bench-scale, scale-down (SDR), and industrial pilot-scale (3-m(3)) reactor production were compared. In addition to the parameters of product yield and quality, also cell yield, respiration, overflow, mixed acid fermentation, glucose concentration, and cell lysis were studied and compared. The results show that oxygen limitation following glucose overflow was the critical parameter and not the glucose overflow itself. This was verified by the pattern of byproduct formation where formate was the dominating factor and not acetic acid. A correlation between the accumulation of formate, the degree of heterogeneity, and cell lysis was also visualized when recombinant protein was expressed. The production pattern could be mimicked in the SDR reactor for all parameters, except for product quantity and quality, where 30% fewer rhGH-degraded forms were present and where about 80% higher total yield was achieved, resulting in 10% greater accumulation of properly formed rhGH monomer.  相似文献   

14.
A five-layer fuzzy neural network (FNN) was developed for the control of fed-batch cultivation of recombinant Escherichia coli JM103 harboring plasmid pUR 2921. The FNN was believed to represent the membership functions of the fuzzy subsets and to implement fuzzy inference using previous experimental data. This FNN was then used for compensating the exponential feeding rate determined by the feedforward control element. The control system is therefore a feedforward-feedback type. The change in pH of the culture broth and the specific growth rate were used as the inputs to FNN to calculate the glucose feeding rate. A cell density of 84 g DWC/l in the fed-batch cultivation of the recombinant E. coli was obtained with this control strategy. Two different FNNs were then employed before and after induction to enhance plasmid-encoded β-galactosidase production. Before induction the specific growth rate was set as 0.31 h−1, while it was changed to 0.1 h−1 after induction. Compared to when only one FNN was used, the residual glucose concentration could be tightly controlled at an appropriate level by employing two FNNs, resulting in an increase in relative activity of β-galactosidase which was about four times greater. The present investigation demonstrates that a feedforward-feedback control strategy with FNN is a promising control strategy for the control of high cell density cultivation and high expression of a target gene in fed-batch cultivation of a recombinant strain.  相似文献   

15.
This study presents a detailed in silico analysis of bioethanol production from glucose/xylose mixtures of various compositions by fed-batch co-culture and mono-culture fermentation of specialized microbes. The mono-culture consists of recombinant Saccharomyces cerevisise that can metabolize both hexose and pentose sugars while the co-culture system consists of substrate-selective microbes. Dynamic flux balance models based on available genome-scale reconstructions of the microorganisms have been used to analyze bioethanol production in fed-batch culture with constant feed rates and the maximization of ethanol productivity is addressed by computing optimal aerobic-anaerobic switching times. The simulation results clearly point to the superior performance of fed-batch fermentation of microbial co-culture against fed-batch fermentation of mono-culture for bioethanol production from glucose/xylose mixtures. A set of potential genetic engineering strategies for enhancement of S. cerevisiae and Escherichia coli strains performance have been identified. Such in silico predictions using genome-scale models provide valuable guidance for conducting in vivo metabolic engineering experiments.  相似文献   

16.
Fermentations with recombinant bacteria containing run-away plasmids are typically operated alternately above and below a critical temperature. To minimize the risks of run away reactions, it is preferable to keep the high temperature periods as short as possible. In this study the possibility of sustained low temperature (sub-critical) operation in a suitably non-homogeneous broth is analyzed. Fluid dispersion is used as a measure of non-homogeneity. The fed-batch production of β-galactosidase by Escherichia coli containing the plasmid pOU140 and operated below 37 °C is analysed as a model system. To characterize non-homogeneity, an earlier model visualizing the broth as a set of two reactors with internal recycle has been modified for fed-batch fermentation. Three dilution rates, two internal and one external, quantify fluid dispersion. While plasmid replication and fermentation become quenched in sub-critical operation in a well-mixed reactor, with finite dispersion there may be an increase in the concentration of plasmid-containing cells and the recombinant protein. The concentration profiles many also have one or more peaks in the time domain. Thus, sustained fermentation with run-away plasmids appears feasible in a bioreactor with controlled non-homogeneity.  相似文献   

17.
The most common strategy to produce recombinant proteins using Escherichia coli as expression vector is fed-batch culture, since high cell density cultures strategies have successfully been applied. Several methodologies to limit the specific growth rate in order to control E. coli metabolism have been defined, demonstrating that cultures can be grown under glucose limitation up to high cell densities without accumulation of acetic acid. However, under induction conditions it has been observed that E. coli metabolism is reorganized again and leads to acetic acid accumulation, causing inhibition of cell growth and decreasing protein expression efficiency.We propose a double limitation strategy (glucose and IPTG) for E. coli fed-batch cultures to avoid the deregulation of the metabolism in the induction phase. Reducing the concentration of IPTG while keeping glucose growth limitation, the accumulation of acetic acid decreased. At an IPTG concentration of 0.03 mmol/g DCW no accumulation of acetic acid was observed during the induction phase, in contraposition to what has normally been observed.Although a slight reduction of protein expression rate was observed when applying this double limitation strategy, the bioprocess volumetric productivity was enhanced due to the capability to prolong the induction phase, reaching higher levels of protein production. Another advantage of this strategy is the reduction of media cost due to the lower level of IPTG used.  相似文献   

18.
An automated glucose feeding strategy that avoids acetate accumulation in cultivations of Escherichia coli is discussed. We have previously described how a probing technique makes it possible to detect and avoid overflow metabolism using a dissolved oxygen sensor. In this article these ideas are extended with a safety net that guarantees that aerobic conditions are maintained. The method is generally applicable, as no strain-specific information is needed and the only sensor required is a standard dissolved oxygen probe. It also gives the highest feed rate possible with respect to limitations from overflow metabolism and oxygen transfer, thus maximizing bioreactor productivity. The strategy was implemented on three different laboratory-scale platforms and fed-batch cultivations under different operating conditions were performed with three recombinant strains, E. coli K-12 UL635, E. coli BL21(DE3), and E. coli K-12 UL634. In spite of disturbances from antifoam and induction of recombinant protein production, the method reproducibly gave low concentrations of acetate and glucose. The ability to obtain favorable cultivation conditions independently of strain and operating conditions makes the presented strategy a useful tool, especially in situations where it is important to get good results on the first attempt.  相似文献   

19.
A fed-batch culture strategy for the production of recombinant Escherichia coli cells anchoring surface-displayed transglucosidase for use as a whole-cell biocatalyst for α-arbutin synthesis was developed. Lactose was used as an inducer of the recombinant protein. In fed-batch cultures, dissolved oxygen was used as the feed indicator for glucose, thus accumulation of glucose and acetate that affected the cell growth and recombinant protein production was avoided. Fed-batch fermentation with lactose induction yielded a biomass of 18 g/L, and the cells possessed very high transglucosylation activity. In the synthesis of α-arbutin by hydroquinone glucosylation, the whole-cell biocatalysts showed a specific activity of 501 nkat/g cell and produced 21 g/L of arbutin, which corresponded to 76% molar conversion. A sixfold increased productivity of whole cell biocatalysts was obtained in the fed-batch culture with lactose induction, as compared to batch culture induced by IPTG.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号