首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The hydrodynamic characteristics and the overall volumetric oxygen transfer coefficient of a new multi-environment bioreactor which is an integrated part of a wastewater treatment system, called BioCAST, were studied. This bioreactor contains several zones with different environmental conditions including aerobic, microaerophilic and anoxic, designed to increase the contaminant removal capacity of the treatment system. The multi-environment bioreactor is designed based on the concept of airlift reactors where liquid is circulated through the zones with different environmental conditions. The presence of openings between the aerobic zone and the adjacent oxygen-depleted microaerophilic zone changes the hydrodynamic properties of this bioreactor compared to the conventional airlift designs. The impact of operating and process parameters, notably the hydraulic retention time (HRT) and superficial gas velocity (U G), on the hydrodynamics and mass transfer characteristics of the system was examined. The results showed that liquid circulation velocity (V L), gas holdup (ε) and overall volumetric oxygen transfer coefficient ( $ k_{\text{L}} a_{\text{L}} $ ) increase with the increase of superficial gas velocity (U G), while the mean circulation time (t c) decreases with the increase of superficial gas velocity. The mean circulation time between the aerobic zone (riser) and microaerophilic zone (downcomer) is a stronger function of the superficial gas velocity for the smaller openings (1/2 in.) between the two zones, while for the larger opening (1 in.) the mean circulation time is almost independent of U G for U G ≥ 0.023 m/s. The smaller openings between the two zones provide higher mass transfer coefficient and better zone generation which will contribute to improved performance of the system during treatment operations.  相似文献   

2.
Bioprocess optimization for cell-based therapies is a resource heavy activity. To reduce the associated cost and time, process development may be carried out in small volume systems, with the caveat that such systems be predictive for process scale-up. The transport of oxygen from the gas phase into the culture medium, characterized using the volumetric mass transfer coefficient, kLa, has been identified as a critical parameter for predictive process scale-up. Here, we describe the development of a 96-well microplate with integrated Redbud Posts to provide mixing and enhanced kLa. Mixing in the microplate is characterized by observation of dyes and analyzed using the relative mixing index (RMI). The kLa is measured via dynamic gassing out method. Actuating Redbud Posts are shown to increase rate of planar homogeneity (2 min) verse diffusion alone (120 min) and increase oxygenation, with increasing stirrer speed (3500-9000 rpm) and decreasing fill volume (150-350 μL) leading to an increase in kLa (4-88 h−1). Significant increase in Chinese Hamster Ovary growth in Redbud Labs vessel (580,000 cells mL-1) versus the control (420,000 cells mL-1); t(12.814) = 8.3678, p ≤ .001), and CD4+ Naïve cell growth in the microbioreactor indicates the potential for this technology in early stage bioprocess development and optimization.  相似文献   

3.
Mixing time was determined in a down-flow jet loop bioreactor with Newtonian and non-Newtonian fluids. It was observed that the mixing time decreased with an increase in linear liquid velocity, superficial gas velocity, draft tube to column diameter ratio, nozzle diameter and shear thinning of media. The optimum draft tube to column diameter ratio was found to be about 0.44. Correlations were presented for prediction of mixing time.List of Symbols A m2 cross sectional area of the column - C kmol/m3 local tracer concentration - A D m2 flow area,A D =/4 (D Z 2 -D TO 2 ) - D m column diameter - D E m draft tube diameter - D TO m outside diameter of the air tube - D TFL m equivalent flow diameter,D TFL =(D Z 2 -D TO 2 )0.5 - D z m nozzle diameter - g m/s2 gravitational acceleration - h % inhomogeneity - H m height of the column - H B m distance between the lower edge of the draft tube and the impact plate - H T m distance between the upper edge of the draft tube and the liquid nozzle - K Pa.sn consistency index in power-law model - L E m length of the draft tube - n flow index in the power-law model - Re j jet Reynolds number,Re j =(D TFL×w1×L)/ eff - t M s mixing time - t sg m/s superficial gas velocity based onA - W l m/s linear liquid velocity based onD D Greek Letters N/m2 shear stress - s shear rate - kg/m3 density of liquid - N/m surface tension of the liquid - Pa.sn viscosity of liquid Indices X concentration at infinite time maximum value of tracer concentration - eff effective - L Liquid - obs observed - pred Predicted  相似文献   

4.
A 10.5-m(3) concentric tube jet loop reactor was used to study the influence of the working liquid volume, mean superficial air velocity, operating pressure, downcomer aeration, liquid jet velocity, and two ratios of draft tube/reactor diameter (D(t)/D) on liquid circulation time (T(c)). The experiments were carried out in a water-air system with the use of the acid pulse method. Results showed that circulation time was independent of the working liquid volume over a certain minimum liquid level, whereas downcomer aeration and D(t)/D ratio appeared as amenable parameters to achieve a high degree of control over liquid circulation and mixing efficiency, and to optimize the overall reactor performance. Increasing the operating pressure caused a reduction of the liquid circulation rate. However, ionger residence times of the air bubbles and the higher mass transfer driving force that result at higher pressures improve oxygen utilization. The relationship between T(c) and air load was independent of the operating pressure, provided the correlation is given as a function of the mean superficial air velocity. Neither liquid circulation nor gas holdup were significantly affected by liquid jet velocity. (c) 1995 John Wiley & Sons, Inc.  相似文献   

5.
Horizontal rotating reactors offer many advantages for enzymatic hydrolysis of viscous biomass slurries; however, they do not provide homogenous mixtures since motion is only in the angular direction. Multi-directional mixing is important for dispersing enzymes and carrying products away from reaction sites. The objective here was to experimentally quantify mixing times and axial dispersion coefficients in a horizontal rotating bioreactor. Mixing times were of the same order as reaction times, indicating that enzymatic hydrolysis could be as much controlled by diffusion and mixing effects as by the complex reaction mechanism. The dispersion coefficient for the highest solids slurry was 20× less than the lowest solids slurry, which is indicative of the difference in free water and the magnitude change of viscosity with relatively small addition of solids. The slow mixing times and low dispersion may be an acceptable tradeoff with significantly lower power requirements compared to a conventional vertical reactor.  相似文献   

6.
7.
The design and methodology of a stirring intensity measuring device, SIMD-f3, are described. A low noise action electromagnetic drive is developed and applied. Measurements in water demonstrate the fundamental validity of the device. Measurements in air–water and different solutions of carboxymethyl cellulose (CMC) do not contradict the physical interpretation. Potential applications could embrace optimization of mixers design and mixing regimes, control of technological processes, scale-up and scale-down. The low noise action electromagnetic drive provides a possibility of carring out correct mixing measurements and elimination of contamination when cultivating microorganisms.  相似文献   

8.
A novel centrifugal impeller bioreactor for shear-sensitive biological systems was designed by installing a centrifugal-pumplike impeller in a stirred vessel. The fluid circulation, mixing, and liquid velocity profiles in the new bioreactor (5-L) were assessed as functions of the principal impeller designing and bioreactor operating parameters. The performances of the centrifugal impeller bioreactor were compared with those of a widely used cell-lift bioreactor. The newly developed bioreactor showed higher liquid lift capacity and shorter mixing time than the cell lift with comparable dimensions. Furthermore, the experiments of the liquid velocity profiles around an impeller region indicated that the centrifugal impeller bioreactor produced lower shear stress than the cell lift. This conclusion was also supported by evaluating the changes in size distributions of granulated agar particles that were sheared with those two types of impeller.  相似文献   

9.
An internal circulation baffled bioreactor was employed to realize simultaneous di-oxygenation of phthalic acid (PA) and denitrification of nitrate, which require aerobic and anoxic conditions, respectively. Adding a small concentration of succinate as an exogenous electron donor stimulated PA di-oxygenation, which produced readily oxidizable downstream products whose oxidation also enhanced denitrification of nitrate; succinate addition also stimulated denitrification. Depending on the concentration of PA, addition of 0.17 mM succinate increased the PA removal rate by 25 and 42%, while the corresponding nitrate removal rate was increased by 73 and 51%. UV/H2O2 advanced oxidation of PA had the same effects as adding succinate, since succinate is generated by UV/H2O2; this acceleration effect was approximately equivalent to adding 0.17 mM succinate.  相似文献   

10.
11.
Summary The relationship between mixing characteristics and sparging rates has been investigated by direct measurements in a simple air-lift with varied geometry, and some qualitative criteria for scale-up are presented.  相似文献   

12.
We developed an easy-to-use, small-scale circulation-type bioreactor system that enables the simultaneous evaluation of many specimens. Medium flow was generated by a magnetic stirrer in this system. Primary rat hepatocytes formed a monolayer, and there were no morphological differences between cells in circulation and stationary cultures. The mitochondrial activity of hepatocytes in the circulation culture was 23% lower than that in the stationary culture after 2 days of culture. On the other hand, albumin production activity in the circulation culture after 2 days of culture was 1.4 times higher than that in the stationary culture. Albumin production activity per cell in the circulation culture was 1.9 times higher than that in the stationary culture after 2 days of culture. In addition, lidocaine metabolism rate per cell in the circulation culture was 1.3 times higher than that in the stationary culture. The lidocaine clearance of the circulation culture in our circulation-type bioreactor was 1.3 times higher than that of the stationary culture. It was shown that this bioreactor is suitable for the expression of the liver-specific functions of primary rat hepatocytes. Therefore, we can expect that this circulation-type bioreactor system will be a practical drug metabolism simulator.  相似文献   

13.
We show the design features of a membrane bioreactor based on pulsatile flow across dimpled membranes. Results show an enhanced mass transfer of air of at least five-fold magnitude as compared with flat membranes. An increased working volume form 20 mL to 120 mL reduced the k(L)A at a given Reynolds number because of axial mixing of fluid from the deoxygenated end chamber. The bioreactor was used to supply air to a hybridoma mammalian cell line, and the calculated oxygen uptake showed that high-density cultures could be maintained in a 20mL, single-dimpled cultures could be maintained in a 20 mL, single-dimpled membrane system. Indirect aeration of a 2 L continuous stirred tank reactor, by a double-membrane system, showed that air could be supplied to mammalian cells at cell densities of approximately 4 x 10(6) /mL.  相似文献   

14.
Using the heat pulse technique, the local mean flow liquid velocity and the mixing conditions for twophase flow in the riser of an airlift bioreactor have been measured and analysed. Xanthan-gum solutions were used as the physical model to some filamentous broths reported in the literature. A two-fold decrease of liquid velocity and diffusional mixing regime are predicted for the course of a fermentation process proceeding in a non-Newtonian biomass growth circulation system.  相似文献   

15.
This study examined the hydrodynamic characteristics of a liquid-solid fluidized-bed bioreactor using elastic particles (PVA gel beads) of various diameters as carriers. The drag coefficient-Reynolds number, velocity-voidage, and expansion index-Reynolds number relationships observed during fluidization of PVA gel beads in a fluidized bed in our experiments were compared with the published results. Predictions made from previous correlations were examined with our new experimental findings, revealing the inadequacy of most of these correlations. Thus, new correlations describing the above-mentioned relationships are suggested. The drag coefficient of immobilized cell beads is larger than that of free cell ones at the same Reynolds number because the surface of the immobilized cell beads is rougher. For multiparticle systems, the correction factor, f(epsilon), is a function of the falling gel bead properties (Reynolds number) as well as the fluidized gel bead properties (Archimedes number), and depend strongly on the bed voidage (epsilon). A new simple relation was developed to predict easily the epsilon value from 0.5-0.9 at 4,986 < A(r) < 40,745 or 34 < Re(t) < 186. For all the immobilized cell beads used in this study, the prediction error of the bed voidage was less than 5% at epsilon > 0.5. The prediction equations in this study can be further applied to analyzing the hydrodynamic characteristics of a fluidized-bed reactor using similar entrapped elastic particles as carriers.  相似文献   

16.
生物造粒流化床污水处理反应器中微生物的分布特征   总被引:1,自引:0,他引:1  
对生物造粒流化床污水处理反应器10cm、60cm、110cm处好氧细菌总数以及反硝化菌、反硫化菌分别进行计数,同时,用光学显微镜、扫描电子显微镜以及石蜡切片技术对粒状污泥中细菌的分布情况进行研究。结果发现,流化床中好氧细菌非常丰富,在反应器10cm处,每克污泥微生物的数量可达1.6×108个,说明好氧细菌在生物造粒流化床有机物生物降解中起主导作用;同时,流化床中也有一定数量的兼性厌氧菌存在,并且随着流化床床体的升高有增加的趋势,这与溶解氧(DO)随流化床床体高度的增加而迅速降低有关;随着回流比的增加,溶解氧增高,相应的好氧细菌有所增加而兼性厌氧菌减少;对于颗粒污泥,其表面和内部微生物分布数量有很大的差异。  相似文献   

17.
This study aims to investigate the mixing characteristics of a transparent sludge simulant in a mechanically agitated model digester using flow visualisation technique. Video images of the flow patterns were obtained by recording the progress of an acid–base reaction and analysed to determine the active and inactive volumes as a function of time. The doughnut-shaped inactive region formed above and below the impeller in low concentration simulant decreases in size with time and disappears finally. The ‘cavern’ shaped active mixing region formed around the impeller in simulant solutions with higher concentrations increases with increasing agitation time and reaches a steady state equilibrium size, which is a function of specific power input. These results indicate that the active volume is jointly determined by simulant rheology and specific power input. A mathematical correlation is proposed to estimate the active volume as a function of simulant concentration in terms of yield Reynolds number.  相似文献   

18.
Effect of low density particles on the apparent liquid circulation velocity and overall gas holdup was studied in a modified reversed flow jet loop bioreactor. Experiments were conducted using polyurethane beads, polystyrene particles which are comparable to bioparticles found in biological applications and glass beads. Influence of gas and liquid flow rates, draft tube to reactor diameter ratio and solids loading on these hydrodynamic properties were studied. The liquid circulation velocity was found to increase with an increase in liquid flow rate but decrease with an increase in gas flow rate or solids loading. The overall gas holdup increased with an increase in gas or liquid flow rate but decreased with an increase in solids loading. The range of optimum draft tube to reactor diameter ratio was found to be 04–0.5. The results obtained with low density particles were comparatively better than those with glass beads. Correlations were proposed to evaluate liquid circulation velocity and overall gas holdup in terms of operational and geometrical variables.  相似文献   

19.
A supermacroporous cryogel bioreactor has been developed to culture hybridoma cells for long-term continuous production of monoclonal antibodies (mAb). Hybridoma clone M2139, secreting antibodies against J1 epitope (GERGAAGIAGPK; amino acids, 551-564) of collagen type II, are immobilized in the porous bed matrix of a cryogel column (10 mL bed volume). The cells got attached to the matrix within 48 h after inoculation and grew as a confluent sheet inside the cryogel matrix. Cells were in the lag phase for 15 days and secreted mAb into the circulation medium. Glucose consumption and lactic acid production were also monitored, and during the exponential phase (approximately 20 days), the hybridoma cell line consumed 0.75 mM day-1 glucose, produced 2.48 mM day-1 lactic acid, and produced 6.5 microg mL-1 day-1 mAb during the exponential phase. The mAb concentration reached 130 microg mL-1 after continuous run of the cryogel column for 36 days. The yield of the mAb after purification was 67.5 mg L-1, which was three times greater than the mAb yield obtained from T-flask batch cultivation. Even after the exchange of medium reservoir, cells in the cryogel column were still active and had relatively stable mAb production for an extended period of time. The bioreactor was operated continuously for 55 days without any contamination. The results from ELISA as well as arthritis experiments demonstrate that the antibodies secreted by cells grown on the cryogel column did not differ from antibodies purified from the cells grown in commercial CL-1000 culture flasks. Thus, supermacroporous cryogels can be useful as a supporting material for productive hybridoma cell culture. Cells were found to be viable inside the porous matrix of the cryogel during the study period and secreted antibodies continuously. The antibodies thus obtained from the cryogel reactor were found to be functionally active in vivo, as demonstrated by their capacity to induce arthritis in mice.  相似文献   

20.
Microbial production of two biosurfactants, fengycin and surfactin, by Bacillus subtilis ATCC 21332 in a rotating discs bioreactor was studied. Simultaneous production of these lipopeptides was performed by free and cells immobilized on the surfaces of rotating discs. The aeration applied on surface allowed a non-foaming fermentation process and an important production of lipopeptides for low microbial growth in the culture medium. It was demonstrated that the selectivity of lipopeptides synthesis could be modified varying operating conditions and that the cells immobilization improved greatly fengycin synthesis. The maximal concentration of fengycin and surfactin obtained were 838 mg L?1 and 212 mg L?1, respectively. The development of this bubble-less process could advance the scale-up of the fermenters for production of biosurfactants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号