首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Cryostat sections of rat descending colon were studied by fluorescence microscopy after exposure to conjugates of fluorescein isothicoyanate with lectins from Glycine max (soybean), Triticum vulgaris (wheat germ), Ricinus communis (castor bean), Ulex europaeus, (gorse), Dolichos biflorus (horse gram) and Canavalia ensiformis (concanavalin A) (Jack bean). No two lectins showed identical patterns of fluorescence. FITC-conjugates of soybean and D. biflorus lectins reacted strongly with the mucus present in the crypt lumens and with the surface (as well as cytoplasm) of the epithelial cells suggesting that these sites are rich in terminal, non-reducing, N-acetylgalactosamine residues. Wheat germ, R. communis, U. europaeus and concanavalin A-FITC conjugates did not stain mucus but showed fluorescence in the cytoplasm of absorptive cells as well as in the lamina propria and submucosa. The FITC-R. communis conjugate also reacted with structures in the apical portion of epithelial cells that may correspond to the Golgi apparatus.  相似文献   

2.
Rats were treated with 3-methylcholanthrene (MC) and DT-diaphorase from liver was partially purified on an azodicoumarol-Sepharose 6B column and applied to an FPLC-chromatofocusing column in order to resolve isoforms. Six peaks showing significant DT-diaphorase activity were eluted from this column with a pH gradient between 7.30 to 4.80. The amino acid compositions of the two major peaks (II and VIb) were found to be nearly identical, suggesting existence of isoforms rather than isozymes of DT-diaphorase. The isoforms of DT-diaphorase showed broad substrate specificities towards four different quinones (menadione, vitamin K-1, benzo(a)pyrene 3,6-quinone and cyclized-dopamine ortho-quinone), although quantitative differences in the specific activities were also found. All isoforms are glycoproteins but contain different carbohydrates. Thus isoform II reacts with biotinylated lectins which are specific for N-acetylgalactosamine, mannose, fucose and galactosyl(beta-1,3)N-acetylgalactosamine, while isoform VIb reacts only with biotinylated lectins specific for mannose and N-acetylgalactosamine. Separation of DT-diaphorase isoforms from control rat liver cytosol using FPLC-chromatofocusing revealed that the induction of the isoforms is not uniform, since isform II was not found and the major isoform was composed of three peaks, whereas the major isoform of DT-diaphorase from liver cytosol of rats treated with 3-methylcholanthrene was composed of only two peaks.  相似文献   

3.
R T Lee  Y C Lee 《Biochemistry》1986,25(22):6835-6841
On the basis of the knowledge that the D-galactose/N-acetyl-D-galactosamine-specific lectin of rabbit liver can tolerate a large group on the C-6 hydroxyl group of a galactoside [Lee, R. T. (1982) Biochemistry 21, 1045-1050], we prepared a high-affinity photolabeling reagent for this lectin from a triantennary glycopeptide fraction of asialofetuin. The C-6 hydroxyl group of a D-galactopyranoside was converted, under mild conditions, into a primary amino group. The procedure involves conversion of the hydroxyl group to an oxo group with galactose oxidase, followed by reductive amination using benzylamine and sodium cyanoborohydride. Catalytic hydrogenolysis of the benzylamino derivative yielded the desired 6-amino-6-deoxy-D-galactoside. A 4-azidobenzoyl group was attached to the newly produced amino group to yield a photoactivatable affinity-labeling reagent. The reagent labeled the Triton-solubilized, purified hepatic lectins of rabbit and rat in a photo- and affinity-dependent manner. All the polypeptide subunits of the lectins were labeled, indicating that each subunit contains at least one D-galactose-combining site. In the case of the rabbit hepatic lectin, the minor subunit (46 kDa) was labeled more efficiently than the major one (40 kDa).  相似文献   

4.
Lectin binding patterns in the olfactory bulb of the mouse were investigated using 12 biotinylated lectins. Three, with specificities for galactose, N-acetylgalactosamine and L-fucose, stained only the nervous and glomerular layers of the accessory olfactory bulb; four, with specificities for galactose or N-acetylglucosamine, stained these layers in both the accessory and the main olfactory bulbs; three, with specificities for N-acetylgalactosamine or L-fucose, effected general staining with little contrast between the background and the accessory olfactory bulb or other structures; the remaining two, both of them specific for mannose, stained no part of the tissue studied. In the nervous and glomerular layers of the accessory olfactory bulb six lectins stained the anterior and posterior halves with different intensities and two of these six similarly differentiated between rostral and caudal regions of the posterior half. We conclude that: (i) three lectins binding to different monosaccharides are specific stains for the vomeronasal system when used in this area of the mouse brain; (ii) it may be appropriate to distinguish three parts in the mouse accessory olfactory bulb, instead of the hitherto generally accepted two.  相似文献   

5.
Yi  D; Lee  RT; Longo  P; Boger  ET; Lee  YC; Petri  WA  Jr; Schnaar  RL 《Glycobiology》1998,8(10):1037-1043
Both the Entamoeba histolytica lectin, a virulence factor for the causative agent of amebiasis, and the mammalian hepatic lectin bind to N-acetylgalactosamine (GalNAc) and galactose (Gal) nonreducing termini on oligosaccharides, with preference for GalNAc. Polyvalent GalNAc- derivatized neoglycoproteins have >1000-fold enhanced binding affinity for both lectins (Adler,P., Wood,S.J., Lee,Y.C., Lee,R.T., Petri,W.A.,Jr. and Schnaar,R.L.,1995, J. Biol. Chem ., 270, 5164-5171). Substructural specificity studies revealed that the 3-OH and 4-OH groups of GalNAc were required for binding to both lectins, whereas only the E.histolytica lectin required the 6-OH group. Whereas GalNAc binds with 4-fold lower affinity to the E.histolytica lectin than to the mammalian hepatic lectin, galactosamine and N-benzoyl galactosamine bind with higher affinity to the E. histolytica lectin. Therefore, a synthetic scheme for converting polyamine carriers to poly-N-acyl galactosamine derivatives (linked through the galactosamine primary amino group) was developed to test whether such ligands would bind the E.histolytica lectin with high specificity and high affinity. Contrary to expectations, polyvalent derivatives including GalN6lys5, GalN4desmosine, GalN4StarburstTMdendrimer, and GalN8StarburstTMdendrimer demonstrated highly enhanced binding to the mammalian hepatic lectin but little or no enhancement of binding to the E.histolytica lectin. We propose that the mammalian hepatic lectin binds with greatest affinity to GalNAc "miniclusters," which mimic branched termini of N-linked oligosaccharides, whereas the E.histolytica lectin binds most effectively to "maxiclusters," which may mimic more widely spaced GalNAc residues on intestinal mucins.   相似文献   

6.
Binding and uptake studies of in vitro aged or senescent rat erythrocytes by isolated rat liver macrophages suggest recognition by galactose-specific receptors on the cell surface of the macrophages. We analyzed carbohydrates exposed on old erythrocytes by plant lectins in an agglutination assay in comparison with freshly isolated untreated erythrocytes. Rat erythrocytes aged in vitro by storage are agglutinated by a panel of lectins that do not react with freshly isolated erythrocytes. Specificity of agglutination was shown by inhibition with monosaccharides. Antibodies eluted from senescent rat erythrocytes agglutinate in vitro aged as well as senescent rat erythrocytes, but not freshly isolated cells nor human erythrocytes. Galactose-specific lectins isolated from rat liver give similar results; they also agglutinate normal human erythrocytes. Agglutination by the liver lectin is inhibitable by galactose and N-acetylgalactosamine but not by N-acetylglucosamine or mannose. Furthermore, rat liver macrophages devoid of galactose-specific receptors show markedly reduced binding of senescent rat erythrocytes. We conclude that recognition of old rat erythrocytes is mediated by two systems: old erythrocytes expose different terminal sugar residues or a different arrangement of glycans when compared to young erythrocytes, rendering them recognizable by liver lectins and by autoantibodies.  相似文献   

7.
Animal cells internalize specific extracellular macromolecules (ligands) by using specialized cell surface receptors that operate through a complex and highly regulated process known as receptor-mediated endocytosis, which involves the binding, internalization, and transfer of ligands through a series of distinct intracellular compartments. For the uptake of a variety of carbohydrate-containing macromolecules, such as glycoproteins, animal cells use specialized membrane-bound lectins as endocytic receptors that recognize different sugar residues or carbohydrate structures present on various ligands. The hepatic asialoglycoprotein receptor, which recognizes glycoconjugates containing terminal galactose or N-acetylgalactosamine residues, was the first membrane lectin discovered and has been a classical system for studying receptor-mediated endocytosis. Studies of how the asialoglycoprotein receptor functions have led to the discovery of two functionally distinct, parallel pathways of clathrin-mediated endocytosis (called the State 1 and State 2 pathways), which may also be utilized by all the other endocytic recycling receptor systems. Another endocytic membrane lectin, the hyaluronan/chondroitin sulfate receptor, which has recently been purified and cloned, is responsible for the turnover in mammals of these glycosaminoglycans, which are important components of extracellular matrices. We discuss the characteristics and physiological importance of these two proteins as examples of how lectins can function as endocytic receptors.  相似文献   

8.
In the lamprey, adrenocorticotropin (ACTH) and melanotropins (MSHs) are produced from two distinct precursors, proopiocortin (POC) and proopiomelanotropin (POM). Both POC and POM have been suggested to be glycoproteins. The present study aimed to demonstrate glycoconjugates in ACTH and MSH cells in the pituitary of adult sea lampreys (Petromyzon marinus) by means of a lectin histochemistry. A total of 19 kinds of lectins were tested. ACTH cells were distributed in both the rostral pars distalis and the proximal pars distalis, and were stained positively with N-acetylglucosamine binding lectins (i.e., succinylated wheat germ agglutinin), N-acetylgalactosamine binding lectins (i.e., soybean agglutinin), D-mannose binding lectins (i.e., Lens culinaris agglutinin), and D-galactose binding lectins (i.e., Erythrina cristagall lectin). MSH cells were distributed in the pars intermedia, and were stained with N-acetylgalactosamine binding lectins (i.e., Dolichos biflorus agglutinin), D-mannose binding lectin (Pisum sativum agglutinin) and D-galactose binding lectins (i.e., peanut agglutinin). These results suggested that ACTH and MSH cells produce different types of glycoconjugates which may be attributed to the difference in glycoconjugate moieties between the precursor proteins, POC and POM.  相似文献   

9.
The rat peritoneal macrophage lectin specific for galactose/N-acetylgalactosamine was shown to be a homologue of the hepatic asialoglycoprotein binding protein (rat hepatic lectin, RHL). The macrophage lectin was immunochemically crossreactive with the major form of RHL (RHL-1) but not with the minor forms (RHL-2 and -3). The overall homology between the macrophage lectin and RHL-1 was confirmed by peptide maps of their lysyl endopeptidase digests on reverse-phase HPLC. Despite these similarities, however, the macrophage lectin was distinct from HRL-1 as revealed by the differences in the NH2-terminal 20 amino acid sequences of these two lectins.  相似文献   

10.
A new type of cereal lectin from leaves of couch grass (Agropyrum repens)   总被引:1,自引:0,他引:1  
Extracts from couch grass (Agropyrum repens) leaves contain relatively high lectin concentrations. Preliminary experiments with crude extracts indicated that the leaf lectin differs from the embryo lectin of the same species and other Gramineae embryo lectins with respect to its sugar and blood group specificity, and serological properties. A comparison of the biochemical, physicochemical and biological properties of purified lectins from couch grass leaves and embryos, and wheat germ agglutinin revealed that the leaf lectin has the same molecular structure as the embryo lectins. It is a dimer composed of two identical subunits, which, however, are slightly larger than embryo lectin subunits. Structural differences between both couch grass lectins were further inferred from in vitro subunit exchange experiments and serological analyses. Whereas the embryo lectin readily forms heterodimers with embryo lectins from other cereal species and also is serologically indistinguishable from them, the leaf lectin does not exchange subunits with the same embryo lectins and is serologically different. In addition, couch grass leaf lectin exhibits specificity for N-acetylgalactosamine and agglutinates preferentially blood-group-A erythrocytes whereas the embryo lectin is not inhibited by N-acetylgalactosamine and exhibits no blood-group specificity. It was observed also that the lectin content of couch grass leaves varies enormously during the seasons.  相似文献   

11.
A study of the binding of three different 125I-labeled, galactose-terminated ligands to the hepatic galactose/N-acetylgalactosamine-specific lectin found on the surface of rabbit hepatocytes revealed that the different ligands manifest different physical parameters of binding. Asialoorosomucoid (125I-ASOR) binding was best described as involving two independent classes of binding sites on rabbit hepatocytes, with 161 000 sites/cell with a dissociation constant of 0.44 nM and 292 000 sites/cell with a Kd of 9.7 nM. Asialotriantennary glycopeptide purified from human alpha-1 protease inhibitor and modified with tyrosine at the N-terminus to permit radioiodination (TRI) [Lee, Y. C., Townsend, R. R., Hardy, M. R., L?nngren, J., Arnarp, J., Haraldsson, M., & L?nn, H. (1983) J. Biol. Chem. 258, 199-202] was also found to bind to two apparent classes of binding sites but with different binding parameters: 292 000 sites/cell of Kd = 1.47 nM and 982 000 sites/cell of Kd = 25.3 nM. A synthetic ligand, alpha,beta-diaspartamide of tris[(beta-lactosyloxy)methyl](6-aminohexanamido)methane (di-tris-lac) containing six nonreducing galactose residues [Lee, R. T., Lin, P., & Lee, Y. C. (1984) Biochemistry 23, 4255-4261], was found to bind to 817 000 sites/cell of Kd = 0.63 nM and 1.23 X 10(6) sites/cell of Kd = 25.3 nM. Thus, there were many more total binding sites for TRI or di-tris-lac on the surface of rabbit hepatocytes than there were for asialoorosomucoid, although the dissociation constants were similar for all three ligands.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The capacities of immature and mature rat brain myelin, bovine myelin and human myelin to be agglutinated by soya-bean agglutinin, Ricinus communis agglutinin, wheatgerm agglutinin, and Lotus tetragonolobus agglutinin were examined. The first two lectins, which are specific for galactose and N-acetylgalactosamine, strongly agglutinated immature and mature rat myelin, weakly agglutinated bovine myelin, but did not affect human myelin. The other myelin and lectin combinations resulted in very weak or no agglutination. [(3)H]Fucose-labelled glycoproteins of purified adult rat brain myelin were solubilized with sodium dodecyl sulphate and allowed to bind to concanavalin A-Sepharose and each of the other lectins mentioned above, which had been immobilized on agarose. About 60% of the radioactive fucose was in glycoproteins that bound to concanavalin A-Sepharose and these glycoproteins could be eluted with solutions containing methyl alpha-d-mannoside and sodium dodecyl sulphate. Periodate/Schiff staining or radioactive counting of analytical gels showed that most of the major myelin-associated glycoprotein (apparent mol.wt. approx. 100000) bound to the concanavalin A, whereas the glycoproteins that did not bind were mostly of lower molecular weight. Preparative polyacrylamide-gel electrophoresis of the glycoprotein fraction that was eluted with methyl alpha-d-mannoside yielded a relatively pure preparation of the myelin-associated glycoprotein. Similar results were obtained with each of the other lectins, i.e. the myelin-associated glycoprotein was in the fraction that bound to the immobilized lectin. Double-labelling experiments utilizing [(3)H]fucose-labelled glycoproteins from adult myelin and [(14)C]fucose-labelled glycoproteins from 14-day-old rat brain myelin did not reveal any difference in the binding of the mature and immature glycoproteins to any of the immobilized lectins. The results in this and the preceding paper [McIntyre, Quarles & Brady (1979) Biochem. J.183, 205-212] suggest that the myelin-associated glycoprotein is one of the principal receptors for concanavalin A and other lectins in myelin, and that this property can be utilized for the purification of this glycoprotein.  相似文献   

13.
Knowles BH  Thomas WE  Ellar DJ 《FEBS letters》1984,168(2):197-202
The two delta-endotoxins comprising the Bacillus thuringiensis var. kurstaki HD1 insecticidal protein crystal were separated. The lepidopteran-specific protoxin was activated in vitro and its mechanism of action investigated. Toxicity towards Choristoneura fumiferana CF1 cells was specifically inhibited by preincubation of the toxin with N-acetylgalactosamine and N-acetylneuraminic acid. The lectins soybean agglutinin and wheat germ agglutinin, which bind N-acetylgalactosamine, also inhibited toxicity. Since N-acetylneuraminic acid is not known to occur in insects, these results suggest that the toxin may recognise a specific plasma membrane glycoconjugate receptor with a terminal N-acetylgalactosamine residue.  相似文献   

14.
Conjugates of horseradish peroxidase with the lectins ricin (d-galactose), wheat germ agglutinin (N-acetylglucosamine), phytohemagglutinin (N-acetylgalactosamine), and with cholera toxin (GM1 ganglioside) were used for a cytochemical detection of corresponding termin al carbohydrates, or glycolipids on cell surfaces of cultured neurons and neuroblastoma cells. Cells were labeled at 4 degrees C with the above ligands and their adsorptive endocytosis was studied after incubations at 37 degrees C in a medium free of ligand. Peroxidase was detected by the method of Graham and Karnovsky (J. Histochem. Cytochem. 14:291, 1966). Lectins and cholera toxin underwent endocytosis in cisternae and vesicles of GERL (Golgi-Endoplasmic Reticulum-Lysosome). We suggest that GERL is the primary ercipieint of adsorptively endocytosed plasma membrane "receptor"-ligand complexes which are thus degraded or possibly reutilized (recycling). Wheat germ agglutinin-horseradish peroxidase conjugates used in vivo for studies of retrograde axonal transport were significantly more sensitive than free horseradish peroxidase.  相似文献   

15.
Galactoside-inhibitable lectins have been isolated from rabbit, rat, mouse, pig, lamb, calf, and human spleens. Native molecular mass, subunit structure, pI, and hemagglutinating activity have been compared for these lectins. The yields of lectin varied from 1.8 mg/kg for rabbit spleen to 79 mg/kg for lamb spleen. Pig, lamb, calf, and human spleen lectins yielded single protein peaks when subjected to Superose 12 fast-protein liquid chromatography. The apparent molecular mass for these lectins was 33-34 kDa. In contrast, rat and mouse spleen lectin preparations were separated into three components ranging from 8.4 to 34 kDa. Superose 12 chromatography of rabbit spleen lectin revealed the presence of at least six components. Gradient slab gel sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed the presence of single polypeptides for pig, calf, lamb, and human lectins corresponding to a molecular mass of 14-14.5 kDa. Multiple polypeptides were detected for the mouse, rat, and rabbit lectins. The molecular mass of the major polypeptides were 15, 15, and 17 kDa for rat, mouse, and rabbit, respectively. The presence of isolectins in all preparations was shown by isoelectric focusing. The major isolectins were acidic proteins with pI 4.38-4.80. Hemagglutination and hemagglutination inhibition assays demonstrated similarities as well as differences among the lectin preparations. Hemagglutinating activity could not be demonstrated in rabbit spleen extracts nor for isolated putative lectin. Human buffy coat cells were reversibly agglutinated by calf and human spleen lectins, demonstrating the presence of leucocyte cell surface lectin receptors.  相似文献   

16.
A solubility-insolubility transition assay was used to screen the bark and stems of seven leguminous trees and plants for self-aggregatable lectins. Novel lectins were found in two trees, Robinia pseudoacacia and Wisteria floribunda, but not in the leguminous plants. The Robinia lectin was isolated from coexisting lectin by combined affinity chromatographies on various sugar adsorbents. The purified lectins proved to be differently glycosylated glycoproteins. One lectin exhibited the remarkable characteristics of self-aggregatable lectins: localization in the bark of legume trees, self-aggregation dissociated by N-acetylglucosamine/mannose, and coexistence with N-acetylgalactosamine/galactose-specific lectins, which are potential endogenous receptors. Self-aggregatable lectins are a functional lectin group that can link enhanced photosynthesis to dissociation of glycoproteins.  相似文献   

17.
We investigated the binding of five HRP-conjugated lectins to rabbit tooth germs at the cap and late bell stages of development. The results revealed some changes in the glycosylation patterns of the glycoconjugates. Sugar residues, such as α-D-mannose, methyl-D-glucose, N-acetylglucosamine, β-D-galactosamine, D-galactose, and sialic acid, were detectable in some components of the tooth germs. The most conspicuous developmental change was increased binding of Con A and WGA. These lectins showed, at the cap stage, moderate binding to the (pre)-ameloblasts and (pre)-odontoblasts. With further development to the late bell stage, but prior to the achievement of well-defined morphological-functional characteristics, the odontoblasts and ameloblasts displayed considerable amounts of α-D-mannose, α-D-glucose as well as β-D-acetylglucosamine and sialic acid. Appropriate control studies confirmed the specificity of the binding of the lectins. Two lectins (DBA and PNA) with known specificity for N-acetylgalactosamine groups were bound by the basement membranes in tooth germs at the cap stage. A third lectin (RCA) with the same specificity did not produce any detectable staining in the same material. Further studies must be planned to determine the specific functions and significance of lectin-HRP-binding glycoconjugates in odontogenesis. © 1996 Wiley-Liss, Inc.  相似文献   

18.
We recently reported that tri- and tetraantennary complex type oligosaccharides with nonreducing terminal galactose residues and the triantennary asialofetuin glycopeptide can bind and precipitate certain galactose specific lectins (L. Bhattacharyya, and C.F. Brewer (1986) Biochem. Biophys. Res. Commun. 141, 963-967; L. Bhattacharyya, M. Haraldsson, and C.F. Brewer (1988) Biochemistry 27, 1034-1041). The present study investigates the binding interactions of two of these lectins, those from Erythrina indica and Ricinus communis (Agglutinin I), with mono-, bi-, and triantennary synthetic cluster glycosides, which have little structural resemblance to complex type oligosaccharides other than they possess nonreducing terminal galactose residues (R.T. Lee, P. Lin, and Y.C. Lee (1984) Biochemistry 23, 4255-4261). The enhanced affinities of the bi- and triantennary glycosides relative to the monoantennary glycoside for the two lectins are consistent with an increase in the probability of binding due to multiple binding residues in the multiantennary glycosides. The triantennary glycoside is capable of precipitating the two lectins, and quantitative precipitation data indicate that it is a trivalent ligand. The results show that the binding and precipitation activities of complex type oligosaccharides with these lectins is due solely to the presence of multiple terminal galactose residues and not to the overall structures of the oligosaccharides.  相似文献   

19.
The lectin Maclura pomifera agglutinin (MPA) binds to the apical surface of pulmonary alveolar type II but not type I cells. We show that MPA binds to a single membrane glycoprotein in type II cells with a molecular mass of 230 kDa in the rabbit and 200 kDa in the rat. The glycoprotein has an abundance of terminal N-acetylgalactosamine residues. It is a hydrophilic integral membrane protein suggesting that it has an extensive extramembrane domain or is an ion channel. The glycoprotein is similar in rat and rabbit, with the exception that the rat glycoprotein is partially sialylated and is trypsin sensitive. The MPA-binding glycoprotein represents a new integral membrane marker of the apical domain of the pulmonary alveolar type II cell.  相似文献   

20.
Binding of the Hydrophobic ligands 1,8-anilinonaphthalenesulfonic acid (ANS) and 2,6-toluidinylnaphthalenesulfonic acid (TNS) to a variety of plant lectins was studied by lectin-induced alteration of the fluorescence spectra of the two ligands. With one exception, all legume lectins examined bound ANS, with affinity constants ranging from 103 to 104 M?1. Similar ANS binding was noted for some nonlegume lectins. Titration of the five isolectins from Phaseolus vulgaris with ANS indicated positive cooperative binding of ANS to the two isolectins E4 and E3L1. Titrations with TNS revealed high-affinity sites for this ligand in a number of lectins. Addition of haptenic sugars did not inhibit binding of ANS, suggesting that the hydrophobic binding sites of lectins are independent of the carbohydrate binding sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号