首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Despite the hyperphagia, the food intake of the lactating rat showed marked diurnal changes which paralleled those of virgin rats. The major difference was that lactating rats consumed a higher proportion (35%) of their diet during the light period than did virgin rats (14%). The peak rate of lipogenesis in the lactating mammary gland occurred around midnight, and this decreased by 67% to reach a nadir around mid-afternoon; this corresponded with the period of lowest food intake. The diurnal variations in hepatic lipogenesis in lactating rats were much less marked. The changes in hepatic glycogen over 24 h suggest that it acts to supply carbon for lipogenesis during the period of decreased food intake. The activation state of acetyl-CoA carboxylase in mammary gland altered during 24 h, but the changes did not always correlate with alterations in the rate of lipogenesis. The changes in plasma insulin concentration tended to parallel the food intake in the lactating rats, but they did not appear to be sufficient to explain the large alterations in lipogenic rate in the mammary gland.  相似文献   

2.
1. Administration of cycloheximide (an inhibitor of protein synthesis) to lactating rats raised the concentrations of amino acids, and in particular, the branched-chain amino acids (valine, leucine and isoleucine) in blood, liver and mammary gland. 2. Inhibition of protein synthesis increased the incorporation in vivo of L-[U-14C]leucine into lipids of mammary gland and liver. 3. Cycloheximide treatment caused no immediate change in the overall rate of lipogenesis in vivo (measured with 3H2O) in mammary gland but increased the rate in liver 3-fold; this latter effect also occurred in livers of virgin rats. 4. The increased rate of hepatic lipogenesis was not accompanied by significant changes in the plasma insulin concentration or the activity of acetyl-CoA carboxylase. 5. Although cycloheximide decreased the entry of total triacylglycerol into the circulation it did not alter the rate of secretion of newly synthesized saponifiable lipid. 6. Cycloheximide slightly stimulated lipogenesis from endogenous substrates in isolated hepatocytes, but this effect was abolished when lactate was the exogenous substrate. 7. Administration of cycloheximide to virgin rats decreased liver glycogen and increased the hepatic content of glucose 6-phosphate, pyruvate and lactate. 8. It is concluded that (a) there is no short-term link between the rate of protein synthesis and lipogenesis in the lactating mammary gland and (b) the increased rate of hepatic lipogenesis in cycloheximide-treated rats is mainly due to stimulation of glycogenolysis, glycolytic flux and consequent increased availability of pyruvate.  相似文献   

3.
Fatty acid synthesis in the mammary gland of lactating rats in vivo was 5-fold higher than in the liver. Starvation decreased fatty acid synthesis in the gland 50-fold, whereas refeeding for 2h completely reversed this change. The plasma insulin concentration decreased 2-fold in starvation and was restored to the fed-rat value on refeeding. Glucagon and prolactin concentrations did not always change in parallel with lipogenesis, suggesting that insulin may be a regulator of this process in the gland.  相似文献   

4.
Administration of insulin with glucose to starved lactating rats, which activates pyruvate dehydrogenase [M. A. Baxter & H. G. Coore (1978) Biochiem. J. 174, 553-561], restored lipogenesis in mammary gland in vivo to 50% of the value observed in refed (2.5 h) rats. The correlations between pyruvate dehydrogenase activity and the rate of lipogenesis persisted in isolated acini. Activation of pyruvate dehydrogenase in vitro with dichloroacetate increased lipogenesis from [6-14C]glucose in acini from starved and refed rats by 250% and 100% respectively. However, in the presence of dichloroacetate, only 70% of the increased flux through pyruvate dehydrogenase was converted into lipid in acini from starved rats, whereas all of the increase could be accounted for as lipid in acini from refed rats. Addition of insulin plus dichloroacetate was required to obtain maximal rates of lipogenesis in acini from starved rats. Similarly, insulin increased the incorporation of [1-14C]acetate into lipid only in acini from starved rats. Although the activity of pyruvate dehydrogenase plays an important role in the control of mammary-gland lipogenesis, the evidence presented suggests a second regulatory site which is insulin-sensitive and is located after the generation of cytosolic acetyl-CoA.  相似文献   

5.
In lactating rats fed on a cafeteria diet (chow plus palatable high-energy foods) the decreased glucose uptake and lipogenesis in vitro in acini correlated with the depressed mammary-gland lipogenesis in vivo. Insulin in vitro restored the rate of glucose uptake and its conversion to lipid to values approaching those for acini from rats fed on the chow diet alone.  相似文献   

6.
Microsomal plus cytosol preparations from the mammary gland of lactating rats are capable of incorporating palmitic acid and oleic acid into triacylglycerols. These triacylglycerols are similar in structure to those found in rat milk, where palmitic acid tends to be confined to the sn-2-position of the glycerol. Both glycerol 3-phosphate and dihydroxyacetone phosphate function as acyl acceptors. The enzymic synthesis of triacylglycerols appears in late pregnancy, increases rapidly during early lactation, but disappears within 3 days of weaning.  相似文献   

7.
8.
The effect of starvation, starvation and refeeding and feeding a low-protein diet on concentrations of the mRNAs for the alpha-, beta- and gamma-caseins, alpha-lactalbumin and whey acidic protein has been determined using dot-blot hybridization analyses with total RNA extracted from mammary acini isolated from lactating rats. Starvation for 48 h decreased the concentrations of all RNA species to between 5 and 20% of those for rats feeding ad libitum when expressed on a DNA basis. Refeeding for 24h restored the concentrations to control values. Consumption of a low protein diet reduced the concentrations of each mRNA by about 50%. Only minor changes were detected in the mRNA concentrations for alpha-casein, alpha-lactalbumin and whey acidic protein in samples prepared at six hourly intervals from rats receiving a restricted intake (40% ad libitum) of the control diet.  相似文献   

9.
1. The effects of various treatments to alter either plasma prolactin (bromocryptine administration or removal of litter) or the metabolic activity of the mammary gland (unilateral or complete teat sealing) on the disposal of oral [14C]lipid between 14CO2 production and [14C]lipid accumulation in tissues of lactating rats were studied. In addition, the rates of lipogenesis in vivo were measured in mammary gland, brown and white adipose tissue and liver. 2. Bromocryptine administration lowered plasma prolactin, but did not alter [14C]lipid accumulation in mammary gland or in white and brown adipose tissue. 3. In contrast, complete sealing of teats results in no change in plasma prolactin, but a 90% decrease in [14C]lipid accumulation in mammary gland and a 4-fold increase in white and brown adipose tissue. The rate of lipogenesis in mammary gland was decreased by 95%, but there was no change in the rate in white and brown adipose tissue. Unilateral sealing of teats resulted in a decrease in [14C]lipid accumulation in white adipose tissue. 4. Removal of the litter for 24 h (low prolactin) produced a similar pattern to complete teat sealing, except that there was a 6-fold increase in lipogenesis in white adipose tissue. Re-suckling for 5 h increased plasma prolactin, but did not alter the response seen in litter-removed lactating rats. 5. Changes in lipoprotein lipase activity and in plasma insulin paralleled the reciprocal changes in [14C]lipid accumulation in white and brown adipose tissue and in mammary gland. 6. It is concluded that the plasma insulin is more important than prolactin in regulating lipid deposition in adipose tissue during lactation, and that any effects of prolactin must be indirect.  相似文献   

10.
Depression of carbohydrate digestion by oral administration of acarbose, a glucosidase inhibitor, led to a 75% inhibition of the re-activation of lipogenesis in vivo in the mammary gland of 18 h-starved lactating rats refed with 5 g of chow diet. Rates of [1-14C]glucose incorporation in vitro into lipid and CO2 in mammary-gland acini isolated from refed animals were elevated compared with acini from starved rats, but acarbose treatment completely prevented this stimulation. Gastric intubation of glucose led to a large stimulation of lipogenesis in the mammary gland of starved lactating rats, similar to that induced by refeeding with chow diet; this was dependent on the amount of glucose given and the time elapsed between glucose administration and injection of 3H2O for the measurement of lipogenesis. The switch-on of lipogenesis in the mammary gland of starved lactating rats, by refeeding or by intubation of glucose, was associated with a decrease in the ratio of [glucose 6-phosphate]/[fructose 1,6-bisphosphate] in the gland, indicative of an increase in phosphofructokinase activity. A time-course study revealed that the ratio decreased rapidly over the first 30 min of chow refeeding, after which a large surge in lipogenesis was seen. Acarbose, given 25 min after the onset of refeeding, led to a stepwise increase in the ratio, in parallel with the observed decrease in lipogenic activity. It is concluded that the control of lipogenesis in the mammary gland is closely linked to the availability of dietary carbohydrate. An important site of regulation of lipogenesis in the gland appears to be at the level of phosphofructokinase. A possible role of insulin in the regulation of phosphofructokinase activity, and the acute modulation of insulin-sensitivity in the gland during the starved-refed transition, are discussed.  相似文献   

11.
The present study aimed to evaluate the mechanisms modulated by dietary arginine supplementation to sows during lactation regarding antioxidant capacity and vascularization of mammary glands. At 109 days of gestation, animals were transferred to individual farrowing crates equipped with manual feeders and automatic drinker bowls. Environmental temperature and humidity inside the farrowing rooms were registered every 15 min. At farrowing, sows were assigned in a completely randomized design to a control diet (CON) or the CON diet supplemented with 1.0% L-arginine (ARG). A total of three gilts and two sows were fed the CON diet, whereas three gilts and three sows were fed ARG diets. Sows were fed a fixed amount of 6.0 kg/day, subdivided equally in four delivery times (0700, 1000, 1300 and 1600 h) for 21 days. At weaning, sows were slaughtered and mammary tissue samples and blood from the pudendal vein were collected. Data were analyzed considering each sow as an experimental unit. Differences were considered at P<0.05. L-arginine fed sows presented lower messenger RNA (mRNA) expression for prolactin receptor (P=0.002), angiopoietin1 (P=0.03) and receptor tyrosine kinase (P=0.01); higher mRNA expression for prostaglandin synthase 1 (P=0.01); a trend of decrease for glucocorticoid receptor (P=0.06) and IGF receptor 1 (P=0.07); and a trend (P=0.05) for an increased glutathione peroxidase mRNA expression. The angiopoietin2:angiopoietin1 mRNA ratio tended to increase (P=0.07) in ARG fed sows. L-arginine fed sows had greater (P=0.04) volumetric proportion of blood vessels and a trend of enhance (P=0.07) in the number of blood vessels per mm2. These findings show that 1.0% ARG supplementation to sows activates proliferative mechanisms, may improve mammary tissues’ angiogenesis and tended to increase mRNA expression of genes that encode antioxidant enzymes in mammary gland of sows.  相似文献   

12.
  • 1.1. Well-coupled mitochondria have been prepared from lactating rat mammary gland.
  • 2.2. The mitochondria can accumulate pyruvate via a specific carrier system to the same extent as can liver mitochondria. Transport of pyruvate across the mitochondrial membrane is facilitated by the passage of citrate or malate in the opposite direction.
  相似文献   

13.
Feeding lactating rats on high-fat cheese crackers in addition to laboratory chow increased the dietary intake of fat from 2 to 20% of the total weight of food eaten and decreased mammary-gland lipogenesis in vivo by approx. 50%. This lipogenic inhibition was also observed in isolated mammary acini, where it was accompanied by decreased glucose uptake. These inhibitions were completely reversed by incubation with insulin. Insulin had no effect on the rate of glucose transport into acini, nor on pyruvate dehydrogenase activity as estimated by the accumulation of pyruvate and lactate, suggesting that these are not the sites of lipogenic inhibition. Insulin stimulated the incorporation of [1-14C]acetate into lipid in acini from high-fat-fed rats. In the presence of alpha-cyanohydroxycinnamate, a potent inhibitor of mitochondrial pyruvate transport, and with glucose as the sole substrate, neither [1-14C]glucose incorporation into lipid nor glucose uptake were stimulated by insulin. Insulin did stimulate the incorporation of [1-14C]acetate into lipid in the presence of alpha-cyanohydroxycinnamate, and this was accompanied by an increase in glucose uptake by the acini. This indicated that increased glucose uptake was secondary to the stimulation of lipogenesis by insulin, which therefore must occur via activation of a step in the pathway distal to mitochondrial pyruvate transport. Insulin stimulated acetyl-CoA carboxylase activity measured in crude extracts of acini from high-fat-fed rats, restoring it to values close to those of chow-fed controls. The effects of insulin on acetyl-CoA carboxylase activity and lipogenesis were not antagonized by adrenaline or dibutyryl cyclic AMP.  相似文献   

14.
Lipogenesis by acini from mammary gland of lactating rats   总被引:12,自引:0,他引:12  
  相似文献   

15.
1. Virgin and lactating C(3)H mice maintained on laboratory chow were transferred to a high-fat (15% corn oil) or a fat-free diet 3 days before being killed. 2. The linoleate content of liver, mammary gland and milk was decreased in lactating mice given the fat-free diet but was increased in those fed on the high-fat diet. Changes in linoleate content and mammary gland followed a similar but much less marked trend in virgin animals. 3. Hepatic fatty acid synthesis in lactating and virgin mice fed on the fat-free diet was higher than in corresponding animals fed on either the chow or the high-fat diet. The lipogenic capacity of livers from mice fed on either the chow or the high-fat diet was greater in lactating than in virgin animals. These changes in hepatic lipogenic capacity were accompanied by alterations in the specific activities of certain enzymes involved in fat synthesis. 4. Mammary gland from virgin and lactating animals showed no such adaptation to dietary fat. Results indicate that fatty acid synthesis in neither mammary-gland parenchymal cells nor mammary-gland adipose cells can be influenced by dietary fat in the same way as in the hepatocyte.  相似文献   

16.
17.
Incorporation of D-3-hydroxy[3-14C]butyrate into lipid in vivo suggests that lactating mammary gland is a major site of ketone-body utilization. The incorporation decreases in short-term insulin deficiency (2h) and on starvation (24h), but increases again on refeeding (2h). The activity of cytosolic acetoacetyl-CoA synthetase parallels the changes in nutritional state, but is not affected by short-term insulin deficiency.  相似文献   

18.
1. Oral administration of triacylglycerol (triolein) to starved/chow-refed lactating rats suppressed the lipogenic switch-on in the mammary gland in vivo. 2. A time-course study revealed that triolein, administered at 30 min after the onset of refeeding, had no influence on lipogenic rate in the mammary gland between 30 and 60 min, but markedly decreased it between 60 and 90 min. Glucose uptake by the mammary gland (arteriovenous difference) increased by 30 min of refeeding, as did lactate production. Between 30 and 90 min glucose uptake remained high in the control animals, but glucose uptake and net C3-unit uptake were decreased in the triolein-loaded animals by 90 min. 3. Triolein increased [glucose 6-phosphate] in the gland and simultaneously decreased [fructose 1,6-bisphosphate], indicative of a decrease in phosphofructokinase activity. This cross-over occurred at 60 min, i.e. immediately before the inhibition of lipogenesis, and by 90 min had reached 'starved' values. 4. Triolein had no effect on plasma [insulin] nor on whole-blood [glucose], [lactate] or [3-hydroxybutyrate]; a small increase in [acetoacetate] was observed. 5. Infusion of the lipoprotein lipase inhibitor, Triton WR1339, abolished the suppression of mammary-gland lipogenesis by triolein and the increase in the [glucose 6-phosphate]/[fructose 1,6-bisphosphate] ratio, suggesting a direct influence of dietary lipid on mammary-gland glucose utilization and phosphofructokinase activity.  相似文献   

19.
An intragastric load of medium- or long-chain triacylglycerols inhibited lipogenesis in lactating rat mammary gland in vivo by 82 or 89% respectively. This inhibition was reversed partially by insulin administration. Long-chain triacylglycerols inhibited hepatic lipogenesis in vivo but medium-chain triacylglycerols increased it 2-fold. Glucose utilization in vitro by mammary gland acini from triacylglycerol-fed rat was normal.  相似文献   

20.
Ornithine decarboxylase-antizyme was induced in mammary gland of fasted lactating rats by administration of 1,3-diaminopropan-2-ol. Antizyme from mammary gland showed similar chemical and kinetic behavior to that previously reported by Canellakis and co-workers for antizyme from liver [J. S. Heller, W. F. Fong, and E. S. Canellakis (1976) Proc. Natl. Acad. Sci. USA 72, 1858-1862]; specifically the inhibitor was nondialyzable, heat labile, and ribonuclease insensitive, and the inhibition was time independent, proportional to the concentration of antizyme present, and noncompetitive with respect to the substrate, ornithine. However, ornithine decarboxylase-antizyme from mammary gland eluted from Sephadex G-75 with an apparent molecular mass of 55 kDa, compared with 27 kDa, for antizyme from liver under identical conditions. The elution pattern was unaffected by the presence of high salt concentrations, indicating that the larger size was not due to macromolecular complexes. The presence of antizyme-ornithine decarboxylase complex was detected in mammary gland of untreated lactating rats fasted for 6 or 24 h, thus indicating that antizyme plays a role in the regulation of ornithine decarboxylase in mammary gland under physiological conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号