首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The plasma lipoprotein lipoprotein(a) [Lp(a)] comprises a low-density lipoprotein (LDL)-like particle covalently attached to the glycoprotein apolipoprotein(a) [apo(a)]. Apo(a) consists of multiple tandem repeating kringle modules, similar to plasminogen kringle IV (designated KIV1-KIV10), followed by modules homologous to the kringle V module and protease domain of plasminogen. The apo(a) KIV modules have been classified on the basis of their binding affinity for lysine and lysine analogues. The strong lysine-binding apo(a) KIV10 module mediates lysine-dependent interactions with fibrin and cell-surface receptors. Weak lysine-binding apo(a) KIV7 and KIV8 modules display a 2-3-fold difference in lysine affinity and play a direct role in the noncovalent step in Lp(a) assembly through binding to unique lysine-containing sequences in apolipoproteinB-100 (apoB-100). The present study describes the nuclear magnetic resonance solution structure of apo(a) KIV8 and its solution dynamics properties, the first for an apo(a) kringle module, and compares the effects of epsilon-aminocaproic acid (epsilon-ACA) binding on the backbone and side-chain conformation of KIV7 and KIV8 on a per residue basis. Apo(a) KIV8 adopts a well-ordered structure that shares the general tri-loop kringle topology with apo(a) KIV6, KIV7, and KIV10. Mapping of epsilon-ACA-induced chemical-shift changes on KIV7 and KIV8 indicate that the same residues are affected, despite a 2-3-fold difference in epsilon-ACA affinity. A unique loop conformation within KIV8, involving hydrophobic interactions with Tyr40, affects the positioning of Arg35 relative to the lysine-binding site (LBS). A difference in the orientation of the aromatic side chains comprising the hydrophobic center of the LBS in KIV8 decreases the size of the hydrophobic cleft compared to other apo(a) KIV modules. An exposed hydrophobic patch contiguous with the LBS in KIV8 and not conserved in other weak lysine-binding apo(a) kringle modules may modulate specificity for regions within apoB-100. An additional ligand recognition site comprises a structured arginine-glycine-aspartate motif at the N terminus of the KIV8 module, which may mediate Lp(a)/apo(a)-integrin interactions.  相似文献   

2.
Apolipoprotein(a), apo(a), contains 37 repeats structurally homologous to kringle 4 structures of the fibrinolysis zymogen plasminogen. The aim of the study was to explore the functional analogy between apolipoprotein(a) and plasminogen in the binding to the kringle-4-binding plasma protein, tetranectin. With a modified crossed immunoelectrophoresis technique, reversible binding between lipoprotein(a) and tetranectin could be demonstrated with an apparent Kd of 0.013 muMol/l. Lys- and Glu-plasminogen showed an apparent Kd of 0.5 muMol/l. Binding of lipoprotein(a) to fibrin and to fibrin-bound tetranectin was found to be negligible. The absence of fibrin binding of lipoprotein(a) excludes a potential mechanism of coexistence of fibrin and lipid deposits in arterial diseases and does not provide for a link between lipoprotein and the clotting system. Plasminogen and lipoprotein(a) show functional analogy in their binding to tetranectin, but tetranectin primarily targets at lipoprotein(a).  相似文献   

3.
Elevated plasma concentrations of lipoprotein(a) [Lp(a)] are associated with an increased risk for the development of atherosclerotic disease which may be attributable to the ability of Lp(a) to attenuate fibrinolysis. A generally accepted mechanism for this effect involves direct competition of Lp(a) with plasminogen for fibrin(ogen) binding sites thus reducing the efficiency of plasminogen activation. Efforts to determine the domains of apolipoprotein(a) [apo(a)] which mediate fibrin(ogen) interactions have yielded conflicting results. Thus, the purpose of the present study was to determine the ability of single KIV domains of apo(a) to bind plasmin-treated fibrinogen surfaces as well to determine their effect on fibrinolysis using an in vitro clot lysis assay. A bacterial expression system was utilized to express and purify apo(a) KIV (2), KIV (7), KIV (9) DeltaCys (which lacks the seventh unpaired cysteine) and KIV (10) which contains a strong lysine binding site. We also expressed and examined three mutant derivatives of KIV (10) to determine the effect of changing critical residues in the lysine binding site of this kringle on both fibrin(ogen) binding and fibrin clot lysis. Our results demonstrate that the strong lysine binding site in apo(a) KIV (10) is capable of mediating interactions with plasmin-modified fibrinogen in a lysine-dependent manner, and that this kringle can increase in vitro fibrin clot lysis time by approximately 43% at a concentration of 10 microM KIV (10). The ability of the KIV (10) mutant derivatives to bind plasmin-modified fibrinogen correlated with their lysine binding capacity. Mutation of Trp (70) to Arg abolished binding to both lysine-Sepharose and plasmin-modified fibrinogen, while the Trp (70) -->Phe and Arg (35) -->Lys substitutions each resulted in decreased binding to these substrates. None of the KIV (10) mutant derivatives appeared to affect fibrinolysis. Apo(a) KIV (7) contains a lysine- and proline-sensitive site capable of mediating binding to plasmin-modified fibrinogen, albeit with a lower apparent affinity than apo(a) KIV (10). However, apo(a) KIV (7) had no effect on fibrinolysis in vitro. Apo(a) KIV (2) and KIV (9) DeltaCys did not bind measurably to plasmin-modified fibrinogen surfaces and did not affect fibrinolysis in vitro.  相似文献   

4.
During lipoprotein(a) (Lp(a)) assembly, non-covalent interactions between apolipoprotein(a) (apo(a)) and low density lipoprotein precede specific disulfide bond formation. Studies have shown that the non-covalent step involves an interaction between the weak lysine-binding sites (WLBS) present within each of apo(a) kringle IV types 6, 7, and 8 (KIV(6-8)), and two lysine residues (Lys(680) and Lys(690)) within the NH(2) terminus of the apolipoprotein B-100 (apoB) component of low density lipoprotein. In the present study, we introduced single point mutations (E56G) into each of the WLBS present in apo(a) KIV(6-8) and expressed these mutations in the context of a 17-kringle (17K) recombinant apo(a) variant. Single mutations that disrupt the WLBS in KIV(6), KIV(7), and KIV(8), as well as mutants that disrupt the WLBS in both KIV(6) and KIV(7), or both KIV(7) and KIV(8), were assessed for their ability to form non-covalent and covalent Lp(a) complexes. Our results demonstrate that both apo(a) KIV(7) and KIV(8), but not KIV(6), are required for maximally efficient non-covalent and covalent Lp(a) assembly. Single mutations in the WLBS of KIV(7) or KIV(8) resulted in a 3-fold decrease in the affinity of 17K recombinant apo(a) for apoB, and a 20% reduction in the rate of covalent Lp(a) formation. Tandem mutations in the WLBS in both KIV(7) and KIV(8) resulted in a 13-fold reduction in the binding affinity between apo(a) and apoB, and a 75% reduction in the rate of the covalent step of Lp(a) formation. We also showed that KIV(7) and KIV(8) specifically bind with high affinity to apoB-derived peptides containing Lys(690) or Lys(680), respectively. Taken together, our data demonstrate that specific interactions between apo(a) KIV(7) and KIV(8) and Lys(680) and Lys(690) in apoB mediate a high affinity non-covalent interaction between apo(a) and low density lipoprotein, which dictates the efficiency of covalent Lp(a) formation.  相似文献   

5.
Kringle domains are found in a number of proteins where they govern protein-protein interactions. These interactions are often sensitive to lysine and lysine analogues, and the kringle-lysine interaction has been used as a model system for investigating kringle-protein interactions. In this study, we analyze the interaction of wild-type and six single-residue mutants of recombinant plasminogen kringle 4 expressed in Escherichia coli with the recombinant C-type lectin domain of tetranectin and trans-aminomethyl-cyclohexanoic acid (t-AMCHA) using isothermal titration calorimetry. We find that all amino acid residues of plasminogen kringle 4 found to be involved in t-AMCHA binding are also involved in binding tetranectin. Notably, one amino acid residue of plasminogen kringle 4, Arg 32, not involved in binding t-AMCHA, is critical for binding tetranectin. We also find that Asp 57 and Asp 55 of plasminogen kringle 4, which both were found to interact with the low molecular weight ligand with an almost identical geometry in the crystal of the complex, are not of equal functional importance in t-AMCHA binding. Mutating Asp 57 to an Asn totally eliminates binding, whereas the Asp 55 to Asn, like the Arg 71 to Gln mutation, was found only to decrease affinity.  相似文献   

6.
Apolipoprotein(a) [apo(a)] shares extensive sequence similarity with plasminogen and consists of multiple tandem repeats of domains similar to plasminogen kringle IV (KIV), followed by domains homologous to the plasminogen KV and protease domains. The apo(a) KIV domains can be classified into 10 types on the basis of amino acid sequence (KIV(1)-KIV(10)) of which KIV(10) contains a canonical lysine binding site (LBS); KIV(10) mediates the lysine-dependent interaction of Lp(a) with certain biological substrates. Molecular modeling studies indicated the presence of weak LBS in each of KIV(5)-KIV(8), and subsequent biochemical studies have revealed contributions of these kringles to lysine-mediated interactions involving apo(a). The present study describes the direct demonstration of a weak LBS within KIV(7), as well as the first characterization of the ligand specificity of an LBS outside that of KIV(10). We have expressed both KIV(7) and KIV(10) from bacterial cells and purified them to homogeneity from cell lysates. Equilibrium binding analyses of the KIV(7) LBS using intrinsic fluorescence revealed an affinity for L-lysine and its analogues approximately 10-fold weaker (K(D) = 230 +/- 42 microM for epsilon-aminocaproic acid) than that of KIV(10) (K(D) = 33 +/- 4 microM for epsilon-aminocaproic acid). Moreover, we demonstrated differences in specificity of the LBS of KIV(7) in comparison with KIV(10) in that KIV(7) preferentially bound L-proline. Both kringles bind 4-aminobutyric acid with similar affinities albeit with apparently different mechanisms. Key Phe(62) --> Tyr and Asp(56) --> Glu substitutions in the KIV(7) LBS result in alterations in the size of the LBS and in the spatial relationship between the cationic and anionic centers in the LBS and thus account for the differences in the binding properties of KIV(7) and KIV(10).  相似文献   

7.
Apolipoprotein(a) [apo(a)] consists of a series of tandemly repeated modules known as kringles that are commonly found in many proteins involved in the fibrinolytic and coagulation cascades, such as plasminogen and thrombin, respectively. Specifically, apo(a) contains multiple tandem repeats of domains similar to plasminogen kringle IV (designated as KIV(1) to KIV(10)) followed by sequences similar to the kringle V and protease domains of plasminogen. The KIV domains of apo(a) differ with respect to their ability to bind lysine or lysine analogs. KIV(10) represents the high-affinity lysine-binding site (LBS) of apo(a); a weak LBS is predicted in each of KIV(5)-KIV(8) and has been directly demonstrated in KIV(7). The present study describes the first crystal structure of apo(a) KIV(7), refined to a resolution of 1.45 A, representing the highest resolution for a kringle structure determined to date. A critical substitution of Tyr-62 in KIV(7) for the corresponding Phe-62 residue in KIV(10), in conjunction with the presence of Arg-35 in KIV(7), results in the formation of a unique network of hydrogen bonds and electrostatic interactions between key LBS residues (Arg-35, Tyr-62, Asp-54) and a peripheral tyrosine residue (Tyr-40). These interactions restrain the flexibility of key LBS residues (Arg-35, Asp-54) and, in turn, reduce their adaptability in accommodating lysine and its analogs. Steric hindrance involving Tyr-62, as well as the elimination of critical ligand-stabilizing interactions within the LBS are also consequences of this interaction network. Thus, these subtle yet critical structural features are responsible for the weak lysine-binding affinity exhibited by KIV(7) relative to that of KIV(10).  相似文献   

8.
C-type lectin-like domains are found in many proteins, where they mediate binding to a wide diversity of compounds, including carbohydrates, lipids, and proteins. The binding of a C-type lectin-like domain to a ligand is often influenced by calcium. Recently, we have identified a site in the C-type lectin-like domain of tetranectin, involving Lys-148, Glu-150, and Asp-165, which mediates calcium-sensitive binding to plasminogen kringle 4. Here, we investigate the effect of conservative substitutions of these and a neighboring amino acid residue. Substitution of Thr-149 in tetranectin with a tyrosine residue considerably increases the affinity for plasminogen kringle 4, and, in addition, confers affinity for plasminogen kringle 2. As shown by isothermal titration calorimetry analysis, this new interaction is stronger than the binding of wild-type tetranectin to plasminogen kringle 4. This study provides further insight into molecular determinants of importance for binding selectivity and affinity of C-type lectin kringle interactions.  相似文献   

9.
Apolipoprotein(a) [apo(a)] is the distinctive glycoprotein of lipoprotein Lp(a), which is disulfide linked to the apo B100 of a low density lipoprotein particle. Apo(a) possesses a high degree of sequence homology with plasminogen, the precursor of plasmin, a fibrinolytic and pericellular proteolytic enzyme. Apo(a) exists in several isoforms defined by a variable number of copies of plasminogen-like kringle 4 and single copies of kringle 5, and the protease region including the backbone positions for the catalytic triad (Ser, His, Asp). A lysine-binding site that is similar to that of plasminogen kringle 4 is present in apo(a) kringle IV type 10. These kringle motifs share some amino acid residues (Asp55, Asp57, Phe64, Tyr62, Trp72, Arg71) that are key components of their lysine-binding site. The spatial conformation and the function of this site in plasminogen kringle 4 and in apo(a) kringle IV-10 seem to be identical as indicated by (i) the ability of apo(a) to compete with plasminogen for binding to fibrin, and (ii) the neutralisation of the lysine-binding function of these kringles by a monoclonal antibody that recognises key components of the lysine-binding site. In contrast, the lysine-binding site of plasminogen kringle 1 contains a Tyr residue at positions 64 and 72 and is not recognised by this antibody. Plasminogen bound to fibrin is specifically recognised and cleaved by the tissue-type plasminogen activator at Arg561-Val562, and is thereby transformed into plasmin. A Ser-Ile substitution at the activation cleavage site is present in apo(a). Reinstallation of the Arg-Val peptide bond does not ensure cleavage of apo(a) by plasminogen activators. These data suggest that the stringent specificity of tissue-type plasminogen activator for plasminogen requires molecular interactions with structures located remotely from the activation disulfide loop. These structures ensure second site interactions that are most probably absent in apo(a).  相似文献   

10.
Human apolipoprotein(a) kringle IV type 10 [apo(a) KIV(10)] contains a strong lysine-binding site (LBS) that mediates the interaction of Lp(a) with biological substrates such as fibrin. Mutations in the KIV(10) LBS have been reported in both the rhesus monkey and chimpanzee, and have been proposed to explain the lack of ability of the corresponding Lp(a) species to bind to lysine and fibrin. To further the comparative analyses with other primate species, we sequenced a segment of baboon liver apo(a) cDNA spanning KIV(9) through the protease domain. Like rhesus monkey apo(a), baboon apo(a) lacks a kringle V (KV)-like domain. Interestingly, we found that the baboon apo(a) KIV(10) sequence contains all of the canonical LBS residues. We sequenced the apo(a) KIV(10) sequence from an additional 10 unrelated baboons; 17 of 20 alleles encoded Trp at position 70, whereas only two alleles encoded Arg at this position and thus a defective LBS. Despite the apparent presence of a functional KIV(10) LBS in most of the baboons, none of the Lp(a) in the plasma of the corresponding baboons bound specifically to lysine-Sepharose (agarose) even upon partial purification. Moreover, baboon Lp(a) bound very poorly to plasmin-modified fibrinogen. Expression of baboon and human KIV(10) in bacteria allowed us to verify that these domains bind comparably to lysine and lysine analogues. We conclude that presentation of KIV(10) in the context of apo(a) lacking KV may interfere with the ability of KIV(10) to bind to substrates such as fibrin; this paradigm may also be present in other non-human primates.  相似文献   

11.
The kringle modules of apolipoprotein(a) [apo(a)] of lipoprotein(a) [Lp(a)] are highly homologous with kringle 4 of plasminogen (75-94%) and like the latter are autonomous structural and functional units. Apo(a) contains 14-37 kringle 4 (KIV) repeats distributed into 10 classes (1-10). Lp(a) binds lysine-Sepharose via a lysine binding site (LBS) located in KIV-10 (88% homology with plasminogen K4). However, the W72R substitution that occurs in rhesus monkeys and occasionally in humans leads to impaired lysine binding capacity of KIV-10 and Lp(a). The foregoing has been investigated by determining the structures of KIV-10/M66 (M66 variant) in its unliganded and ligand [epsilon-aminocaproic acid (EACA)] bound modes and the structure of recombinant KIV-10/M66R72 (the W72R mutant). In addition, the EACA liganded structure of a sequence polymorph (M66T in about 42-50% of the human population) was reexamined (KIV-10/T66/EACA). The KIV-10/M66, KIV-10/M66/EACA, and KIV-10/T66/EACA molecular structures are highly isostructural, indicating that the LBS of the kringles is preformed anticipating ligand binding. A displacement of three water molecules from the EACA binding groove and a movement of R35 bringing the guanidinium group close to the carboxylate of EACA to assist R71 in stabilizing the anionic group of the ligand are the only changes accompanying ligand binding. Both EACA structures were in the embedded binding mode utilizing all three binding centers (anionic, hydrophobic, cationic) like plasminogen kringles 1 and 4. The KIV-10/T66/EACA structure determined in this work differs from one previously reported [Mikol, V., Lo Grasso, P. V. and, Boettcher, B. R. (1996) J. Mol. Biol. 256, 751-761], which crystallized in a different crystal system and displayed an unbound binding mode, where only the amino group of EACA interacted with the anionic center of the LBS. The remainder of the ligand extended into solvent perpendicular to the kringle surface, leaving the hydrophobic pocket and the cationic center of the LBS unoccupied. The structure of recombinant KIV-10/M66R72 shows that R72 extends along the ligand binding groove parallel to the expected position of EACA toward the anionic center (D55/D57) and makes a salt bridge with D57. Thus, the R72 side chain mimics ligand binding, and loss of binding ability is the result of steric blockage of the LBS by R72 physically occupying part of the site. The rhesus monkey lysine binding impairment is compared with that of chimpanzee where KIV-10 has been shown to have a D57N mutation instead.  相似文献   

12.
Ahn JH  Lee HJ  Lee EK  Yu HK  Lee TH  Yoon Y  Kim SJ  Kim JS 《Biological chemistry》2011,392(4):347-356
Many proteins in the fibrinolysis pathway contain antiangiogenic kringle domains. Owing to the high degree of homology between kringle domains, there has been a safety concern that antiangiogenic kringles could interact with common kringle proteins during fibrinolysis leading to adverse effects in vivo. To address this issue, we investigated the effects of several antiangiogenic kringle proteins including angiostatin, apolipoprotein(a) kringles IV(9)-IV(10)-V (LK68), apolipoprotein(a) kringle V (rhLK8) and a derivative of rhLK8 mutated to produce a functional lysine-binding site (Lys-rhLK8) on the entire fibrinolytic process in vitro and analyzed the role of lysine binding. Angiostatin, LK68 and Lys-rhLK8 increased clot lysis time in a dose-dependent manner, inhibited tissue-type plasminogen activator-mediated plasminogen activation on a thrombin-modified fibrinogen (TMF) surface, showed binding to TMF and significantly decreased the amount of plasminogen bound to TMF. The inhibition of fibrinolysis by these proteins appears to be dependent on their functional lysine-binding sites. However, rhLK8 had no effect on these processes owing to an inability to bind lysine. Collectively, these results indicate that antiangiogenic kringles without lysine binding sites might be safer with respect to physiological fibrinolysis than lysine-binding antiangiogenic kringles. However, the clinical significance of these findings will require further validation in vivo.  相似文献   

13.
In the search for new ligands for the plasminogen kringle 4 binding-protein tetranectin, it has been found by ligand blot analysis and ELISA that tetranectin specifically bound to the plasminogen-like hepatocyte growth factor and tissue-type plasminogen activator. The dissociation constants of these complexes were found to be within the same order of magnitude as the one for the plasminogen-tetranectin complex. The study also revealed that tetranectin did not interact with the kindred proteins: macrophage-stimulating protein, urokinase-type plasminogen activator and prothrombin. In order to examine the function of tetranectin, a kinetic analysis of the tPA-catalysed plasminogen activation was performed. The kinetic parameters of the tetranectin-stimulated enhancement of tPA were comparable to fibrinogen fragments, which are so far the best inducer of tPA-catalysed plasminogen activation. The enhanced activation was suggested to be caused by tetranectin's ability to bind and accumulate tPA in an active conformation.  相似文献   

14.
Low-density lipoprotein (LDL) oxidation is stimulated by copper. Addition of a recombinant form of apolipoprotein(a) (apo(a); the distinguishing protein component of lipoprotein(a)) containing 17 plasminogen kringle IV-like domains (17K r-apo(a)) protects LDL against oxidation by copper. Protection is specific to apo(a) and is not achieved by plasminogen or serum albumin. When Cu(2+) is added to 17K r-apo(a), its intrinsic fluorescence is quenched in a concentration-dependent and saturable manner. Quenching is unchanged whether performed aerobically or anaerobically and is reversible by ethylenediaminetetraacetate, suggesting that it is due to equilibrium binding of Cu(2+) and not to oxidative destruction of tryptophan residues. The fluorescence change exhibits a sigmoid dependence on copper concentration, and time courses of quenching are complex. At copper concentrations below 10 microM there is little quenching, whereas above 10 microM quenching proceeds immediately as a double-exponential decay. The affinity and kinetics of copper binding to 17K r-apo(a) are diminished in the presence of the lysine analogue epsilon -aminocaproic acid. We propose that copper binding to the kringle domains of 17K is mediated by a His-X-His sequence that is located about 5A from the closest tryptophan residue of the lysine binding pocket. Copper binding may account for the natural resistance to copper-mediated oxidation of lipoprotein(a) relative to LDL that has been previously reported and for the protection afforded by apo(a) from copper-mediated oxidation of LDL that we describe in the present study.  相似文献   

15.
Studies were undertaken to investigate potential interactions among plasma lipoproteins. Techniques used were low density lipoprotein2 (LDL2)-ligand blotting of plasma lipoproteins separated by nondenaturing 2.5-15% gradient gel electrophoresis, ligand binding of plasma lipoproteins by affinity chromatography with either LDL2 or lipoprotein(a) (Lp(a)) as ligands, and agarose lipoprotein electrophoresis. Ligand blotting showed that LDL2 can bind to Lp(a). When apolipoprotein(a) was removed from Lp(a) by reduction and ultracentrifugation, no interaction between LDL2 and reduced Lp(a) was detected by ligand blotting. Ligand binding showed that LDL2-Sepharose 4B columns bound plasma lipoproteins containing apolipoproteins(a), B, and other apolipoproteins. The Lp(a)-Sepharose column bound lipoproteins containing apolipoprotein B and other apolipoproteins. Furthermore, the Lp(a) ligand column bound more lipoprotein lipid than the LDL2 ligand column, with the Lp(a) ligand column having a greater affinity for triglyceride-rich lipoproteins. Lipoprotein electrophoresis of a mixture of LDL2 and Lp(a) demonstrated a single band with a mobility intermediate between that of LDL2 and Lp(a). Chemical modification of the lysine residues of apolipoprotein B (apoB) by either acetylation or acetoacetylation prevented or diminished the interaction of LDL2 with Lp(a), as shown by both agarose electrophoresis and ligand blotting using modified LDL2. Moreover, removal of the acetoacetyl group from the lysine residues of apoB by hydroxylamine reestablished the interaction of LDL2 with Lp(a). On the other hand, blocking of--SH groups of apoB by iodoacetamide failed to show any effect on the interaction between LDL2 and Lp(a). Based on these observations, it was concluded that Lp(a) interacts with LDL2 and other apoB-containing lipoproteins which are enriched in triglyceride; this interaction is due to the presence of apolipoprotein(a) and involves lysine residues of apoB interacting with the plasminogen-like domains (kringle 4) of apolipoprotein(a). Such results suggest that Lp(a) may be involved in triglyceride-rich lipoprotein metabolism, could form transient associations with apoB-containing lipoproteins in the vascular compartment, and alter the intake by the high affinity apoB, E receptor pathway.  相似文献   

16.
The determinants of binding of a peptide lacking C-termini-exposed lysine residues to a kringle domain were investigated using an up-regulated lysine binding kringle (K2Pg[C4G/E56D/K72Y]) of plasminogen and a peptide (a1-PAM) with a sequence derived from a surface-exposed M-like streptococcal protein. Significant kringle-induced chemical shifts in a His side-chain of a1-PAM were revealed by two-dimensional NMR. Further studies using isothermal titration calorimetry (ITC) provided support for the involvement of His12 in the peptide/ protein complex. In an effort to screen a1-PAM-derived truncation peptides, a combinatorial mixture, a1deltaa2-PAM[H12X] (where X=Pro, Arg, His, Trp, Lys, Ala, Phe, Asp and Gly), was analyzed using the surface-enhanced laser desorption ionization time-of-flight mass spectrometry (SELDI) platform. The major peptide that remained bound to the surface of the K2Pg[C4G/ E56D/K72Y]-containing chip was that containing His12, corresponding to the wild-type sequence. Minor peaks, representing binding, were obtained for Lys12-, Arg12- and Trp12-containing peptides. Individual peptides containing these amino acids were then examined using ITC and the binding constants obtained correlated with the relative strengths of binding estimated from the SELDI-based screen.  相似文献   

17.
PURPOSE OF REVIEW: Lipoprotein(a) is a structurally and functionally unique lipoprotein consisting of the glycoprotein apolipoprotein(a) covalently linked to LDL. Lipoprotein(a) is assembled extracellularly by a two-step mechanism, still incompletely understood, in which initial non-covalent interactions between apolipoprotein(a) and apolipoprotein B precede specific disulfide bond formation. Elevated concentrations of plasma lipoprotein(a) are a risk factor for a variety of vascular diseases, including coronary heart disease, ischaemic stroke and venous thrombosis. Whereas many pathogenic mechanisms have been proposed for lipoprotein(a), it remains to be conclusively demonstrated which mechanisms are relevant to human disease. RECENT FINDINGS: Structural and functional studies have verified that apolipoprotein(a) kringle 4 types 6-8 contain lysine binding sites of a weaker affinity for lysine analogues than kringle 4 type 10. Recent evidence has conclusively shown a role for kringle 4 types 7 and 8 in lipoprotein(a) assembly. Moreover, apolipoprotein(a) has been shown to undergo a conformational change, from a closed to an open form, which accelerates the rate of covalent lipoprotein(a) assembly. Functional studies in vitro have identified the domains in apolipoprotein(a) that mediate its inhibitory effects on fibrin clot lysis, binding to fibrin and other biological substrates, and pro-inflammatory and anti-angiogenic properties. SUMMARY: Extensive structure-function studies of apolipoprotein(a) have begun to yield important insights into the domains in apolipoprotein(a) that mediate lipoprotein(a) assembly and the pathogenic effects of this lipoprotein. Continued investigations of these relationships will contribute critically to unravelling the many outstanding questions about lipoprotein(a) metabolism and pathophysiology.  相似文献   

18.
通过研究重组apo(a)KringleⅣ 10 (KⅣ 10 )的赖氨酸结合能力对纤溶酶原与内皮细胞结合的影响 ,探讨apo(a)在抑制纤溶过程中的作用 ,为脂蛋白 (a) [lipoprotein(a) ,Lp(a) ]致动脉粥样硬化机理研究提供依据 .将含apo(a)野生型KⅣ 10 ((wild typeKⅣ 10 Trp72 ,wt KⅣ 10 Trp72 )和突变型KⅣ 10 (mutate typeKⅣ 10 Trp72 ,mut KⅣ 10 Arg72 )基因片段重组质粒 ,分别转化至E .coliDH5α菌株中并表达含这 2个重组片段的融合蛋白 ,通过Glutathione Agarosebeads亲和层析柱进行分离和提纯 ,经L Lys Sepharose 4B亲和层析柱检测其赖氨酸结合能力 .再以异硫氰酸荧光素标记的纤溶酶原为配基 ,观察这 2种基因表达片段对纤溶酶原与人脐静脉内皮细胞 (humanumbilicalveinendothe lialcells ,HUVEC)结合的影响 .结果显示 :在E .coliDH 5α菌株中表达的野生型谷胱甘肽S 转移酶(glutathioneS transferase ,GST) KⅣ 10 Trp72 (GST wt KⅣ 10 Trp72 )融合蛋白和突变型谷胱甘肽S 转移酶 (GST mut KⅣ 10 Arg72 )融合蛋白在赖氨酸结合能力上存在明显差异 .其中GST wt KⅣ 10 Trp72能有效地抑制纤溶酶原与人脐静脉内皮细胞的结合 ;而GST mut KⅣ 10 Arg72 在任一浓度范围内均无这种抑制作用 .结果  相似文献   

19.
Rhesus monkey apolipoprotein(a). Sequence, evolution, and sites of synthesis   总被引:11,自引:0,他引:11  
Human lipoprotein(a) is a low density lipoprotein-like lipoprotein whose concentration in plasma is correlated with atherosclerosis. The characteristic protein component of lipoprotein(a) is apolipoprotein(a) (apo(a)) which is disulfide-linked to apolipoprotein B-100. Sequencing of rhesus monkey apo(a) cDNA suggests that this protein, like human apo(a), is highly similar to plasminogen. Sequence data suggests that a plasminogen-like protease activity and kringle 1-, 2-, 3-, and 5-like domains are unnecessary for apo(a) function, but a highly repeated kringle four-like domain is important. Liver is the major site of apo(a) RNA synthesis; reduced amounts of message were also found in testes and brain. Co-expression with apoB-100 and plasminogen in rhesus tissues is not mandatory.  相似文献   

20.
Tetranectin is a tetrameric human plasma protein that binds to plasminogen kringle 4. Its amino acid sequence is homologous with the C-terminal parts of asialoglycoprotein receptors and proteoglycan core proteins. In the present study, we have demonstrated that the human embryonal fibroblast cell line WI-38 produce a tetranectin-related molecule, which might, by several criteria, be similar to tetranectin from plasma. These criteria include immunoblotting analysis of conditioned cell medium revealing a protein band with Mr 17,000, indistinguishable from the Mr of plasma tetranectin. A preparation obtained by purification of conditioned medium by affinity chromatography on an anti-(plasma tetranectin) IgG column also contained the Mr 17,000 protein. This protein (partly purified from the conditioned medium) was shown by crossed immunoelectrophoresis to bind to heparin, CaCl2 and plasminogen kringle 4, as previously described for tetranectin in plasma. Importantly, this tetranectin-related protein is not only present in conditioned culture medium, but the Mr 17,000 protein reacting with anti-(plasma tetranectin) IgG was also present in the extracellular material, remaining after removal of WI-38 cells from the culture dishes, as demonstrated by immunoblotting analysis and immunocytochemical staining. We conclude that WI-38 cells produce a tetranectin-related protein and secrete it into the extracellular matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号