首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Mutations in the FGD1 gene are responsible for the X-linked disorder known as faciogenital dysplasia (FGDY). FGD1 encodes a guanine nucleotide exchange factor that specifically activates the GTPase Cdc42. In turn, Cdc42 is an important regulator of membrane trafficking, although little is known about FGD1 involvement in this process. During development, FGD1 is highly expressed during bone growth and mineralization, and therefore a lack of the functional protein leads to a severe phenotype. Whether the secretion of proteins, which is a process essential for bone formation, is altered by mutations in FGD1 is of great interest. We initially show here that FGD1 is preferentially associated with the trans-Golgi network (TGN), suggesting its involvement in export of proteins from the Golgi. Indeed, expression of a dominant-negative FGD1 mutant and RNA interference of FGD1 both resulted in a reduction in post-Golgi transport of various cargoes (including bone-specific proteins in osteoblasts). Live-cell imaging reveals that formation of post-Golgi transport intermediates directed to the cell surface is inhibited in FGD1-deficient cells, apparently due to an impairment of TGN membrane extension along microtubules. These effects depend on FGD1 regulation of Cdc42 activation and its association with the Golgi membranes, and they may contribute to FGDY pathogenesis.  相似文献   

4.
5.
The tyrosine aminotransferase (TAT) gene is expressed in a tissue and developmental-specific manner. In addition, this gene is regulated by glucocorticoid and polypeptide hormones and its expression is affected when a regulatory region near the albino locus of the mouse is deleted. In order to allow studies of the molecular effects of these deletion mutations we have isolated and characterized the mouse TAT gene. The gene is 9.2 x 10(3) bases in length and consists of 12 exons which give rise to a 2.3 x 10(3) base long messenger RNA. The DNA sequence at the 5' end of the gene was determined and compared with the corresponding sequence of the rat tyrosine aminotransferase gene. The sequence comparison showed extensive homology over the entire region sequenced. In addition, DNA: DNA heteroduplex studies between the mouse and rat tyrosine aminotransferase genes revealed that this homology extends over the entire gene and its flanking sequences. The mouse tyrosine aminotransferase gene has been mapped distal to the serum esterase-1 locus on mouse chromosome 8, using a restriction fragment length polymorphism between two mouse species. Since the albino deletions are located on mouse chromosome 7, the assignment of the TAT gene to chromosome 8 suggests that a regulatory factor(s) affecting TAT gene expression acts in trans.  相似文献   

6.
Recently, we cloned a cDNA encoding a novel mouse protein, named A-C1, by differential display between two mouse cell lines, embryonic fibroblast C3H10T1/2 and chondrogenic ATDC5. Mouse A-C1 has homology with a ras-responsive gene, rat Ha-rev107 (Hrasls), and modulates a Ha-ras-mediated signaling pathway. Here, we report a cDNA encoding a human homolog of mouse A-C1. The deduced amino acid sequence of human A-C1 consists of 168 amino acids, and shows 83% identity with that of mouse A-C1. Human A-C1 mRNA was expressed in skeletal muscle, testis, heart, brain, and thyroid in vivo. Moreover, expression of human A-C1 mRNA was detected at a high level in human osteosarcoma-derived U2OS cells in vitro. By FISH analysis the human A-C1 gene (HRASLS) was mapped to human chromosome 3q28--> q29.  相似文献   

7.
A TaqI polymorphism, located in intron 4 of the faciogenital dysplasia (FGD1) gene, the gene responsible for Aarskog syndrome, is described. FGD1 encodes a putative Rho/Rac guanine nucleotide exchange factor involved in mammalian morphogenesis. The identification of an intragenic polymorphism will facilitate the accurate carrier detection of individuals at risk for Aarskog syndrome.  相似文献   

8.
Murine Gtse-1 (G(2) and S phase expressed protein), previously named B99, is a wt-p53 inducible gene that encodes a microtubule-localized protein which is able to induce G(2)/M phase accumulation when ectopically expressed. Here we report the cloning and characterization of a new cDNA (GTSE-1) encoding a human homologue of the mouse Gtse-1 protein. Chromosome mapping of mouse and human genes assigned Gtse-1 to chromosome 15 and GTSE-1 to chromosome 22q13.2-q13.3 in a region with conserved synteny to that where Gtse-1 mapped. Analysis of the genomic structure revealed that GTSE-1 contains at least 11 exons and 10 introns, spanning approximately 33kb of genomic DNA. Similar to murine Gtse-1, the product of GTSE-1 localized to the microtubules, was able to delay G(2)/M progression when ectopically expressed and was cell cycle regulated. Taken together, these results indicate GTSE-1 as the human functional homologue of murine Gtse-1.  相似文献   

9.
10.
Cloning, characterization and mapping of the mouse trehalase (Treh) gene   总被引:3,自引:0,他引:3  
Oesterreicher TJ  Markesich DC  Henning SJ 《Gene》2001,270(1-2):211-220
  相似文献   

11.
12.
13.
14.
15.
16.
PRG4 (proteoglycan 4) has been identified as megakaryocyte stimulating factor and articular superficial zone protein. PRG4 has characteristic motifs including somatomedin B and hemopexin domains, a chondroitin sulfate-attachment site and mucin-like repeats. During a screen of genes implicated in ectopic ossification, we found a novel mouse gene highly homologous to human and bovine PRG4 genes. Here, we report isolation, characterization and mapping of the gene, Prg4 together with characterization of its human orthologue. Prg4 cDNA was 3,320 bp long, encoding a 1,054 amino-acid protein. Human and mouse PRG4 genes each consisting of 12 exons spanned 18 and 16 kb, respectively. Characteristic motifs were conserved across species; however, the mucin-like repeat regions were highly diverse in length between species with a tendency that larger animals had longer repeats. Expression of human and mouse PRG4 genes was similar and found not only in cartilage, but also in liver, heart, lung, and bone. Expression of the mouse gene increased with progression of ectopic ossification. Multiple tissue-specific splicing variants lacking some of the motifs were found in both human and mouse. Although a specific role in the articular joint has previously been reported, the presence of multi-functional motifs as well as unique expression and alternative splicing patterns suggest that PRG4 functions in several distinctive biological process including regulation of ossification.  相似文献   

17.
Isolation and characterization of a genomic DDD mouse interleukin-3 gene   总被引:1,自引:0,他引:1  
K Todokoro  A Yamamoto  H Amanuma  Y Ikawa 《Gene》1985,39(1):103-107
  相似文献   

18.
A full-length gene GmPti1 was identified from soybean in an EST sequencing project by its homology to tomato Pti1. It encoded a protein of 366 amino acids. RT-PCR analysis showed that the GmPti1 expression was induced by salicylic acid and wounding. The deduced amino acid sequence had a Ser/Thr/Tyr kinase domain. GmPti1 protein was expressed in E. coli as an MBP fusion, purified by amylose resin and examined for its autophosphorylation ability. The phosphorylation assay in vitro showed that GmPti1 had kinase activity in the presence of Mn2+. These results demonstrated that GmPti1 represented a new Pti1-like gene, unlike the two published genes sPti1a and sPti1b, which encoding proteins had no autophosphorylation ability.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号