首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transrectal color Doppler sonography was used to evaluate the effect of intrauterine infusion of skim milk semen extender, seminal plasma and raw semen on the endometrium and blood flow in the uterine and ovarian arteries in mares. Six Trotter mares (mean age: 12 years) were examined during estrus in three cycles. Each mare received an intrauterine infusion of 20 ml of skim milk semen extender, seminal plasma or raw semen during estrus in one of three cycles. Blood flow measurements in both uterine and ovarian arteries and the determination of intrauterine fluid via sonography were performed before each infusion and 1, 3, 6, 12, and 24 h after infusion. Forty-eight hours later, the intrauterine infusion and measurements were repeated using the same time intervals. Changes in blood flow were detected using transrectal color Doppler sonography and were evaluated using the mean time-averaged maximum velocity (TAMV) of the blood flow. Cytological and bacteriological examination of uterine swabs performed 48 h after the second infusion revealed less inflammation and bacterial growth in mares infused with skim milk semen extender than in those infused with seminal plasma or raw semen. There was an increase in intrauterine fluid as early as 1 h after infusion of any of the substances. The infusion of skim milk semen extender had no effect on uterine blood flow. Within 1 h after infusion of seminal plasma or raw semen, there was an increase in the TAMV values of both uterine arteries (P<0.05). In contrast, ovarian blood flow increased only in the artery ipsilateral to the preovulatory follicle and only after the infusion of raw semen (P<0.05). In conclusion, the changes in uterine perfusion observed after intrauterine infusion may be associated with endometrial inflammation and vasodilatory components in the seminal plasma, whereas the changes seen in ovarian blood flow are possibly attributable to the interaction between sperm and oviduct.  相似文献   

2.
Güvenc K  Reilas T  Katila T 《Theriogenology》2005,63(9):2504-2512
It is unclear whether AI of mares deep into the uterine horn causes more or less inflammation of the endometrium than conventional AI. Thus, we compared uterine inflammatory reactions of mares inseminated with two different doses of frozen-thawed semen into the tip of the uterine horn (UH) ipsilateral to the preovulatory follicle with those of mares inseminated into the uterine body (UB). Thirty-two mares were assigned to one of four groups (eight mares/group): UB20=AI into UB, 20 x 10(6)sperm/0.5 mL; UB200=AI into UB, 200 x 10(6)sperm/0.5 mL; UH20=AI into UH, 20 x 10(6)sperm/0.5 mL; UH200=AI into UH, 200 x 10(6)sperm/0.5 mL, and inseminated 24 h after hCG administration. Before and 24 h after AI, they were examined with ultrasonography for the presence of intrauterine fluid. At 24 h, uterine fluid samples were obtained first by absorbing fluid into a tampon and then by uterine lavage. Uterine fluid was examined for polymorphonuclear leukocytes (PMN) and bacteriology, and frozen for lysozyme and TIC (trypsin-inhibitor capacity) assays. Only three mares conceived, one in each of the following groups: UB200, UH20, and UH200. Mares in the UH20 group accumulated less intrauterine fluid (p<0.05) than those in the other groups, which had similar amounts. No significant differences in PMN numbers were detected in either tampon or lavage fluid. Enzyme levels between groups did not differ statistically, except for TIC, which was lowest in the UH200 group. Thus, deep uterine horn AI caused no greater inflammation or irritation than uterine body AI in normal mares 24 h after insemination.  相似文献   

3.
In six field trials, doses between 1.0 and 6.0 x 10(6) total sexed, frozen-thawed sperm were inseminated into the uterine body or bilaterally into the uterine horns of heifers and nursing Angus cows 12 or 24h after observed estrus. Except for one comparison in one trial in which uterine body insemination was slightly superior (P<0.05) to uterine horn insemination, there was no significant (P>0.1) difference between sites of semen deposition. Additionally, except for one small study with limited numbers, there was essentially no difference in pregnancy rates in the range between 1.5 and 6 x 10(6) sexed, frozen-thawed sperm per inseminate. Pregnancy rates with smaller doses of sexed sperm averaged about 75% of controls of 20 x 10(6) total frozen-thawed, unsexed sperm. While 1.0 x 10(6) sexed, frozen-thawed sperm per insemination dose resulted in decreased pregnancy rates compared to larger doses, the lesser fertility with sexed sperm could not be compensated by increasing sperm numbers in the range of 1.5-6 x 10(6) sperm per dose. Pregnancy rates with 2 x 10(6) sexed, frozen-thawed sperm per dose were not markedly less than control pregnancy rates with 20 x 10(6) frozen-thawed unsexed sperm/dose in well-managed herds.  相似文献   

4.
Sieme H  Bonk A  Hamann H  Klug E  Katila T 《Theriogenology》2004,62(5):915-928
The effects of different artificial insemination (AI) techniques and sperm doses on pregnancy rates of normal Hanoverian breed mares and mares with a history of barrenness or pregnancy failure using fresh or frozen-thawed sperm were investigated. The material included 187 normal mares (148 foaling and 39 young maiden mares) and 85 problem mares with abnormal reproductive history. Mares were randomly allotted into groups with respect to AI technique (routine AI into the uterine body, transrectally controlled deep intracornual AI ipsilateral to the preovulatory follicle, or hysteroscopic AI onto the uterotubal junction ipsilateral to the preovulatory follicle), storage method of semen (fresh, frozen-thawed), AI volume (0.5, 2, 12 ml), and sperm dose (50 x 10(6) or 300 x 10(6) progressively motile sperm (pms) for fresh semen and 100 or 800 x 10(6) frozen-thawed sperm with >35% post-thaw motility). The mares were inseminated once per cycle, 24 h after hCG administration when fresh semen was used, or 30 h for frozen-thawed semen. Differences in pregnancy rates between treatment groups were analyzed by Chi-squared test, and for most relevant factors (insemination technique, mare, semen, and stallion) expectation values and confidence intervals were calculated using multivariate logistic models. Neither insemination technique, volume, sperm dose, nor mare or stallion had significant effects (P > 0.05) on fertility. Type of semen, breeding mares during foal heat, and an interaction between insemination technique, semen parameters, and mares did have significant effects (P < 0.05). In problem mares, frozen semen AI yielded significantly lower pregnancy rates than fresh semen AI (16/43, 37.2% versus 25/42, 59.5%), but this was not the case in normal mares. In normal mares, hysteroscopic AI with fresh semen gave significantly (P < 0.05) better pregnancy rates than uterine body AI (27/38, 71% versus 18/38, 47.3%), whereas in problem mares this resulted in significantly lower pregnancy rates than uterine body AI (5/15, 33.3% versus 16/19, 84.2%). Our results demonstrate that for problem mares, conventional insemination into the uterine body appears to be superior to hysteroscopic insemination and in normal mares, the highest pregnancy rates can be expected by hysteroscopic insemination.  相似文献   

5.
In this study, we tested the hypothesis that insemination of mares with twice the recommended dose of cooled semen (2 x 10(9) spermatozoa) would result in higher pregnancy rates than insemination with a single dose (1 x 10(9) spermatozoa) or with 1 x 10(9) spermatozoa on each of 2 consecutive days. A total of 83 cycles from 61 mares was used. Mares were randomly assigned to 1 of 3 treatment groups when a 40-mm follicle was detected by palpation and ultrasonography. Mares in Group 1 were inseminated with 1 x 10(9) progressively motile spermatozoa that had been cooled in a passive cooling unit to 5 degrees C and stored for 24 h. A second aliquot of semen from the same collection was stored for an additional 24 h and inseminated at 48 h after collection. Mares in Group 2 were inseminated once with 1 x 10(9) progressively motile spermatozoa that had been cooled to 5 degrees C and stored for 24 h. Group 3 mares were inseminated once with 2 x 10(9) progressively motile spermatozoa that had been cooled to 5 degrees C and stored for 24 h. All mares were given 2500 IU i.v. hCG at the first insemination. Pregnancy was determined by ultrasonography 12, 14 and 16 d after ovulation. On Day 16, mares were administered i.m. 10 mg of PGF2 alpha and, upon returning to estrus, were randomly reassigned to a group for repeated treatment. Semen was collected from one of 3 stallions every 3 d; mares with a 40-mm ovarian follicle were inseminated with semen from the stallion collected on the preceding day. Semen was allocated into doses containing 1 x 10(9) progressively motile spermatozoa, diluted with dried skim milk-glucose extender to a concentration of 25 x 10(6) motile spermatozoa/ml (total volume 40 ml), placed in a passive cooling unit and cooled to 5 degrees C for 24 or 48 h. Response was measured by number of mares showing pregnancy. Data were analyzed by Chi square. Mares inseminated twice with 1 x 10(9) progressively motile spermatozoa on each of two consecutive days had a higher pregnancy rate (16/25, 64%; P < 0.05) than mares inseminated once with 1 x 10(9) progressively motile spermatozoa (9/29, 31%) or those inseminated once with 2 x 10(9) progressively motile spermatozoa (12/29, 41%). Pregnancy rates did not differ significantly (P > 0.10) among stallions (69, 34 and 32%). Interval from last insemination to ovulation was 0.9, 2.0 and 2.0 d for mares in Groups 1, 2 and 3, respectively. Based on these results, the optimal insemination regimen is a dose of 1 x 10(9) progressively motile spermatozoa given on two consecutive days. However, a shorter interval (< or = 24 h rather than > 0.9 d) between insemination and ovulation may affect pregnancy rates, and needs to be investigated.  相似文献   

6.
The aim of this study was to determine, in vivo, whether in vitro infected cryopreserved caprine sperm is capable of transmitting caprine arthritis-encephalitis virus (CAEV) vertically to early embryo development stages via artificial insemination with in vitro infected semen. Sperm was collected from CAEV-free bucks by electroejaculation. Half of each ejaculate was inoculated with CAEV-pBSCA at a viral concentration of 104 TCID50/mL. The second half of each ejaculate was used as a negative control. The semen was then frozen. On Day 13 of superovulation treatment, 14 CAEV-free does were inseminated directly into the uterus under endoscopic control with thawed infected semen. Six CAEV-free does, used as a negative control, were inseminated intrauterine with thawed CAEV-free sperm, and eight CAEV-free does were mated with naturally infected bucks. Polymerase chain reaction (PCR) was used to detect CAEV proviral-DNA in the embryos at the D7 stage, in the embryo washing media, and in the uterine secretions of recipient does. At Day 7, all the harvested embryos were PCR-negative for CAEV proviral-DNA; however, CAEV proviral-DNA was detected in 8/14 uterine smears, and 9/14 flushing media taken from does inseminated with infected sperm, and in 1/8 uterine swabs taken from the does mated with infected bucks. The results of this study confirm that (i) artificial insemination with infected semen or mating with infected bucks may result in the transmission of CAEV to the does genital tack seven days after insemination, and (ii) irrespective of the medical status of the semen or the recipient doe, it is possible to obtain CAEV-free early embryos usable for embryo transfer.  相似文献   

7.
In the seminal vesicle of male Panagrellus redivivus the sperm are normally rounded, non-motile and have cytoplasmic organelles randomly scattered throughout the whole cell body. Sperm become amoeboid in the uterus of the female with a clear anterior region capable of producing pseudopodia and an arch-shaped rigid posterior region containing numerous organelles. The sperm arrange themselves in the form of a chain in the uterus attaching themselves anterio-posteriorly, however sperm entering the post-vulvar uterine sac do not form a chain and remain scattered. Approximately eight hours after insemination the sperm in the uterus stop producing pseudopodia. Pseudopodial formation recommences in the seven to eight anteriormost sperm in the chain as they reach seminal receptacle.  相似文献   

8.
This study was conducted to evaluate two methods for insemination of a low number of sperm in the tip of the uterine horn, and to determine whether prebreeding intrauterine treatment with prostaglandin E(2) would improve pregnancy rates. Estrus was synchronized in 36 fertile Quarter Horse and Thoroughbred broodmares. When a dominant follicle >or=33 mm diameter was present, mares were treated with 2500 units hCG intravenously and were assigned to one of four treatment groups for insemination with five million total sperm in 200 microl extender the next day as follows: (1) Group PGE-HYS (n=9): 0.25mg PGE(2) in 1 ml 0.9% NaCl solution infused into the tip of the uterine horn ipsilateral to the dominant follicle 2h prior to hysteroscopic-guided inseminate placement onto the oviductal papilla; (2) Group SAL-HYS (n=9): 1 ml 0.9% NaCl solution infused into the tip of the uterine horn ipsilateral to the dominant follicle 2h prior to hysteroscopic-guided inseminate placement onto the oviductal papilla; (3) Group PGE-PIP (n=9): 0.25mg PGE(2) in 1 ml 0.9% NaCl solution infused into the tip of the uterine horn ipsilateral to the dominant follicle 2h prior to transrectally-guided pipette placement of the inseminate into the tip of the uterine horn; and (4) Group SAL-PIP (n=9): 1 ml 0.9% NaCl solution infused into the tip of the uterine horn ipsilateral to the dominant follicle 2h prior to transrectally-guided pipette placement of inseminate into the tip of the uterine horn. Mares in estrus were evaluated daily by transrectal ultrasonography to monitor follicular status and confirm ovulation. If mares had not ovulated within 2 days of insemination, the assigned treatment was repeated. Pregnancy status was evaluated by transrectal ultrasonography 12-14 days postovulation, and pregnancy rates were compared.No interaction between prebreeding treatment (SAL:PGE) and insemination protocol (HYS:PIP) on pregnancy rates occurred (P>0.10). Pregnancy rates did not differ between mares inseminated by HYS (12/18; 67%) or PIP (10/18; 56%) (P>0.10). Pregnancy rates did not differ between mares treated prior to breeding with PGE (11/18; 61%) or SAL (11/18; 61%) (P=1.00). In summary, satisfactory pregnancy rates were obtained when a low number of sperm were either placed directly onto the oviductal papilla using hysteroscopy or placed in the tip of the uterine horn using a transrectally-guided uterine pipette. Infusion of 0.25mg PGE(2) in the tip of the uterine horn 2h prior to insemination did not improve pregnancy rates.  相似文献   

9.
Mares were inseminated deep in the uterine horn with 25 million sperm selected by glass wool/Sephadex (GWS) filtration, Percoll separation (PS) or absolute number (AN). Deep-horn insemination using a low-volume, smooth tipped, flexible pipette/catheter delivery system allowed more efficient use of stallion sperm and reduced post-breeding uterine reaction in mares. Mares were pregnant in 15/30, 13/30 and 10/30 cycles for GWS, PS and AN selection methods, respectively. Sperm selection method did not effect pregnancy outcome (P=0.422). However, sperm selected for deep-horn insemination by filtration through a glass wool/Sephadex column tended to improve fertility over simply using an absolute number of sperm (P=0.105).  相似文献   

10.
Progestagen-impregnated vaginal sponges + PMSG were used to synchronize oestrus in crossbred adult ewes which were inseminated 56 h after sponge removal with 0.5 ml diluted semen containing 400, 200, 100, 50 or 25 x 10(6) spermatozoa per insemination. The diluent was skim milk-citrate or pooled seminal plasma. There was no difference in reproductive performance due to the insemination medium. Fertility (no. of ewes lambing) after insemination of 400 or 200 x 10(6) spermatozoa was 68% and was similar to that observed after natural service at progestagen-induced oestrus. When less than or equal to 100 x 10(6) spermatozoa were inseminated, fertility fell markedly and the number of lambs per ewe inseminated decreased. A decrease in litter size also occurred. The data indicate that insemination of 200 x 10(6) spermatozoa, i.e. less than 10% of the number in a single ram ejaculate, allows normal conception rates in progestagen-treated ewes.  相似文献   

11.
Ticarcillin and piperacillin were compared to determine their effect on sperm motility and bacterial growth of equine semen samples diluted in Kenney's glucose skim milk semen extender. Each ejaculate (n=11) was divided into three portions and glucose skim milk semen extender solution was added. The control semen extender solution contained extended semen and no antibiotic, whereas ticarcillin and piperacillin solutions contained extended semen plus 1.0mg/mL of ticarcillin or piperacillin, respectively. An aliquot was removed (1h after collection) to evaluate sperm motility and microbial concentration. All three solutions were stored at 4 degrees C and aliquots were obtained at 24 and 48 h to determine sperm motility and microbial concentration. Mean percentages of motile and progressively motile sperm did not differ significantly among control and antibiotic-containing solutions after storage. Control-extended semen samples from ejaculates of stallions (n=11) were contaminated with aerobic gram-positive and gram-negative bacteria. In solutions that contained either antibiotic, growth of these microbes was inhibited after 1, 24, and 48 h at 4 degrees C. Semen samples from stallions (n=5) were extended with Kenney's glucose skim milk extender containing no antibiotic, ticarcillin or piperacillin and then inoculated with approximately 5 x 10(2)CFU/mL Klebsiella pneumoniae or Pseudomonas aeruginosa; there was no significant difference between antibiotics in the inhibition of microbial growth. In conclusion, piperacillin was an appropriate alternative to ticarcillin in extenders for equine semen.  相似文献   

12.
Uterine secretion was collected from five normal mares during estrus by the use of a tampon. In subsequent estrus cycles, mares were inseminated with 1 x 10(9) spermatozoa from a stallion of known fertility, and uterine secretion was collected randomly at 6, 12, and 24 hours after insemination. All mares had negative endometrial cytology before insemination. At the time of uterine secretion sampling, semen was collected from two stallions and extended with Kenney's extender to a concentration of 50 x 10(6) spermatozoa/mL. Extended semen was diluted 2:1 with uterine secretion; semen extender; and centrifuged uterine secretion (noncellular). Samples were kept at room temperature and sperm motion characteristics (corrected motility (CMOT), progressively motile spermatozoa (PMS), and mean path velocity (MPV) were evaluated using a computer-assisted semen analyzer every 40 minutes for a total of 4 hours. Sperm motion characteristics of spermatozoa were significantly better when incubated in semen extender compared to uterine secretion (P < 0.05). The CMOT and PMS were significantly better in uterine secretion collected before, compared to after AI with the lowest values observed in samples collected at 12 hours after breeding (P < 0.05). Sperm motion characteristics of spermatozoa incubated in centrifuged uterine secretion was only slightly suppressed compared to spermatozoa incubated in semen extender, suggesting that the altered motion characteristics were mostly due to the presence of polymorphonuclear neutrophils (PMNs) in the samples. It was concluded from this study that spermatozoa can survive in inflamed uterine secretion, but that sperm motion characteristics in vitro are altered.  相似文献   

13.
A study was conducted to investigate the effects of prefreezing sperm concentration using two extenders on post-thaw survival and acrosomal status of ram spermatozoa (Experiment 1) and fertility after intrauterine insemination with differing doses of semen (Experiment 2). In autumn (Northern hemisphere), semen was collected by artificial vagina from 8 adult Leccese rams and ejaculates of good quality semen were pooled. Two extender systems for cryopreservation were considered, one based on milk-lactose egg yolk (Milk-LY) and the other based on tris-fructose egg yolk (Tris-FY). Experiment 1 (2 x 6 factorial scheme) examined the in vitro characteristics of spermatozoa in relation to the Milk-LY and Tris-FY extenders and six prefreezing sperm concentrations (50, 100, 200, 400, 500 and 800 x 10(6) spermatozoa/mL). Experiment 2 (2 x 4 factorial) evaluated the influence of the Milk-LY vs Tris-FY extenders and four doses (20, 40, 80 and 160 x 10(6) spermatozoa/0.25 mL) corresponding to prefreezing spermatozoa concentrations of 100, 200, 400 and 800 x 10(6) spermatozoa/mL, on fertility of ewes inseminated in uterus by laparoscope. Prefreezing sperm concentration influenced (P < 0.01) freezability of spermatozoa and affected negatively all the in vitro parameters at 800 x 10(6) spermatozoa/mL. Overall, Milk-LY tended to ensure higher viability and acrosomal integrity of spermatozoa after thawing at the intermediate sperm densities (range 100 to 500 x 10(6) spermatozoa/mL). At 500 x 10(6) spermatozoa/mL concentration corresponded the best condition for survival of spermatozoa (71.2%), acrosome integrity (71.5%) and acrosomal loss (6.0%). At the lowest sperm concentration (50 x 10(6) spermatozoa/mL), Tris-FY resulted in a higher survival rate than Milk-LY (61.3%, P < 0.05) and lower acrosomal loss (9.7%, P < 0.05). Milk-LY supported spermatozoa motility better than Tris-FY after incubation at sperm concentration between 50 and 400 x 10(6) spermatozoa/mL (0.05 > P < 0.01). Semen doses of 20 to 40 x 10(6) spermatozoa/ewe provided satisfactory fertility rates (64 to 81%). The increase of inseminate doses to 160 x 10(6) spermatozoa/ewe failed to improve fertility, actually tending to decrease lambing rates.  相似文献   

14.
The lowest dose of frozen-thawed boar sperm used for deep uterine artificial insemination (DUI) of sows has been 100x10(6). A three stage field study was performed to establish to what level the dose of frozen-thawed sperm used for DUI could be reduced without adversely affecting the fertility of the sow. In stage 1, 15 sows were inseminated twice with 1000x10(6) fresh or frozen-thawed sperm at 24 and 36 h post-detection of oestrus. In stage 2, 262 sows were inseminated with 62.5, 250 or 1000x10(6) fresh or frozen-thawed sperm at 24, 36, or 24 and 36 h after detection of oestrus. Stage 3 involved post mortem investigation of the uterine lining to assess damage caused by insertion of the insemination catheter. All sows inseminated in stage 1 of the study farrowed. In stage 2, the non-return (NRR) and farrowing rates of each group were compared to a control double cervical insemination of 3250x10(6) fresh sperm. As few as 62.5x10(6) fresh sperm could be deposited at a single insemination without reduction in NRR or farrowing rates compared with the control group. A double DUI with 250x10(6) frozen-thawed sperm was required before fertility was equivalent to the controls. Investigation of the uterine lining after insertion of the DUI catheter revealed evidence of bleeding, warranting further investigation of the viability of widespread use of the Firflex catheter, despite the promising fertility achieved here with low doses of spermatozoa.  相似文献   

15.
Seminal plasma addition attenuates the dilution effect in bovine sperm   总被引:2,自引:0,他引:2  
Dilution of semen to low cell numbers/dose can result in a bull-dependent reduction in the post-thaw viability of cryopreserved bovine spermatozoa. It is possible that essential seminal plasma components are lacking at the greater dilution rates, thereby contributing to the deleterious effects of semen dilution. Ejaculates of 6 Holstein bulls were diluted to 120 x 10(6) sperm/mL in an egg yolk citrate extender (EYC). Split samples were further diluted to 80, 40, 20 and 4 x 10(6) sperm/mL in EYC extender with (+SP) and without (-SP) the addition of frozen/thawed seminal plasma previously obtained from a vasectomized bull. Serial dilutions for the +SP treatments were calculated and performed such that each dilution contained a volume of seminal plasma equal to the original 120 x 10(6) sperm/mL dilution. Samples were then loaded into 0.5-mL French straws yielding final sperm concentrations of 30, 20, 10, 5 and 1 x 10(6)/dose. Straws from each dilution were analyzed using 2 stain combinations: the sperm viability stain, SYBR-14 and propidium iodide (PI); or the mitochondrial-specific, membrane potential-dependent stain JC-1 along with PI. Split-plot analysis of variance indicated that within bulls, there were greater proportions of viable spermatozoa in aliquots containing added seminal plasma than in aliquots without added seminal plasma (P < 0.05). Contrast analyses showed that sperm viability significantly decreased as sperm concentration decreased in the -SP samples. Although the dilution effect was also observed in the +SP samples, the magnitude of the effect was less than in the -SP samples. At most sperm concentrations, the proportions of spermatozoa that stained with JC-1 were correlated (r > 0.84; P < 0.05) with the percentages of SYBR- 14 stained spermatozoa. Furthermore, the proportions of JC-1-stained spermatozoa were greater in the +SP aliquots than in the -SP samples at a concentration of 10 x 10(6) sperm/0.5 mL. These results suggest that the addition of seminal plasma can be beneficial to sperm viability when semen is diluted to low cell numbers/dose.  相似文献   

16.
Mares are generally inseminated with 500 million progressively motile fresh sperm and approximately 1 billion total sperms that have been cooled or frozen. Development of techniques for low dose insemination would allow one to increase the number of mares that could be bred, utilize stallions with poor semen quality, extend the use of frozen semen, breed mares with sexed semen and perhaps reduce the incidence of post-breeding endometritis. Three low dose insemination techniques that have been reported include: surgical oviductal insemination, deep uterine insemination and hysteroscopic insemination.Insemination techniques: McCue et al. [J. Reprod. Fert. 56 (Suppl.) (2000) 499] reported a 21% pregnancy rate for mares inseminated with 50,000 sperms into the fimbria of the oviduct.Two methods have been reported for deep uterine insemination. In the study of Buchanan et al. [Theriogenology 53 (2000) 1333], a flexible catheter was inserted into the uterine horn ipsilateral to the corpus luteum. The position of the catheter was verified by ultrasound. Insemination of 25 million or 5 million spermatozoa resulted in pregnancy rates of 53 and 35%, respectively. Rigby et al. [Proceedings of 3rd International Symposium on Stallion Reproduction (2001) 49] reported a pregnancy rate of 50% with deep uterine insemination. In their experiment, the flexible catheter was guided into position by rectal manipulation.More studies have reported the results of using hysteroscopic insemination. With this technique, a low number of spermatozoa are placed into or on the uterotubal junction. Manning et al. [Proc. Ann. Mtg. Soc. Theriogenol. (1998) 84] reported a 22% pregnancy rate when 1 million spermatozoa were inserted into the oviduct via the uterotubal junction. Vazquez et al. [Proc. Ann. Mtg. Soc. Theriogenol. (1998) 82] reported a 33% pregnancy rate when 3.8 million spermatozoa were placed on the uterotubal junction. Recently, Morris et al. [J. Reprod. Fert. 188 (2000) 95] utilized the hysteroscopic insemination technique to deposit various numbers of spermatozoa on the uterotubal junction. They reported pregnancy rates of 29, 64, 75 and 60% when 0.5, 1, 5 and 10 million spermatozoa, respectively, were placed on the uterotubal junction.Insemination of sex-sorted spermatozoa: One of the major reasons for low dose insemination is insemination of X- or Y-chromosome-bearing sperm. Through the use of flow cytometry, spermatozoa can be accurately separated into X- or Y-bearing chromosomes. Unfortunately, only 15 million sperms can be sorted per hour. At that rate, it would take several days to sort an insemination dose containing 800 million to 1 billion spermatozoa. Thus, low dose insemination is essential for utilization of sexed sperm. Lindsey [Hysteroscopic insemination with low numbers of fresh and cryopreserved flow-sorted stallion spermatozoa, M.S. Thesis, Colorado State University, Fort Collins, CO, USA, 2000] utilized either deep uterine insemination or hysteroscopic insemination to compare pregnancy rates of mares inseminated with sorted, fresh stallion sperm to those inseminated with non-sorted, fresh stallion sperm. Hysteroscopic insemination resulted in more pregnancies than ultrasound-guided deep uterine insemination. Pregnancy rate was similar for mares bred with either non-sorted or sex-sorted spermatozoa.In a subsequent study, Lindsey et al. [Proceedings of 5th International Symposium on Equine Embryo Transfer (2000) 13] determined if insemination of flow-sorted spermatozoa adversely affected pregnancy rates and whether freezing sex-sorted spermatozoa would result in pregnancies. Mares were assigned to one of four groups: group 1 was inseminated with 5 million non-sorted sperms using hysteroscopic insemination; group 2 was inseminated with 5 million sex-sorted sperms using hysteroscopic insemination; group 3 was inseminated with non-sorted, frozen-thawed sperm; and group 4 was inseminated with sex-sorted frozen sperm. Pregnancy rates were similar for mares inseminated with non-sorted fresh sperm, sex-sorted fresh sperm and non-sorted frozen sperm (40, 37.5 and 37.5%, respectively). Pregnancy rates were reduced dramatically for those inseminated with sex-sorted, frozen-thawed sperm (2 out of 15, 13%). These studies demonstrated that hysteroscopic insemination is a practical and useful technique for obtaining pregnancies with low numbers of fresh spermatozoa or low numbers of frozen-thawed spermatozoa. Further studies are needed to determine if this technique can be used to obtain pregnancies from stallions with poor semen quality. In addition, further studies are needed to develop techniques of freezing sex-sorted spermatozoa.  相似文献   

17.
Semen from seven mature stallions was used to test the motility response of sperm cells when 3% bovine serum albumin (BSA) was added to seminal plasma and skim milk diluents. A total of 45 ejaculates was collected by artificial vagina and immediately evaluated for percent motile spermatozoa (PMS), rate of forward movement (RFM) and sperm cell concentration. Aliquots (four from each ejaculate) of raw semen containing 500x10(6) sperm cells were exposed to each of the following treatments: (1) seminal plasma (SP), (2) SP+BSA, (3) skim milk (SKM), (4) SKM+BSA; and incubated in 50-ml tubes at 37 C. The sperm cell characteristics, PMS and RFM, of each treatment suspension were reevaluated at 0, 0.5, 1, 2, 6, 12, 18 and 24 hr post-treatment. Inclusion of BSA and the type of extender, either seminal plasma or skim milk, significantly (P<0.05) affected the PMS and RFM of spermatozoa. Analysis of means within evaluation times showed that PMS maintenance was enhanced (P<0.05) when BSA was included in extenders at all incubation intervals except 24 hr. SKM+BSA maintained the highest (P<0.05) PMS for the first 2 hr with SP+BSA sustaining the highest (P<0.05) PMS from 12 to 24 hr. Skim milk alone sustained higher (P<0.05) PMS than the SP diluent for the first 6 hr of incubation, whereas SP maintained a higher (P<0.05) PMS than SKM from 18 to 24 hr. The RFM of spermatozoa was greatest (P<0.05) for the first 6 hr of incubation when exposed to SKM+BSA. Seminal plasma + BSA sustained a higher (P<0.05) RFM for the first 6 hr of incubation than SP alone, but not higher than SKM at this interval. Skim milk sustained a higher (P<0.05) RFM of spermatozoa for the first 6 hr of incubation than SP. These data support the hypothesis that BSA protects spermatozoa from the harmful effects of lipid peroxidation. Including this substance in semen extenders may prolong maintenance of sperm motility.  相似文献   

18.
Two trials were conducted to investigate the effects of intrauterine infusion of PGE2 and uterine horn insemination on pregnancy rates in mares achieved by breeding with a suboptimal number of normal spermatozoa. Estrus was synchronized and mares were teased daily with a stallion to detect estrus. Mares in estrus were examined by transrectal palpation and ultrasonography to monitor follicular status. On the first day a 35-mm diameter follicle was present, hCG (1500 IU, iv) was administered and the mares were bred the next day. Mares (Trial 1, n = 34; Trial 2, n = 28) were inseminated with 25 million total spermatozoa from either a stallion with good semen quality (Trial 1) or poor semen quality (Trial 2). In each trial, mares were assigned to 1 of 4 treatment groups as follows: Group PGE-HI - infusion of 0.25 mg PGE2 into the proximal end of the uterine horn ipsilateral to the dominant follicle 2 h prior to insemination in the proximal end of the same uterine horn; Group PGE-BI - infusion of 0.25 mg PGE2 into the proximal end of the uterine horn ipsilateral to the dominant follicle 2 h prior to insemination in the uterine body; Group SAL-HI - infusion of 1 mL sterile saline into the proximal end of the uterine horn ipsilateral to the dominant follicle 2 h prior to insemination in the proximal end of the same uterine horn; or Group SAL-BI - infusion of 1 mL sterile saline into the proximal end of the uterine horn ipsilateral to the dominant follicle 2 h prior to insemination in the uterine body. After breeding, mares were examined daily by transrectal ultrasonography to confirm ovulation, and were re-examined 14 to 16 d after ovulation for pregnancy status. Data were analyzed by Chi-square. Overall pregnancy rates were 59% for stallion 1 and 29% for stallion 2. Group pregnancy rates did not differ for mares bred by either stallion (P > 0.10). Pregnancy rates were not altered by horn insemination for either stallion (P > 0.10). Intrauterine infusion of PGE2 improved pregnancy rate in mares bred by the stallion with good quality semen (P < 0.05), but did not alter pregnancy rate in mares bred by the stallion with poor quality semen (P > 0.10). Further research is warranted to determine if intrauterine infusion of PGE2 will enhance spermatozoal colonization of the oviduct and pregnancy rates in mares, and if PGE-treatment will improve pregnancy rates achieved by subfertile stallions.  相似文献   

19.
The ejaculate of diverse primate species consists of two portions, liquid and solid; the latter, known as the seminal coagulum, is thought to sequester large numbers of sperm. In the black-handed spider monkey (Ateles geoffroyi), ejaculates collected by electroejaculation did not always contain seminal coagulum. The objective of the present study was to determine seasonal emission of seminal coagulum and in vivo sperm dynamics in the black-handed spider monkey. Seminal coagulum emission was related to season; it was more frequent in the dry season, coincident with maximal female fertility. Sperm concentration was higher (P = 0.02) in the dry season (dry vs. rainy season: 137.9 +/- 15.7 sperm/mL vs. 82.56 +/- 14.7 x1 0(6) sperm/mL; mean +/- S.E.M.) but also in ejaculates (collected during the rainy season) that had seminal coagulum (coagulum vs. no coagulum: 140.0 +/- 29.3 sperm/mL vs. 31.2+/-0.1 x 10(6) sperm/mL, P<0.001). In semen samples collected from the uterus after AI, the percentage of linearly motile sperm was higher during the dry season (dry vs. rainy: 9.1+/-2.1% vs. 5.9+/-2.5%), as well as whenever coagulum was present (coagulum vs. no coagulum: 13.0+/-3.2% vs. 2.0+/-0.9%, P<0.001).  相似文献   

20.
Forty-two mature Baladi female rabbits were used in a randomized 3x2 factorial experiment to determine the effects of three treatments (control, progesterone injection: 2 mg/doe and DES injection: 0.1 mg/doe) and two semen sperm cell concentrations (1x10(6) and 60x10(6) sperm/0.25 ml semen on sperm transport and distribution in the female reproductive tract. The injections were given for three consecutive days after which rabbits were injected with 5 IU HCG and inseminated with 0.25 ml semen. The does were sacrificed 10 hrs after insemination and the sperm were recovered and counted from the oviducts, uterine horns, cervices and vagina. Total spermatozoa recovered was high when rabbits were inseminated with 60x10(6) sperm as compared to those inseminated with 1x10(6) sperm. When rabbits were injected with progesterone or DES, the number of sperm recovered relative to the total number of sperm inseminated was high in rabbits inseminated with 1x10(6) sperm, in comparison to those inseminated with 6x10(6) sperm. The number of sperm recovered was highest from cervix which was followed by vagina, uterus and oviducts. DES increased the number of the total sperm recovered while progesterone decreased the number as compared to control. This trend was also observed within the different segments of the reproductive tract and with groups inseminated with 1x10(6) or 60x10(6) sperm/0.25 ml semen. The effect of DES was more obvious with does inseminated with low sperm numbers. Significant correlation coefficients were found between the sperm numbers recovered in the uterus and oviducts and in the cervix and uterus of all groups of rabbits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号