首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Shunsuke Utsumi  Takayuki Ohgushi 《Oikos》2009,118(12):1805-1815
It has been widely accepted that herbivory induces morphological, phenological, and chemical changes in a wide variety of terrestrial plants. There is an increasing appreciation that herbivore‐induced plant responses affect the performance and abundance of other arthropods. However, we still have a poor understanding of the effects of induced plant responses on community structures of arthropods. We examined the community‐level effects of willow regrowth in response to damage by larvae of swift moth Endoclita excrescence (Lepidoptera: Hepialidae) on herbivorous and predaceous arthropods on three willow species, Salix gilgiana, S. eriocarpa and S. serissaefolia. The leaves of sprouting lateral shoots induced by moth‐boring had a low C:N ratio. The overall abundance and species richness of herbivorous insects on the lateral shoots were increased on all three willow species. Densities of specialist chewers and sap‐feeders, and leaf miners increased on the newly emerged lateral shoots. In contrast, the densities of generalist chewers and sap‐feeders, and gall makers did not increase. Furthermore, ant and spider densities, and the overall abundance and species richness of predaceous arthropods increased on the lateral shoots on S. gilgiana and S. eriocarpa, but not S. serissaefolia. In addition to finding that effects of moth‐boring on arthropod abundance and species richness varied among willow species, we also found that moth‐boring, willow species, and their interaction differentially affected community composition. Our findings suggest that moth‐boring has community‐wide impacts on arthropod assemblages across three trophic levels via induced shoot regrowth and increase arthropod species diversity in this three willow species system.  相似文献   

2.
We studied the species composition and life history patterns of shelter‐building microlepidoptera on the willow Salix miyabeana in Hokkaido, northern Japan. We identified 23 microlepidopteran species across seven families that constructed leaf shelters. Species in Tortricidae and Pyralidae comprised approximately 90% of the total number of sampled shelter‐building microlepidoptera that reached adult eclosion in the laboratory. Seasonal changes in the density of leaf shelters showed two peaks: early June and mid‐August. In June, caterpillars of Gypsonoma bifasciata, Gypsonoma ephoropa, Acleris issikii and Saliciphage acharis were the principal shelter builders, while in August shelters were constructed primarily by caterpillars of Nephopterix adelphella, A. issikii and S. acharis. Approximately 90% of leaf shelters were constructed on the top portions of shoots, suggesting that most shelter‐building caterpillars prefer to build leaf shelters here.  相似文献   

3.
To examine whether enemy-free space is an important factor determining the host utilization pattern of a leaf beetle Plagiodera versicolora, we investigated the relationship between adult preference and offspring performance on three co-occurring willow species, Salix sachalinensis, S. miyabeana and S. integra. Salix sachalinensis was by far the most preferred host plant of feeding adults, while both S. miyabeana and S. integra were rarely fed upon. The fact that most oviposition was observed on S. sachalinensis also suggested that P. versicolora preferred S. sachalinensis to other willows for oviposition. This adult preference did not correspond well to patterns of larval performance on the three willow species in the absence of enemies. Higher survivorship, shorter developmental time and larger adult size were achieved on S. sachalinensis and S. miyabeana than on S. integra. Performance as indicated by female adult size and development time on S. miyabeana were higher than on S. sachalinensis. In the presence of enemies, however, the survivorship of first-instar larvae on S. miyabeana was much lower than on other willows. Adults of P. versicolora apparently avoided S. miyabeana as an oviposition and feeding host and preferred S. sachalinensis as an enemy-free space. This was not because larvae had poorer performance on S. miyabeana, but because predation pressure on eggs and early instar larvae was more severe on S. miyabeana.  相似文献   

4.
Tamura  Sanae  Kudo  Gaku 《Plant Ecology》2000,147(2):185-192
Pollination systems of Salix miyabeana and Salix sachalinensis were studied at a riverside in northern Japan in order to measure the balance of wind pollination and insect pollination. In 1996, 19 clones of each species were selected, and seed-set success by a net-bagging (to exclude insect visitation) and an artificial pollination (to remove pollen limitation) were compared to by natural pollination. For S. miyabeana, the same experiment was repeated in two populations in 1997. Proportion of seed set through wind pollination dominated in both species in this study. Pollen limitation was common under natural conditions, and S. sachalinensis relied more on insect pollination for seed production than S. miyabeana. Meteorological factors such as precipitation and hours of sunshine during the flowering season influenced the potential reproductive activity of the willow between years. In the wet and cloudy spring of 1996, clones which obtained high seed set depended more on insect pollination for both species, whereas in the dry and sunny spring of 1997, such clones depended more on wind pollination for S. miyabeana. Because the efficiency of wind pollination seemed to be more sensitive to fluctuating weather conditions than insect pollination, insect pollination was considered to play an assurance role for seed production in these willows.  相似文献   

5.
Ants are often considered antagonists when they visit flowers because they typically steal nectar without providing pollination services. Previous research on ant–flower interactions on two species of South African Proteaceae in the Cape Floral Kingdom revealed that the invasive Argentine ant (Linepithema humile), but not native ants, displace other floral arthropod visitors. To determine how common Argentine ant use of inflorescences is, how Argentine and native ant visits differ in the numbers they recruit to inflorescences, and what factors may affect Argentine and native ant foraging in inflorescences, I surveyed 723 inflorescences in 10 species in the genera Protea and Leucospermum across 16 sites and compared ant presence and abundance in inflorescences with abundance at nearby cat food and jam baits. Argentine ants were the most commonly encountered ant of the 22 observed. Argentine ants, as well as six species of native ants were present in all inflorescences for which they were present at nearby baits. Mean Argentine ant abundance per inflorescence was 4.4 ± 0.84 (SE) ants and similar to that of Anoplolepis custodiens and Crematogaster peringueyi, but higher than observed for the other most commonly encountered native ants, Camponotus niveosetosus and Lepisiota capensis. Both Argentine ants and A. custodiens were more likely to be found foraging in spring and under humid conditions, and in inflorescences closer to the ground, with lower sucrose concentrations, and with a greater proportion of open flowers. Argentine ants were more likely to be found in Protea inflorescences, whereas A. custodiens and L. capensis more often visited Leucospermum inflorescences. Considering its displacement of floral arthropods and widespread use of Proteaceae inflorescences, the Argentine ant could be posing a serious threat to plant and pollinator conservation in this biodiversity hotspot.  相似文献   

6.
Large floral displays favour pollinator attraction and the import and export of pollen. However, large floral displays also have negative effects, such as increased geitonogamy, pollen discounting and nectar/pollen robber attraction. The size of the floral display can be measured at different scales (e.g. the flower, inflorescence or entire plant) and variations in one of these scales may affect the behaviour of flower visitors in different ways. Moreover, the fragmentation of natural forests may affect flower visitation rates and flower visitor behaviour. In the present study, video recordings of the inflorescences of a tree species (Tabebuia aurea) from the tropical savannah of central Brazil were used to examine the effect of floral display size at the inflorescence and tree scales on the visitation rate of pollinators and nectar robbers to the inflorescence, the number of flowers approached per visit, the number of visits per flower of potential pollinators and nectar robbers, and the interaction of these variables with the degree of landscape disturbance. Nectar production was quantified with respect to flower age. Although large bees are responsible for most of the pollination, a great diversity of flower insects visit the inflorescences of T. aurea. Other bee and hummingbird species are highly active nectar robbers. Increases in inflorescence size increase the visitation rate of pollinators to inflorescences, whereas increases in the number of inflorescences on the tree decrease visitation rates to inflorescences and flowers. This effect has been strongly correlated with urban environments in which trees with the largest floral displays are observed. Pollinating bees (and nectar robbers) visit few flowers per inflorescence and concentrate visits to a fraction of available flowers, generating an overdispersed distribution of the number of visits per inflorescence and per flower. This behaviour reflects preferential visits to young flowers (including flower buds) with a greater nectar supply.  相似文献   

7.
Abstract The influence of the architecture of vegetative branches on the distribution of plant‐dwelling spiders has been intensively studied, and the effects on the aggregation of individuals in several spider species on plants include variation in prey abundance, availability of predator‐free refuges and smoother microclimate conditions. The emergence of inflorescences at the reproductive time of the plants changes branch architecture, and could provide higher prey abundance for the spiders. The distribution of spiders between inflorescences and vegetative branches was compared on four widespread plant species in a Brazilian savannah‐like system. Inflorescences attracted more spiders than vegetative branches for all plant species sampled. The influence of branch type (inflorescence and vegetative) on spider distribution was also evaluated by monitoring branches of Baccharis dracunculifolia DC. in vegetative and flowering periods for 1 year, and through a field experiment carried out during the same period where artificial inflorescences were available for spider colonization. Artificial inflorescences attached to B. dracunculifolia branches attracted more spiders than non‐manipulated vegetative branches for most of the year. However, this pattern differed among spider guilds. Foliage‐runners and stalkers occurred preferentially on artificial inflorescences relative to control branches. The frequencies of ambushers and web‐builders were not significantly different between treatment and control branches. However, most ambush spiders (65%) occurred only during the flowering period of Bdracunculifolia, suggesting that this guild was influenced only by natural inflorescences. The experimental treatment also influenced the size distribution of spiders: larger spiders were more abundant on artificial inflorescences than on vegetative branches. The hypothesis that habitat architecture can influence the spider assemblage was supported. In addition, our observational and experimental data strongly suggest that inflorescences can be a higher quality microhabitat than non‐reproductive branches for most plant‐dwelling spiders.  相似文献   

8.
We conducted a 3-year study of a natural population of the willow leaf beetle Plagiodera versicolora (Coleoptera: Chrysomelidae) on a river bank of the Inukami River, Shiga, central Japan, where four willow species (Salix chaenomeloides, S. eriocarpa, S. integra, and S. serissaefolia) occur sympatrically. Our survey showed that: (1) at the study site, the abundance of P. versicolora greatly varied among years and among willow species; (2) adult abundance changed seasonally with species-specific patterns on different willow species; and (3) the dispersal-settlement of adults had the most pronounced effects on the seasonal population growth rate of P. versicolora. Factors affecting these results were discussed.  相似文献   

9.
Sexual dimorphism may be especially pronounced in wind-pollinated species because they lack the constraints of biotically pollinated species that must present their pollen and stigmas in similar positions to ensure pollen transfer. Lacking these constraints, the sexes of wind-pollinated species may diverge in response to the different demands of pollen dispersal and receipt, depending on the magnitude of genetic correlations preventing divergence between sexes. Patterns of sexual dimorphism and genetic variation were investigated for inflorescence traits in Schiedea adamantis (Caryophyllaceae), a species well adapted to wind-pollination, and compared to S. salicaria, a species with fewer adaptations to wind pollination. For S. adamantis, dimorphism was pronounced for inflorescence condensation and its components, including lateral flower number and pedicel length. Within sexes, genetic correlations between traits may constrain the relative shape of the inflorescence. Correlations detected across sexes may retard the evolution of sexual dimorphism in inflorescence structure, including features favoring enhanced dispersal and receipt of pollen. Despite genetic correlations across sexes, common principal components analysis showed that genetic variance-covariance matrices (G matrices) differed significantly between the sexes, in part because of greater genetic variation for flower number in hermaphrodites than in females. G matrices also differed between closely related S. adamantis and S. salicaria, indicating the potential for divergent evolution of inflorescence structure despite general similarities in morphology and pollination biology.  相似文献   

10.
Framed inflorescences are unique arrangements in which a cluster of small fertile flowers is surrounded by several larger, decorative sterile flowers. Viburnum (Adoxaceae) species vary in their inflorescence arrangements; some species exhibit framed inflorescences, whereas others do not. We hypothesize that the decorative flowers increase the pollinator-attracting functions of the inflorescences; as proved by previous studies, they additionally function as landing-sites for pollinators. To test our hypotheses, field manipulation experiments were carried out for nine Viburnum species, three with inherently framed inflorescences and six without them: sterile flowers were removed and mounted on species with and without framed inflorescences, respectively. Results show that inflorescences with decorative flowers had higher visit rates than inflorescences without them, and that insect flower visitors did not show landing preference for either flower type. These results suggest that decorative flowers appeared only in a subset of Viburnum species to increase their pollination chances by, mainly, enhancing the attractiveness of the inflorescence. It is likely that species without framed inflorescences use other attraction-enhancing mechanisms, such as a high flowering synchrony within a single cluster of fertile flowers, a trait found in most studied species without decorative flowers.  相似文献   

11.
The critically endangered Synaphea stenoloba (Proteaceae) has numerous scentless flowers clustered in dense inflorescences and deploys a ballistic pollen ejection mechanism to release pollen. We examined the hypothesis that active pollen ejection and flowering patterns within an inflorescence influence the reproductive success (i.e. fruit formation) of individual flowers within or among inflorescences of S. stenoloba in a pollinator‐excluded environment. Our results showed that: (1) no pollen grains were observed deposited on the stigma of their own flower after the pollen ejection system was manually activated, indicating self‐pollination within an individual flower is improbable in S. stenoloba; (2) fruit set in the indoor open pollination treatment and the inflorescence‐closed pollination treatment indicated that S. stenoloba is self‐compatible and pollen ejection can potentially result in inter‐floral pollination success; (3) fruit set in the inflorescence‐closed pollination treatment was significantly lower than that of indoor open pollination, indicating within‐ and between‐flower pollination events in an inflorescence are most likely limited, with pollination between inflorescences providing the highest reproductive opportunity; and (4) analysis of the spatial distribution of cumulative fruit set on inflorescences showed that pollen could reach any flower within an inflorescence and there was no functional limitation on seed set among flowers located at various positions within the inflorescence. These data suggest that the pollen ejection mechanism in S. stenoloba can enhance inter‐plant pollination in pollinator‐excluded environments and may suggest adaptation to pollinator scarcity attributable to habitat disturbance or competition for pollinators in a diverse flora. © 2012 The Linnean Society of London, Botanical Journal of the Linnean Society, 2012, 170 , 59–68.  相似文献   

12.
Females of myrmecophilous butterflies tend to oviposit in plants visited by ant species that engage in stable associations with its larvae. In Banisteriopsis malifolia, caterpillars are attended by the same ants that feed on extrafloral nectaries. A conflict may arise when both the plant and caterpillars compete for ant attention, and ants are assumed to forage on the highest quality resource. By attending caterpillars, ants can be indirectly detrimental to plant fitness because florivorous larvae feed intensively until pupation. In this study, we specifically investigated (i) whether the occurrence of facultative myrmecophilous Synargis calyce (Riodinidae) caterpillars in B. malifolia was based on ant species (Camponotus blandus or Ectatomma tuberculatum) and abundance; (ii) the monopolization of ants by the butterfly larvae and (iii) the florivory rates incurred by the caterpillars on inflorescences. The abundance of S. calyce was six‐fold greater in plants with C. blandus, compared to E. tuberculatum treatments. Caterpillars monopolized up to 50% of C. blandus on the plants, indicating that the resources offered by S. calyce were more attractive to ants than extrafloral nectaries. Florivory by riodinids incurred losses of almost 60% of flower buds. Myrmecophilous riodinids exploited an ant–plant mutualism by attracting aggressive ants that become larvae bodyguards. Thus, this ecological interaction is potentially detrimental to B. malifolia, since the ants, which can provide protection against herbivores, shift to provide defence for one of these herbivores.  相似文献   

13.
Due to its fundamental role in shaping host selection behavior, we have analyzed the chemosensory repertoire of Chrysomela lapponica. This specialized leaf beetle evolved distinct populations which shifted from the ancestral host plant, willow (Salix sp., Salicaceae), to birch (Betula rotundifolia, Betulaceae). We identified 114 chemosensory candidate genes in adult C. lapponica: 41 olfactory receptors (ORs), eight gustatory receptors, 17 ionotropic receptors, four sensory neuron membrane proteins, 32 odorant binding proteins (OBPs), and 12 chemosensory proteins (CSP) by RNA‐seq. Differential expression analyses in the antennae revealed significant upregulation of one minus‐C OBP (ClapOBP27) and one CSP (ClapCSP12) in the willow feeders. In contrast, one OR (ClapOR17), four minus‐C OBPs (ClapOBP02, 07, 13, 20), and one plus‐C OBP (ClapOBP32) were significantly upregulated in birch feeders. The differential expression pattern in the legs was more complex. To narrow down putative ligands acting as cues for host discrimination, the relative abundance and diversity of volatiles of the two host plant species were analyzed. In addition to salicylaldehyde (willow‐specific), both plant species differed mainly in their emission rate of terpenoids such as (E,E)‐α‐farnesene (high in willow) or 4,8‐dimethylnona‐1,3,7‐triene (high in birch). Qualitatively, the volatiles were similar between willow and birch leaves constituting an “olfactory bridge” for the beetles. Subsequent structural modeling of the three most differentially expressed OBPs and docking studies using 22 host volatiles indicated that ligands bind with varying affinity. We suggest that the evolution of particularly minus‐C OBPs and ORs in C. lapponica facilitated its host plant shift via chemosensation of the phytochemicals from birch as novel host plant.  相似文献   

14.
Herbivorous beetles were sampled in central Slovakia and in the Tatra Mountains of northern Slovakia from seven different Salix species which are partly characterized by smooth leaves containing phenolic glycosides and partly by hairy leaves containing tannins. The collection included about 8000 individuals representing 129 species. Of the 129 species, 77 species are able to use the willows as hosts; the remaining 52 ‘tourist’ species comprise less than 3% of the collected individuals. The data on species richness and abundance did not generally support the ‘feeding specialization’ hypothesis. The proportion of specialized (= monophagous and oligophagous) beetles feeding on willows of both morphological and biochemical groups was in the same range. Host plants of the two groups could support high diversity and high evenness values, even when leaf characteristics and plant chemicals largely influenced species assemblage. The region in which the willow trees grow had a considerable impact on host plant use. Generalist beetle species predominated in central Slovakia. By contrast, in the Tatra Mountains, specialist feeders which are able to use phenolic glycosides to their advantage were predominant. The number of species and the total density of individuals collected from willows containing phenolic glycosides (S. fragilis and S. purpurea) did not usually vary between the two regions. In contrast, fewer species and individuals were found in the Tatra Mountains when they settled on willow species containing tannins (S. caprea and S. cinerea). Also, the phylogenetic status of host plants affected species assemblages. In central Slovakia willow species of the subgenus Vetrix (S. purpurea, S. caprea and S. cinerea) generally showed a higher beetle diversity (Hs) than species of the subgenus Salix (S. fragilis, S. alba and S. triandra), although both subgenera comprise species of both morphological and biochemical groups. Furthermore, when the analysis was restricted to beetles of central Slovakia, which should be most adapted to their host plants (i.e. catkin feeders and phyllophages in the adult and larval stage), the phylogenetic status was found to be more important than any single leaf character measured.  相似文献   

15.
Interactions between ecological communities of herbivores and microbes are commonly mediated by a shared plant. A tripartite interaction between a pathogenic fungus-host plant-herbivorous insect is an example of such mutual influences. In such a system a fungal pathogen commonly has a negative influence on the morphology and biochemistry of the host plant, with consequences for insect herbivore performance. Here we studied whether the biotrophic fbngus Podosphaera ferruginea, attacking the great burnet Sanguisorba officinalis, affects caterpillar performance of the endangered scarce large blue butterfly Phengaris teleius. Our results showed that the pathogenic ftmgus affected the number and size of inflorescences produced by food-plants and, more importantly, had in direct, plant-mediated effects on the abun dance, body mass and immune response of caterpillars. Specifically, we found the relationship between caterpillar abundance and variability in inflorescence size on a plant to be positive among healthy food-plants, and negative among infected food-plants. Caterpillars that fed on healthy food-plants were smaller than those that fed on infected food-plants in one studied season, while there was no such difference in the other season. We observed the relationship between caterpillar immune response and the proportion of infected great burnets within a habitat patch to be positive when caterpillars fed on healthy food-plants, and negative when caterpillars fed on infected food-plants. Our results suggest that this biotrophic fungal infection of the great burnet may impose a significant indirect influence on P. teleius caterpillar performance with potential consequences for the population dynamics and structure of this endangered butterfly.  相似文献   

16.
This paper describes three new species of Salacioideae Cheiloclinium and Salacia (Celastraceae) from South America: C. brevipetiolatum Lombardi is characterized by its very short, only 5 mm long petioles; S. krigsneri Lombardi is distinguished by its dichasium (inflorescence) with shortened lateral branches, a unique feature among neotropical species; and S. vernicosa Lombardi can be discerned from other species by its fascicled inflorescences and large leaves, dried inflorescence covered with resinous substance, tubuliform flowers, flat, ring‐shaped disc, and berries with ribs at base and lobes at apex.  相似文献   

17.
Willow shows great promise as a biomass crop and is now used worldwide. However, willow is a nutrient and water demanding plant that often requires the use of nitrogen (N) fertilizer to maximize growth on poor soils. The intercropping of Salix miyabeana with the atmospheric N2-fixing Caragana arborescens on poor soils of the Canadian Prairies could provide a portion of the N demand of the willow. The main objectives were to: (1) determine the yield potential, N nutrition and water use efficiency (WUE) of willow and Caragana grown in pure and mixed plantations across a range of soil productivity and (2) assess the extent of atmospheric N2-fixation by the Caragana within the first rotation in central Saskatchewan. We found large differences in willow yields, foliar N and WUE across the sites. The willow yields (1.24 to 15.6 t dry matter ha−1 over 4 years) were low compared to northeastern North American values and reflect the short and dry summers of the region. The yields were positively correlated to foliar N (ranging between 14.3 and 32.4 mg g−1), whereas higher WUE (expressed as δ13C) were not positively correlated to water availability but to higher yields. Caragana N2-fixation (measured using 15N isotope dilution) was not active at the most productive site but up to 60% of the foliar N was of atmospheric origin at the two other sites. Willow growth increased with Caragana proportions at the least productive site, which is typical of the benefits of N2-fixing plants on the growth of other plants on poor soils. At the most productive site, Caragana decreased the growth of willow early on due to competition for resources, but willow eventually shaded Caragana to a point of significant canopy decline and dieback. It is therefore more appropriate to intercrop the two species on less productive soils as Caragana is more likely to add N to the system via N2-fixation and is less likely to be shaded out by willow.  相似文献   

18.
Short-shoots of Thalassia testudinum Banks ex König were collected from 5 sites in Florida. A total of 284, 625-cm2 quadrat samples, containing 6182 shhort-shoots was analyzed for leaf width, inflorescence number and sex (the latter if determinable). Although leaf widths and reproductive densities differed at the 5 sites, leaf width was consistently greater when reproductive structures were present, and when the number of inflorescences increased. The mean number of inflorescences per short-shoot was significantly higher for shoots bearing male inflorescences compared to female shoots. Female inflorescences were normally solitary; male short-shoots usually had 2 or 3 inflorescences. Sex ratios were male-biased for 4 of the 5 sites. Comparisons of leaf widths between the sexes indicated that leaf width constituted a secondary sex character for this species. Female short-shoots tend to have narrower leaves than male short-shoots. This relationship should also be considered when evaluating the significance of morphogeographic and stress-related variation in leaf width for this species.  相似文献   

19.
20.
We measured the effects of oviposition by the spittlebug Aphrophora pectoralis on shoot growth and bud production in two willow species, Salix miyabeana and Salix sachalinensis. In autumn, adult females of A.pectoralis insert their ovipositor into the apical region of 1-year-old shoots, resulting in the death of most shoot tips within 1week. Consequently, an increase in the number of dead buds and a decrease in the number of vegetative buds on 1-year-old shoots was recorded. In the following spring, the growth of current-year shoots was greatly increased on 1-year-old shoots damaged by spittlebug oviposition. Furthermore, spittlebug oviposition increased the production rate of vegetative buds in both S.miyabeana and S.sachalinensis. However, no impact on the production rate of reproductive buds was detected in either willow. We conclude that the compensatory growth of current-year shoots and an increase in vegetative buds in the two willow species was caused by oviposition of A.pectoralis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号