首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 239 毫秒
1.
Hemidesmosomes are stable adhesion complexes in basal epithelial cells that provide a link between the intermediate filament network and the extracellular matrix. We have investigated the recruitment of plectin into hemidesmosomes by the alpha6beta4 integrin and have shown that the cytoplasmic domain of the beta4 subunit associates with an NH(2)-terminal fragment of plectin that contains the actin-binding domain (ABD). When expressed in immortalized plectin-deficient keratinocytes from human patients with epidermol- ysis bullosa (EB) simplex with muscular dystrophy (MD-EBS), this fragment is colocalized with alpha6beta4 in basal hemidesmosome-like clusters or associated with F-actin in stress fibers or focal contacts. We used a yeast two-hybrid binding assay in combination with an in vitro dot blot overlay assay to demonstrate that beta4 interacts directly with plectin, and identified a major plectin-binding site on the second fibronectin type III repeat of the beta4 cytoplasmic domain. Mapping of the beta4 and actin-binding sites on plectin showed that the binding sites overlap and are both located in the plectin ABD. Using an in vitro competition assay, we could show that beta4 can compete out the plectin ABD fragment from its association with F-actin. The ability of beta4 to prevent binding of F-actin to plectin explains why F-actin has never been found in association with hemidesmosomes, and provides a molecular mechanism for a switch in plectin localization from actin filaments to basal intermediate filament-anchoring hemidesmosomes when beta4 is expressed. Finally, by mapping of the COOH-terminally located binding site for several different intermediate filament proteins on plectin using yeast two-hybrid assays and cell transfection experiments with MD-EBS keratinocytes, we confirm that plectin interacts with different cytoskeletal networks.  相似文献   

2.
We have previously shown that plectin is recruited into hemidesmosomes through association of its actin-binding domain (ABD) with the first pair of fibronectin type III (FNIII) repeats and a small part of the connecting segment (residues 1328-1355) of the integrin beta4 subunit. Here, we show that two proline residues (P1330 and P1333) in this region of the connecting segment are critical for supporting beta4-mediated recruitment of plectin. Additional binding sites for the plakin domain of plectin on beta4 were identified in biochemical and yeast two-hybrid assays. These sites are located at the end of the connecting segment (residues 1383-1436) and in the region containing the fourth FNIII repeat and the C-tail (residues 1570-1752). However, in cells, these additional binding sites cannot induce the assembly of hemidesmosomes without the interaction of the plectin-ABD with beta4. Because the additional plectin binding sites overlap with sequences that mediate an intramolecular association of the beta4 cytoplasmic domain, we propose that they are not accessible for binding and need to become exposed as the result of the binding of the plectin-ABD to beta4. Furthermore, these additional binding sites might be necessary to position the beta4 cytoplasmic domain for an optimal interaction with other hemidesmosomal components, thereby increasing the efficiency of hemidesmosome assembly.  相似文献   

3.
The binding of plectin to the beta4 subunit of the alpha6beta4 integrin is a critical step in the formation of hemidesmosomes. An important interaction between these two proteins occurs between the actin-binding domain (ABD) of plectin and the first pair of fibronectin type III (FNIII) domains and a small part of the connecting segment of beta4. Previously, a few amino acids, critical for this interaction, were identified in both plectin and beta4 and mapped on the crystal structures of the ABD of plectin and the first pair of FNIII domains of beta4. In the present study, we used this biochemical information and protein-protein docking calculations to construct a model of the binary complex between these two protein domains. The top scoring computational model predicts that the calponin-homology 1 (CH1) domain of the ABD associates with the first and the second FNIII domains of beta4. Our mutational analysis of the residues at the proposed interface of both the FNIII and the CH1 domains is in agreement with the suggested interaction model. Computational simulations to predict protein motions suggest that the exact model of FNIII and plectin CH1 interaction might well differ in detail from the suggested model due to the conformational plasticity of the FNIII domains, which might lead to a closely related but different mode of interaction with the plectin-ABD. Furthermore, we show that Ser-1325 in the connecting segment of beta4 appears to be essential for the recruitment of plectin into hemidesmosomes in vivo. This is consistent with the proposed model and previously published mutational data. In conclusion, our data support a model in which the CH1 domain of the plectin-ABD associates with the groove between the two FNIII domains of beta4.  相似文献   

4.
Epidermal growth factor receptor can interact directly with F-actin through an actin-binding domain. In the present study, a mutant EGFR, lacking a previously identified actin-binding domain (ABD 1), was still able to bind elements of the cytoskeleton. A second EGFR actin-binding domain (ABD 2) was identified in the region of the receptor that includes Tyr-1148 by a yeast two-hybrid assay. GST fusion proteins comprising ABD 1 or ABD 2 bound actin in vitro and competed for actin-binding with the full-length EGFR. EGFR binding to actin was also studied in intact cells using fluorescence resonance energy transfer (FRET). The localization of the EGFR/actin-binding complex changed after EGF stimulation. Fusion proteins containing mutations in ABD1 or ABD2 did not display a FRET signal. The results lead to the conclusion that the interaction between ABD1 and ABD2 and actin during EGF-induced signal transduction, and thus between EGFR and actin, are important in cell activation.  相似文献   

5.
Plectin, a large and widely expressed cytolinker protein, is composed of several subdomains that harbor binding sites for a variety of different interaction partners. A canonical actin-binding domain (ABD) comprising two calponin homology domains (CH1 and CH2) is located in proximity to its amino terminus. However, the ABD of plectin is unique among actin-binding proteins as it is expressed in the form of distinct, plectin isoform-specific versions. We have determined the three-dimensional structure of two distinct crystalline forms of one of its ABD versions (pleABD/2alpha) from mouse, to a resolution of 1.95 and 2.0 A. Comparison of pleABD/2alpha with the ABDs of fimbrin and utrophin revealed structural similarity between plectin and fimbrin, although the proteins share only low sequence identity. In fact, pleABD/2alpha has been found to have the same compact fold as the human plectin ABD and the fimbrin ABD, differing from the open conformation described for the ABDs of utrophin and dystrophin. Plectin harbors a specific binding site for intermediate filaments of various types within its carboxy-terminal R5 repeat domain. Our experiments revealed an additional vimentin-binding site of plectin, residing within the CH1 subdomain of its ABD. We show that vimentin binds to this site via the amino-terminal part of its rod domain. This additional amino-terminal intermediate filament protein binding site of plectin may have a function in intermediate filament dynamics and assembly, rather than in linking and stabilizing intermediate filament networks.  相似文献   

6.
To define the actin-binding site within the NH2-terminal domain (residues 1-245) of chick smooth muscle alpha-actinin, we expressed a series of alpha-actinin deletion mutants in monkey Cos cells. Mutant alpha-actinins in which residues 2-19, 217-242, and 196-242 were deleted still retained the ability to target to actin filaments and filament ends, suggesting that the actin-binding site is located within residues 20-195. When a truncated alpha-actinin (residues 1-290) was expressed in Cos cells, the protein localized exclusively to filament ends. This activity was retained by a deletion mutant lacking residues 196-242, confirming that these are not essential for actin binding. The actin-binding site in alpha-actinin was further defined by expressing both wild-type and mutant actin-binding domains as fusion proteins in E. coli. Analysis of the ability of such proteins to bind to F-actin in vitro showed that the binding site was located between residues 108 and 189. Using both in vivo and in vitro assays, we have also shown that the sequence KTFT, which is conserved in several members of the alpha-actinin family of actin-binding proteins (residues 36-39 in the chick smooth muscle protein) is not essential for actin binding. Finally, we have established that the NH2-terminal domain of dystrophin is functionally as well as structurally homologous to that in alpha-actinin. Thus, a chimeric protein containing the NH2-terminal region of dystrophin (residues 1-233) fused to alpha-actinin residues 244-888 localized to actin-containing structures when expressed in Cos cells. Furthermore, an E. coli-expressed fusion protein containing dystrophin residues 1-233 was able to bind to F-actin in vitro.  相似文献   

7.
Filamin A (FLNa) cross-links actin filaments (F-actin) into three-dimensional gels in cells, attaches F-actin to membrane proteins, and is a scaffold that collects numerous and diverse proteins. We report that Ca(2+)-calmodulin binds the actin-binding domain (ABD) of FLNa and dissociates FLNa from F-actin, thereby dissolving FLNa.F-actin gels. The FLNa ABD has two calponin homology domains (CH1 and CH2) separated by a linker. Recombinant CH1 but neither FLNa nor its ABD binds Ca(2+)-calmodulin in the absence of F-actin. Extending recombinant CH1 to include the negatively charged region linker domain makes it, like full-length FLNa, unable to bind Ca(2+)-calmodulin. Ca(2+)-calmodulin does, however, dissociate the FLNa ABD from F-actin provided that the CH2 domain is present. These findings identify the first evidence for direct regulation of FLNa, implicating a mechanism whereby Ca(2+)-calmodulin selectively targets the FLNa.F-actin complex.  相似文献   

8.
Despite their importance in cell biology, the mechanisms that maintain the nucleus in its proper position in the cell are not well understood. This is primarily the result of an incomplete knowledge of the proteins in the outer nuclear membrane (ONM) that are able to associate with the different cytoskeletal systems. Two related ONM proteins, nuclear envelope spectrin repeat (nesprin)-1 and -2, are known to make direct connections with the actin cytoskeleton through their NH2-terminal actin-binding domain (ABD). We have now isolated a third member of the nesprin family that lacks an ABD and instead binds to the plakin family member plectin, which can associate with the intermediate filament (IF) system. Overexpression of nesprin-3 results in a dramatic recruitment of plectin to the nuclear perimeter, which is where these two molecules are colocalized with both keratin-6 and -14. Importantly, plectin binds to the integrin alpha6beta4 at the cell surface and to nesprin-3 at the ONM in keratinocytes, suggesting that there is a continuous connection between the nucleus and the extracellular matrix through the IF cytoskeleton.  相似文献   

9.
Cofilin and destrin are two related low molecular weight mammalian actin-binding proteins. Cofilin is an F-actin side-binding and pH-dependent actin-depolymerizing protein, and destrin is a pH-independent actin-depolymerizing protein. We have introduced a few point mutations within an actin-binding sequence of cofilin. Biochemical analyses of these mutant proteins have clearly shown that Lys112 and Lys114 of cofilin are crucially but differently involved in its interaction with actin and phosphatidylinositol 4,5-bisphosphate. This is the first example among actin-binding proteins whose point mutations inactivate their interaction with actin in vitro. We have also made and characterized a series of chimeric proteins between cofilin and destrin to identify the regions responsible for the pH dependence and the F-actin side binding activity of cofilin. Our results suggest that a central region consisting of 42 amino acid residues and a carboxyl-terminal quarter of cofilin are both involved in regulation of the pH-dependent actin depolymerizing activity and the activity to bind along F-actin.  相似文献   

10.
The machinery of eukaryotic protein synthesis is found in association with the actin cytoskeleton. A major component of this translational apparatus, which is involved in the shuttling of aa-tRNA, is the actin- binding protein elongation factor 1alpha (EF-1alpha). To investigate the consequences for translation of the interaction of EF-1alpha with F- actin, we have studied the effect of F-actin on the ability of EF- 1alpha to bind to aa-tRNA. We demonstrate that binding of EF-1alpha:GTP to aa-tRNA is not pH sensitive with a constant binding affinity of approximately 0.2 microM over the physiological range of pH. However, the sharp pH dependence of binding of EF-1alpha to F-actin is sufficient to shift the binding of EF-1alpha from F-actin to aa-tRNA as pH increases. The ability of EF-1alpha to bind either F-actin or aa- tRNA in competition binding experiments is also consistent with the observation that EF-1alpha's binding to F-actin and aa-tRNA is mutually exclusive. Two pH-sensitive actin-binding sequences in EF-1alpha are identified and are predicted to overlap with the aa-tRNA-binding sites. Our results suggest that pH-regulated recruitment and release of EF- 1alpha from actin filaments in vivo will supply a high local concentration of EF-1alpha to facilitate polypeptide elongation by the F-actin-associated translational apparatus.  相似文献   

11.
Plectin is a widely expressed cytoskeletal linker. Here we report the crystal structure of the actin binding domain of plectin and show that this region is sufficient for interaction with F-actin or the cytoplasmic region of integrin alpha6beta4. The structure is formed by two calponin homology domains arranged in a closed conformation. We show that binding to F-actin induces a conformational change in plectin that is inhibited by an engineered interdomain disulfide bridge. A two-step induced fit mechanism involving binding and subsequent domain rearrangement is proposed. In contrast, interaction with integrin alpha6beta4 occurs in a closed conformation. Competitive binding of plectin to F-actin and integrin alpha6beta4 may rely on the observed alternative binding mechanisms and involve both allosteric and steric factors.  相似文献   

12.
Many actin-binding proteins have been observed to have a modular architecture. One of the most abundant modules is the calponin-homology (CH) domain, found as tandem repeats in proteins that cross-link actin filaments (such as fimbrin, spectrin and alpha-actinin) or link the actin cytoskeleton to intermediate filaments (such as plectin). In proteins such as the eponymous calponin, IQGAP1, and Scp1, a single CH-domain exists, but there has been some controversy over whether this domain binds to actin filaments. A previous three-dimensional reconstruction of the calponin-F-actin complex has led to the conclusion that the visualized portion of calponin bound to actin belongs to its amino-terminal homology (CH) domain. We show, using a calponin fragment lacking the CH-domain, that this domain is not bound to F-actin, and cannot be positioning calponin on F-actin as hypothesized. Further, using classification methods, we show a multiplicity in cooperative modes of binding of calponin to F-actin, similar to what has been observed for other actin-binding proteins such as tropomyosin and cofilin. Our results suggest that the form and function of the structurally conserved CH-domain found in many other actin-binding proteins have diverged. This has broad implications for inferring function from the presence of structurally conserved domains.  相似文献   

13.
Enaptin belongs to a family of recently identified giant proteins that associate with the F-actin cytoskeleton as well as the nuclear membrane. It is composed of an N-terminal alpha-actinin type actin-binding domain (ABD) followed by a long coiled coil rod and a transmembrane domain at the C-terminus. The ABD binds to F-actin in vivo and in vitro and leads to bundle formation. The human Enaptin gene spreads over 515 kb and gives rise to several splicing isoforms (Nesprin-1, Myne-1, Syne-1, CPG2). The longest assembled cDNA encompasses 27,669 bp and predicts a 1014 kDa protein. Antibodies against the ABD of Enaptin localise the protein at F-actin-rich structures throughout the cell and in focal contacts as well as at the nuclear envelope. In COS7 cells, the protein is also present within the nuclear compartment. With the discovery of the actin-binding properties of Enaptin and the highly homologous Nuance, we define a family of proteins that integrate the cytoskeleton with the nucleoskeleton.  相似文献   

14.
Calponins are a small family of proteins that alter the interaction between actin and myosin II and mediate signal transduction. These proteins bind F-actin in a complex manner that depends on a variety of parameters such as stoichiometry and ionic strength. Calponin binds G-actin and F-actin, bundling the latter primarily through two distinct and adjacent binding sites (ABS1 and ABS2). Calponin binds other proteins that bind F-actin and considerable disagreements exist as to how calponin is located on the filament, especially in the presence of other proteins. A study (Galkin, V.E., Orlova, A., Fattoum, A., Walsh, M.P. and Egelman, E.H. (2006) J. Mol. Biol. 359, 478–485.), using EM single-particle reconstruction has shown that there may be four modes of interaction, but how these occur is not yet known. We report that two distinct regions of calponin are capable of binding some of the same sites on actin (such as 18–28 and 360–372 in subdomain 1). This accounts for the finding that calponin binds the filament with different apparent geometries. We suggest that the four modes of filament binding account for differences in stoichiometry and that these, in turn, arise from differential binding of the two calponin regions to actin. It is likely that the modes of binding are reciprocally influenced by other actin-binding proteins since members of the α-actinin group also adopt different actin-binding positions and bind actin principally through a domain that is similar to calponin's ABS1.  相似文献   

15.
Co-ordination of cytoskeletal networks and their dynamics is an essential feature of cell migration and cancer cell invasion. Plectin is a large cytolinker protein that influences tissue integrity, organisation of actin and intermediate filaments, and cell migration. Alternatively spliced plectin isoforms are targeted to different subcellular locations. Here, we show that plectin ablation by siRNA impaired migration, invasion and adhesion of SW480 colon carcinoma cells. A previously less well characterised plectin isoform, plectin-1k, co-localised with epithelial integrins, N-WASP, cortactin, and dynamin in podosome-like adhesions in invasive SW480 colon carcinoma cells. Transfection of alternative plectin N-terminal constructs demonstrated that the first exons of isoforms 1k, 1 and 1d can target the actin-binding domain of plectin to podosome-like adhesions. Finally, Plectin-1k N-terminus rescued adhesion site formation in plectin knock-down cells. Thus, plectin participates in actin assembly and invasiveness in carcinoma cells in an isoform-specific manner.  相似文献   

16.
An X  Debnath G  Guo X  Liu S  Lux SE  Baines A  Gratzer W  Mohandas N 《Biochemistry》2005,44(31):10681-10688
The ternary complex of spectrin, F-actin, and protein 4.1R defines the erythrocyte membrane skeletal network, which governs the stability and elasticity of the membrane. It has been shown that both 4.1R and actin bind to the N-terminal region (residues 1-301) of the spectrin beta chain, which contains two calponin homology domains, designated CH1 and CH2. Here, we show that 4.1R also binds to the separate CH1 and CH2 domains. Unexpectedly, truncation of the CH2 domain by its 20 amino acids, corresponding to its N-terminal alpha helix, was found to greatly enhance its binding to 4.1R. The intact N terminus and the CH1 but not the CH2 domain bind to F-actin, but again, deletion of the first 20 amino acids of the latter exposes an actin-binding activity. As expected, the polypeptide 1-301 inhibits the binding of spectrin dimer to actin and formation of the spectrin-actin-4.1R ternary complex in vitro. Furthermore, the binding of 4.1R to 1-301 is greatly enhanced by PIP(2), implying the existence of a regulatory switch in the cell.  相似文献   

17.
The cadherin extracellular region produces intercellular adhesion clusters through trans- and cis-intercadherin bonds, and the intracellular region connects these clusters to the cytoskeleton. To elucidate the interdependence of these binding events, cadherin adhesion was reconstructed from the minimal number of structural elements. F-actin–uncoupled adhesive clusters displayed high instability and random motion. Their assembly required a cadherin cis-binding interface. Coupling these clusters with F-actin through an α-catenin actin-binding domain (αABD) dramatically extended cluster lifetime and conferred direction to cluster motility. In addition, αABD partially lifted the requirement for the cis-interface for cluster assembly. Even more dramatic enhancement of cadherin clustering was observed if αABD was joined with cadherin through a flexible linker or if it was replaced with an actin-binding domain of utrophin. These data present direct evidence that binding to F-actin stabilizes cadherin clusters and cooperates with the cis-interface in cadherin clustering. Such cooperation apparently synchronizes extracellular and intracellular binding events in the process of adherens junction assembly.  相似文献   

18.
Dai H  Huang W  Xu J  Yao B  Xiong S  Ding H  Tang Y  Liu H  Wu J  Shi Y 《Biochimica et biophysica acta》2006,1764(11):1688-1700
Human coactosin-like protein (CLP) is a small (MW approximately 17 kDa) evolutionarily conserved actin-binding protein. It can bind to actin filaments but not globular actin and belongs to the fourth class of ADF-H-domain-containing proteins. Human CLP can also bind to 5LO, which plays an important role in cellular leukotriene synthesis. Although the structure of hCLP has been determined by both NMR and X-ray experiments, how hCLP binds to the actin filament is still a controversial question. To obtain insights into the structure of the complex, we studied the three-dimensional structure and backbone dynamics of hCLP using multidimensional NMR spectroscopy. Guided by the solution structure of the protein, a series of site-directed mutants were generated and their F-actin-binding activities were measured by high-speed cosedimentation assays. Furthermore, the structure model of the hCLP-F-actin complex was proposed using computational docking with the docking results filtered by the mutation data. Several previously untested residues (including T66, L89, R91, K102, D116 and E119) in hCLP were found important for the F-actin-binding activity. The extended region of beta4-beta5 of hCLP (residue 66-75) was found very flexible and very important for F-actin binding. The C-terminal residues of hCLP were not involved in F-actin binding, which was different from UNC-60B. Based on our hCLP-F-actin-binding model, different affinities of the four classes of ADF-H domain containing proteins for F-actin were explained.  相似文献   

19.
The EGF receptor is an actin-binding protein   总被引:16,自引:0,他引:16       下载免费PDF全文
In a number of recent studies it has been shown that in vivo part of the EGF receptor (EGFR) population is associated to the actin filament system. In this paper we demonstrate that the purified EGFR can be cosedimented with purified filamentous actin (F-actin) indicating a direct association between EGFR and actin. A truncated EGFR, previously shown not to be associated to the cytoskeleton, was used as a control and this receptor did not cosediment with actin filaments. Determination of the actin-binding domain of the EGFR was done by measuring competition of either a polyclonal antibody or synthetic peptides on EGFR cosedimentation with F-actin. A synthetic peptide was made homologous to amino acid residues 984-996 (HL-33) of the EGFR which shows high homology with the actin-binding domain of Acanthamoeba profilin. A polyclonal antibody raised against HL-33 was found to prevent cosedimentation of EGFR with F-actin. This peptide HL-33 was shown to bind directly to actin in contrast with a synthetic peptide homologous to residues 1001-1013 (HL-34). During cosedimentation, HL-33 competed for actin binding of the EGFR and HL-34 did not, indicating that the EGFR contains one actin-binding site. These results demonstrate that the EGFR is an actin-binding protein which binds to actin via a domain containing amino acids residues 984-996.  相似文献   

20.
Hemidesmosomes (HDs) are multiprotein adhesion complexes that promote attachment of epithelial cells to the basement membrane. The binding of alpha6beta4 to plectin plays a central role in their assembly. We have defined three regions on beta4 that together harbor all the serine and threonine phosphorylation sites and show that three serines (S1356, S1360, and S1364), previously implicated in HD regulation, prevent the interaction of beta4 with the plectin actin-binding domain when phosphorylated. We have also established that epidermal growth factor receptor activation, which is known to function upstream of HD disassembly, results in the phosphorylation of only one or more of these three residues and the partial disassembly of HDs in keratinocytes. Additionally, we show that S1360 and S1364 of beta4 are the only residues phosphorylated by PKC and PKA in cells, respectively. Taken together, our studies indicate that multiple kinases act in concert to breakdown the structural integrity of HDs in keratinocytes, which is primarily achieved through the phosphorylation of S1356, S1360, and S1364 on the beta4 subunit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号