首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Melanin content and hydroperoxide metabolism in human melanoma cells   总被引:2,自引:0,他引:2  
Human melanoma cells were grown to exponential and stationary phases showing melanin contents of 4.2 +/- 0.3 and 11.3 +/- 0.6 micrograms/10(6) cells, respectively. The cells were separated in four subpopulations by a Percoll gradient; the subpopulation of density 1.07 (g/ml) was the most enriched in pigmented cells and produced 28 and 58% of the cells in exponential and stationary phases, respectively. Melanoma cells had similar superoxide dismutase and glutathione peroxidase activities in exponential and stationary phases. Moreover melanoma cells exhibited a higher catalase activity in the stationary phase: whole homogenate and cytosol activities were 7.0 +/- 0.3 and 10.8 +/- 0.6 U/mg protein, whereas in exponential phase the activities were 4.9 +/- 0.1 and 7.6 +/- 0.3 U/mg protein for whole homogenate and cytosol, respectively. The intracellular H2O2 steady-state concentration was 3.3 +/- 0.2 and 2.1 +/- 0.2 microM H2O2 for exponential and stationary phases, respectively. The spontaneous chemiluminescence of the two culture phases was 169 +/- 27 cps/10(6) cells (exponential) and 78 +/- 24 cps/10(6) cells (stationary). The cytotoxicity of H2O2 generated extracellularly by glucose oxidase was determined after 60 min of exposure. IC50 values for exponential and stationary cell cultures were 0.9 and 2.4 mU/ml of glucose oxidase, respectively. The increased catalase activities in the stationary phase as compared with the exponential phase are consistent with the decreased intracellular H2O2, with the decreased spontaneous chemiluminescence, and with the increased resistance to exogenous H2O2.  相似文献   

2.
Agrobacterium tumefaciens possesses two catalases, a bifunctional catalase-peroxidase, KatA and a homologue of a growth phase regulated monofunctional catalase, CatE. In stationary phase cultures and in cultures entering stationary phase, total catalase activity increased 2-fold while peroxidase activity declined. katA and catE were found to be independently regulated in a growth phase dependent manner. KatA levels were highest during exponential phase and declined as cells entered stationary phase, while CatE was detectable at early exponential phase and increased during stationary phase. Only small increases in H2O2 resistance levels were detected as cells entering stationary phase. The katA mutant was more sensitive to H2O2 than the parental strain during both exponential and stationary phase. Inactivation of catE alone did not significantly change the level of H2O2 resistance. However, the katA catE double mutant was more sensitive to H2O2 during both exponential and stationary phase than either of the single catalase mutants. The data indicated that KatA plays the primary role and CatE acts synergistically in protecting A. tumefaciens from H2O2 toxicity during all phases of growth. Catalase-peroxidase activity (KatA) was required for full H2O2 resistance. The expression patterns of the two catalases in A. tumefaciens reflect their physiological roles in the protection against H2O2 toxicity, which are different from other bacteria.  相似文献   

3.
Growth and resistance to freezing--thawing of Escherichia coli B-1640 were investigated during cultivation in synthetic media prepared with H2O and D2O. It is found that during cultivation in D2O the maximum specific growth rate decreases and the duration of the exponential growth phase increases. During the growth in D2O the glucose consumption rate drops in the exponential growth phase, the lactate content in the culture liquid is lower by two orders than that in H2O; the resistance to freezing--thawing is lower than that in H2O. After leaving the exponential phase the culture in D2O restores specific growth rate, glucose consumption rate and resistance to freezing--thawing up to the values obtained during the growth in H2O. The translation ability of ribosomes isolated from cells grown in D2O and H2O is the same. We conclude that the culture adapts to D2O during the exponential growth phase. It is suggested that during the adaptation the second carbon source is used which compensates the consequences of the disturbances of glucose metabolism and transport caused by deuteration of the cell content in the adaptation to D2O.  相似文献   

4.
The steady-state rate of CO2-dependent O2 evolution by Anabaena variabilis cells in response to illumination was established after a lag phase. The lag phase was shortened (1) in cells incubated with glucose as an oxidizable substrate and (2) upon an increase in light intensity. The lag phase was absent during electron transfer from H2O to p-benzoquinone (in combination with ferricyanide) involving Photosystem II. A lag was observed during electron transfer from H2O to methyl viologen involving Photosystems II and I, but not for electron transfer from N,N,N',N'-tetramethyl-p-phenylenediamine (in combination with ascorbate) to methyl viologen involving only Photosystem I. The lag phases of the light-induced H2O --> CO2 and H2O --> methyl viologen electron transfer reactions showed the same temperature dependences at 10-30 degrees C. The lag was prevented by 3-(3,4-dichlorophenyl)-1,1-dimethylurea at concentrations that caused partial inhibition of photosynthetic O2 evolution. Retardation of cell respiration by a combination of CN- and benzylhydroxamate shortened the lag phase of the H2O --> methyl viologen electron transfer. It is concluded that the lag phase is associated with the electron transfer step between Photosystem II and Photosystem I common for the photosynthetic and respiratory chains and is due to the stimulation of cell respiration during the initial period of illumination as a consequence of an increase in the reduced plastoquinone pool and to subsequent retardation of respiration resulting from the transition of the electron transfer chain to the competitive pathway involving Photosystem I.  相似文献   

5.
Contrary to what is widely believed, recent published results show that H2O2 does not freely diffuse across biomembranes. The fast removal of H2O2 by antioxidant enzymes is able to generate a gradient if H2O2 is produced in a different compartment from that containing the enzymes (Antunes, F., and Cadenas, E. (2000) FEBS Lett. 475, 121-126). In this work, we extended these studies and tested whether an active regulation of biomembranes permeability characteristics is part of the cell response to oxidative stress. Using Saccharomyces cerevisiae as a model, we showed that: (a) H2O2 gradients across the plasma membrane are formed upon exposure to external H2O2; (b) there is a correlation between the magnitude of the gradients and the resistance to H2O2; (c) there is not a correlation between the intracellular capacity to remove H2O2 and the resistance to H2O2; (d) the plasma membrane permeability to H2O2 decreases by a factor of two upon acquisition of resistance to this agent by pre-exposing cells either to nonlethal doses of H2O2 or to cycloheximide, an inhibitor of protein synthesis; and (e) erg3Delta and erg6Delta mutants, which have impaired ergosterol biosynthesis pathways, show higher plasma membrane permeability to H2O2 and are more sensitive to H2O2. Altogether, the regulation of the plasma membrane permeability to H2O2 emerged as a new mechanism by which cells respond and adapt to H2O2. The consequences of the results to cellular redox compartmentalization and to the origin and evolution of the eukaryotic cell are discussed.  相似文献   

6.
7.
Peroxiredoxin-3 (Prdx3) is a mitochondrial member of the antioxidant family of thioredoxin peroxidases that uses mitochondrial thioredoxin-2 (Trx2) as a source of reducing equivalents to scavenge hydrogen peroxide (H(2)O(2)). Low levels of H(2)O(2) produced by the mitochondria regulate physiological processes, including cell proliferation, while high levels of H(2)O(2) are toxic to the cell and cause apoptosis. WEHI7.2 thymoma cells with stable overexpression of Prdx3 displayed decreased levels of cellular H(2)O(2) and decreased cell proliferation without a change in basal levels of apoptosis. Prdx3-transfected cells showed a marked resistance to hypoxia-induced H(2)O(2) formation and apoptosis. Prdx3 overexpression also protected the cells against apoptosis caused by H(2)O(2), t-butylhydroperoxide, and the anticancer drug imexon, but not by dexamethasone. Thus, mitochondrial Prdx3 is an important cellular antioxidant that regulates physiological levels of H(2)O(2), leading to decreased cell growth while protecting cells from the apoptosis-inducing effects of high levels of H(2)O(2).  相似文献   

8.
9.
Apoptosis was studied under conditions that mimic the steady state of H(2)O(2) in vivo. This is at variance with previous studies involving a bolus addition of H(2)O(2), a procedure that disrupts the cellular homeostasis. The results allowed us to define three phases for H(2)O(2)-induced apoptosis in Jurkat T-cells with reference to cytosolic steady state concentrations of H(2)O(2) [(H(2)O(2))(ss)]: (H(2)O(2))(ss) values below 0.7 microM elicited no effects; (H(2)O(2))(ss) approximately 0.7-3 microM induced apoptosis; and (H(2)O(2))(ss) > 3 microM yielded no additional apoptosis and a gradual shift towards necrosis as the mode of cell death were observed. H(2)O(2)-induced apoptosis was not affected by either BCNU, an inhibitor of glutathione reductase, or diamide, a compound that reacts both with low-molecular weight and protein thiols, or selenols. Glutathione depletion, accomplished by incubating cells either with buthionine sulfoximine or in cystine-free medium, rendered cells more sensitive to H(2)O(2)-induced apoptosis, but did not change the threshold and saturating concentrations of H(2)O(2) that induced apoptosis. Two unrelated metal chelators, desferrioxamine and dipyridyl, strongly protected against H(2)O(2)-induced apoptosis. It may be concluded that, under conditions of H(2)O(2) delivery that mimic in vivo situations, the oxidative event that triggers the induction of apoptosis by H(2)O(2) is a Fenton-type reaction and is independent of the thiol or selenium states of the cell.  相似文献   

10.
Intrinsic oxidative stress through enhanced production of reactive oxygen species (ROS) in prostate and other cancers may contribute to cancer progression due to its stimulating effect on cancer growth. In this study, we investigate differential responses to exogenous oxidative stimuli between aggressive prostate cancer and normal cell lines and explore potential mechanisms through interactions between cytotoxicity, cellular ROS production and oxidative DNA damage. The circular, multi-copy mitochondrial DNA (mtDNA) is used as a sensitive surrogate to oxidative DNA damage. We demonstrate that exogenous H(2)O(2) induces preferential cytotoxicity in aggressive prostate cancer than normal cells; a cascade production of cellular ROS, composed mainly of superoxide (O(2)(-)), is shown to be a critical determinant of H(2)O(2)-induced selective toxicity in cancer cells. In contrast, mtDNA damage and copy number depletion, as measured by a novel two-phase strategy of the supercoiling-sensitive qPCR method, are very sensitive to exogenous H(2)O(2) exposure in both cancer and normal cell lines. Moreover, we demonstrate for the first time that the sensitive mtDNA damage response to exogenous H(2)O(2) is independent of secondary cellular ROS production triggered by several ROS modulators regardless of cell phenotypes. These new findings suggest different mechanisms underpinning cytotoxicity and DNA damage induced by oxidative stress and a susceptible phenotype to oxidative injury associated with aggressive prostate cancer cells in vitro.  相似文献   

11.
An H2O2-resistant variant (OC14) of the HA1 Chinese hamster fibroblast cell line which demonstrates a 20-fold increase in catalase activity was utilized in the study of mechanisms responsible for cellular resistance to hydrogen peroxide, oxygen, and 4-hydroxy-2-nonenal toxicity. HA1 and OC14 cells were treated with 9 mM aminotriazole which resulted in a 60 to 80% reduction in catalase activity. Pretreatment with aminotriazole resulted in significant sensitization to the toxicity of 1-h exposures to exogenously applied H2O2, which was proportional to the reduction in catalase activity. Treatment with aminotriazole produced significant sensitization to the toxicity of 95% O2 after 45 h of O2 exposure but no sensitization to the toxicity of a 1-h exposure to 50 microM 4-hydroxy-2-nonenal. Inhibition of catalase activity by aminotriazole had no effect on the metabolism of 4-hydroxy-2-nonenal by either cell line tested. These results support the conclusion that in H2O2-resistant cells, catalase activity is a major determinant of cellular resistance to H2O2 toxicity, whereas catalase activity has a limited role in cellular resistance to an acute exposure to 95% O2 and is unrelated to cellular resistance to 4-hydroxy-2-nonenal.  相似文献   

12.
We have investigated the mechanisms of killing of Escherichia coli by HOCl by identifying protective functions. HOCl challenges were performed on cultures arrested in stationary phase and in exponential phase. Resistance to HOCl in both cases was largely mediated by genes involved in resistance to hydrogen peroxide (H2O2). In stationary phase, a mutation in rpoS, which controls the expression of starvation genes including those which protect against oxidative stress, renders the cells hypersensitive to killing by HOCl. RpoS-regulated genes responsible for this sensitivity were dps, which encodes a DNA-binding protein, and, to a lesser extent, katE and katG, encoding catalases; all three are involved in resistance to H2O2. In exponential phase, induction of the oxyR regulon, an adaptive response to H2O2, protected against HOCl exposure, and the oxyR2 constitutive mutant is more resistant than the wild-type strain. The genes involved in this oxyR-dependent resistance have not yet been identified, but they differ from those primarily involved in resistance to H2O2, including katG, ahp, and dps. Pretreatment with HOCl conferred resistance to H2O2 in an OxyR-independent manner, suggesting a specific adaptive response to HOCl. fur mutants, which have an intracellular iron overload, were more sensitive to HOCl, supporting the generation of hydroxyl radicals upon HOCl exposure via a Fenton-type reaction. Mutations in recombinational repair genes (recA or recB) increased sensitivity to HOCl, indicative of DNA strand breaks. Sensitivity was visible in the wild type only at concentrations above 0.6 mg/liter, but it was observed at much lower concentrations in dps recA mutants.  相似文献   

13.
The principal source of hydrogen peroxide in mitochondria is thought to be from the dismutation of superoxide via the enzyme manganese superoxide dismutase (MnSOD). However, the nature of the effect of SOD on the cellular production of H(2)O(2) is not widely appreciated. The current paradigm is that the presence of SOD results in a lower level of H(2)O(2) because it would prevent the non-enzymatic reactions of superoxide that form H(2)O(2). The goal of this work was to: a) demonstrate that SOD can increase the flux of H(2)O(2), and b) use kinetic modelling to determine what kinetic and thermodynamic conditions result in SOD increasing the flux of H(2)O(2). We examined two biological sources of superoxide production (xanthine oxidase and coenzyme Q semiquinone, CoQ(*-) that have different thermodynamic and kinetic properties. We found that SOD could change the rate of formation of H(2)O(2) in cases where equilibrium-specific reactions form superoxide with an equilibrium constant (K) less than 1. An example is the formation of superoxide in the electron transport chain (ETC) of the mitochondria by the reaction of ubisemiquinone radical with dioxygen. We measured the rate of release of H(2)O(2) into culture medium from cells with differing levels of MnSOD. We found that the higher the level of SOD, the greater the rate of accumulation of H(2)O(2). Results with kinetic modelling were consistent with this observation; the steady-state level of H(2)O(2) increases if K<1, for example CoQ(*-)+O(2)-->CoQ+O(2)(*-). However, when K>1, e.g. xanthine oxidase forming O(2)(*-), SOD does not affect the steady state-level of H(2)O(2). Thus, the current paradigm that SOD will lower the flux of H(2)O(2) does not hold for the ETC. These observations indicate that MnSOD contributes to the flux of H(2)O(2) in cells and thereby is involved in establishing the cellular redox environment and thus the biological state of the cell.  相似文献   

14.
Glioblastomas are notorious for their resistance to ionizing radiation and chemotherapy. We hypothesize that this resistance to ionizing radiation is due, in part, to alterations in antioxidant enzymes. Here, we show that rat and human glioma cells overexpress the antioxidant enzyme peroxiredoxin II (Prx II). Glioma cells in which Prx II is decreased using shRNA exhibit increased hyperoxidation of the remaining cellular Prxs, suggesting that the redox environment is more oxidizing. Of interest, decreasing Prx II does not alter other antioxidant enzymes (i.e., catalase, GPx, Prx I, Prx III, CuZnSOD, and MnSOD). Analysis of the redox environment revealed that decreasing Prx II increased intracellular reactive oxygen species in 36B10 cells; extracellular levels of H(2)O(2) were also increased in both C6 and 36B10 cells. Treatment with H(2)O(2) led to a further elevation in intracellular reactive oxygen species in cells where Prx II was decreased. Decreasing Prx II expression in glioma cells also reduced clonogenic cell survival following exposure to ionizing radiation and H(2)O(2). Furthermore, lowering Prx II expression decreased intracellular glutathione and resulted in a significant decline in glutathione reductase activity, suggesting a possible mechanism for the observed increased sensitivity to oxidative insults. Additionally, decreasing Prx II expression increased cell cycle doubling times, with fewer cells distributed to S phase in C6 glioma cells and more cells redistributed to the most radiosensitive phase of the cell cycle, G2/M, in 36B10 glioma cells. These findings support the hypothesis that inhibiting Prx II sensitizes glioma cells to oxidative stress, presenting Prxs as potential therapeutic targets.  相似文献   

15.
Rhodococcus equi is one of the most widespread causes of disease in foals aged from 1 to 6 months. R. equi possesses antioxidant defense mechanisms to protect it from reactive oxygen metabolites such as hydrogen peroxide (H(2)O(2)) generated during the respiratory burst of phagocytic cells. These defense mechanisms include enzymes such as catalase, which detoxify hydrogen peroxide. Recently, an analysis of the R. equi 103 genome sequence revealed the presence of four potential catalase genes. We first constructed ΔkatA-, ΔkatB-, ΔkatC-and ΔkatD-deficient mutants to study the ability of R. equi to survive exposure to H(2)O(2)in vitro and within mouse peritoneal macrophages. Results showed that ΔkatA and, to a lesser extent ΔkatC, were affected by 80 mM H(2)O(2). Moreover, katA deletion seems to significantly affect the ability of R. equi to survive within murine macrophages. We finally investigated the expression of the four catalases in response to H(2)O(2) assays with a real time PCR technique. Results showed that katA is overexpressed 367.9 times (±122.6) in response to exposure to 50 mM of H(2)O(2) added in the stationary phase, and 3.11 times (±0.59) when treatment was administered in the exponential phase. In untreated bacteria, katB, katC and katD were overexpressed from 4.3 to 17.5 times in the stationary compared to the exponential phase. Taken together, our results show that KatA is the major catalase involved in the extreme H(2)O(2) resistance capability of R. equi.  相似文献   

16.
研究了处于不同时相的红豆杉细胞经诱导后生活力、生物量、紫杉醇含量及几个与次生代谢有关的生理化指标的差异,对细胞时相与次生代谢强度的关系进行了探讨。结果表明,在细胞培养的第7d(延迟期)进行诱导,细胞的活力、POD活性、H2O2、生物量、紫杉醇含量均高于第14d(对数期)进行诱导,显著高于第21d(稳定期)开始诱导。说明在第7d(延迟期)进行诱导时,细胞对诱导子的反应灵敏度较高,次生代谢启动的强度更  相似文献   

17.
Nitric oxide (NO) has been shown to both enhance hydrogen peroxide (H(2)O(2)) toxicity and protect cells against H(2)O(2) toxicity. In order to resolve this apparent contradiction, we here studied the effects of NO on H(2)O(2) toxicity in cultured liver endothelial cells over a wide range of NO and H(2)O(2) concentrations. NO was generated by spermine NONOate (SpNO, 0.001-1 mM), H(2)O(2) was generated continuously by glucose/glucose oxidase (GOD, 20-300 U/l), or added as a bolus (200 microM). SpNO concentrations between 0.01 and 0.1 mM provided protection against H(2)O(2)-induced cell death. SpNO concentrations >0.1 mM were injurious with low H(2)O(2) concentrations, but protective at high H(2)O(2) concentrations. Protection appeared to be mainly due to inhibition of lipid peroxidation, for which SpNO concentrations as low as 0.01 mM were sufficient. SpNO in high concentration (1 mM) consistently raised H(2)O(2) steady-state levels in line with inhibition of H(2)O(2) degradation. Thus, the overall effect of NO on H(2)O(2) toxicity can be switched within the same cellular model, with protection being predominant at low NO and high H(2)O(2) levels and enhancement being predominant with high NO and low H(2)O(2) levels.  相似文献   

18.
Transforming growth factor beta 1 (TGF-beta 1) and H2O2 both inhibited DNA synthesis of mouse osteoblastic (MC3T3) cells in the late G1 phase of the cell cycle. TGF-beta 1 stimulated cells to release H2O2 in the late G1 phase, but not in the G0 phase, even though TGF-beta 1 receptors were present in both phases. The inhibition of DNA synthesis caused by TGF-beta 1 was partly decreased by the addition of catalase. TGF-beta 1 and H2O2 increased the phosphorylation of the same proteins with a molecular weight of 30,000 in cells in the late G1 phase, and the increase by TGF-beta 1 was abolished at least partly by catalase. The results suggest that H2O2 is one of the mediators of inhibition of DNA synthesis by TGF-beta 1.  相似文献   

19.
The cellular redox state has been shown to play an essential role in cellular signaling systems. Here we investigate the effects of reductants and H2O2 on the signaling of epidermal growth factor (EGF) in cells. H2O2 induced the phosphorylation of the EGF receptor and the formation of a receptor complex comprising Shc, Grb2, Sos, and the EGF receptor. Dimerization or oligomerization of the EGF receptor was not induced by H2O2. Protein tyrosine phosphatase (PTP) assay showed that H2O2 suppressed dephosphorylation of the EGF receptor in cell lysates, suggesting that inactivation of PTP was involved in H2O2-induced activation of the EGF receptor. In contrast, the reductants N-acetyl-L-cysteine [Cys(Ac)] and dithiothreitol markedly suppressed EGF-induced dimerization and activation of the EGF receptor in cells. In accordance with suppression of the EGF receptor, Cys(Ac) suppressed EGF-induced activation of Ras, phosphatidylinositol 3-kinase and mitogen-activated protein kinase. Dithiothreitol completely inhibited EGF binding and kinase activation of the EGF receptor both in vitro and in vivo. In contrast, Cys(Ac) suppressed high-affinity EGF-binding sites on the cells, but had no effect on low-affinity binding sites. Furthermore, Cys(Ac) did not suppress EGF-induced kinase activation or dimerization of the EGF receptor in vitro, indicating that it suppressed the EGF receptor through a redox-sensitive cellular process or processes. Thus, the EGF receptor is regulated by redox through multiple steps including dephosphorylation by PTP, ligand binding, and a Cys(Ac)-sensitive cellular process or processes.  相似文献   

20.
Sulfiredoxin (Srx) is an enzyme that catalyzes the reduction of cysteine sulfinic acid of hyperoxidized peroxiredoxins (Prxs). Having high affinity toward H2O2, 2-Cys Prxs can efficiently reduce H2O2 at low concentration. We previously showed that Prx I is hyperoxidized at a rate of 0.072% per turnover even in the presence of low steady-state levels of H2O2. Here we examine the novel role of Srx in cells exposed to low steady-state levels of H2O2, which can be achieved by using glucose oxidase. Exposure of low steady-state levels of H2O2 (10-20 μm) to A549 or wild-type mouse embryonic fibroblast (MEF) cells does not lead to any significant change in oxidative injury because of the maintenance of balance between H2O2 production and elimination. In contrast, loss-of-function studies using Srx-depleted A549 and Srx-/- MEF cells demonstrate a dramatic increase in extra- and intracellular H2O2, sulfinic 2-Cys Prxs, and apoptosis. Concomitant with hyperoxidation of mitochondrial Prx III, Srx-depleted cells show an activation of mitochondria-mediated apoptotic pathways including mitochondria membrane potential collapse, cytochrome c release, and caspase activation. Furthermore, adenoviral re-expression of Srx in Srx-depleted A549 or Srx-/- MEF cells promotes the reactivation of sulfinic 2-Cys Prxs and results in cellular resistance to apoptosis, with enhanced removal of H2O2. These results indicate that Srx functions as a novel component to maintain the balance between H2O2 production and elimination and then protects cells from apoptosis even in the presence of low steady-state levels of H2O2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号