首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The MgATP complex analogue cobalt-tetrammine-ATP [Co(NH3)4ATP] inactivates (Na+ + K+)-ATPase at 37 degrees C slowly in the absence of univalent cations. This inactivation occurs concomitantly with incorporation of radioactivity from [alpha-32P]Co(NH3)4ATP and from [gamma-32P]Co(NH3)4ATP into the alpha subunit. The kinetics of inactivation are consistent with the formation of a dissociable complex of Co(NH3)4ATP with the enzyme (E) followed by the phosphorylation of the enzyme: (Formula: see text). The dissociation constant of the enzyme-MgATP analogue complex at 37 degrees C is Kd = 500 microM, the inactivation rate constant k2 = 0.05 min-1. ATP protects the enzyme against the inactivation by Co(NH3)4ATP due to binding at a site from which it dissociates with a Kd of 360 microM. It is concluded, therefore, that Co(NH3)4ATP binds to the low-affinity ATP binding site of the E2 conformational state. K+, Na+ and Mg2+ protect the enzyme against the inactivation by Co(NH3)4ATP. Whilst Na+ or Mg2+ decrease the inactivation rate constant k2, K+ exerts its protective effect by increasing the dissociation constant of the enzyme.Co(NH3)4ATP complex. The Co(NH3)4ATP-inactivated (Na+ + K+)-ATPase, in contrast to the non-inactivated enzyme, incorporates [3H]ouabain. This indicates that the Co(NH3)4ATP-inactivated enzyme is stabilized in the E2 conformational state. Despite the inactivation of (Na+ + K+)-ATPase by Co(NH3)4ATP from the low-affinity ATP binding site, there is no change in the capacity of the high-affinity ATP binding site (Kd = 0.9 microM) nor of its capability to phosphorylate the enzyme Na+-dependently. Since (Na+ + K+)-ATPase is phosphorylated Na+-dependently from the high-affinity ATP binding site although the catalytic cycle is arrested in the E2 conformational state by specific modification of the low-affinity ATP binding site, it is concluded that both ATP binding sites coexist at the same time in the working sodium pump. This demonstration of interacting catalytic subunits in the E1 and E2 conformational states excludes the proposal that a single catalytic subunit catalyzes (Na+ + K+)-transport.  相似文献   

2.
The dephosphorylation kinetics of acid-stable phosphointermediates of (Na+ + K+)-ATPase from ox brain, ox kidney and pig kidney was studied at 0 degree C. Experiments performed on brain enzyme phosphorylated at 0 degree C in the presence of 20-600 mM Na+, 1 mM Mg2+ and 25 microM [gamma-32P]ATP show that irrespectively of the EP-pool composition, which is determined by Na+ concentration, all phosphoenzyme is either ADP- or K+-sensitive. After phosphorylation of kidney enzymes at 0 degree C with 1 mM Mg2+, 25 microM [gamma-32P]ATP and 150-1000 mM Na+ the amounts of ADP- and K+-sensitive phosphoenzymes were determined by addition of 1 mM ATP + 2.5 mM ADP or 1 mM ATP + 20 mM K+. Similarly to the previously reported results on brain enzyme, both types of dephosphorylation curves have a fast and a slow phase, so that also for kidney enzymes a slow decay of a part of the phosphoenzyme, up to 80% at 1000 mM Na+, after addition of 1 mM ATP + 20 mM K+ is observed. The results obtained with the kidney enzymes seem therefore to reinforce previous doubts about the role played by E1 approximately P(Na3) as intermediate of (Na+ + K+)-ATPase activity. Furthermore, for both kidney enzymes the sum of ADP- and K+-sensitive phosphoenzymes is greater than E tot. In experiments on brain enzyme an estimate of dissociation rate constant for the enzyme-ATP complex, k-1, is obtained. k-1 varies between 1 and 4 s-1 and seems to depend on the ligands present during formation of the complex. The highest values are found for enzyme-ATP complex formed in the presence of Na+ or Tris+. The results confirm the validity of the three-pool model in describing dephosphorylation kinetics of phosphointermediates of Na+-ATPase activity.  相似文献   

3.
Direct evidence for the occurrence of an ADP-sensitive phosphoenzyme of (K+ + H+)-ATPase, the proton-pumping system of the gastric parietal cell is presented. The enzyme is phosphorylated with 5 microM [gamma-32P]ATP in 50 mM imidazole-HCl (pH 7.0) and in the presence of 7-15 microM Mg2+. Addition of 5 mM ADP to this preparation greatly accelerates its hydrolysis. We have been able to establish this by stopping the phosphorylation with radioactive ATP, by adding 1 mM non-radioactive ATP, which leads to a slow monoexponential process of dephosphorylation of 32P-labeled enzyme. The relative proportion of the ADP-sensitive phosphoenzyme is 22% of the total phosphoenzyme. Values for the rate constants of breakdown and interconversion of the two phosphoenzyme forms have been determined.  相似文献   

4.
Tetrammine cobalt(III) phosphate [Co(NH3)4PO4] inactivates Na+/K(+)-ATPase in the E2 conformational state, dependent on time and concentration, according to Eqn (1): Co(NH3)4PO4 + E2 Kd in equilibrium E2.Co(NH3)4PO4k2----E'2.Co(NH3)4PO4. The inactivation rate constant k2 for the formation of a stable E'2.Co(NH3)4PO4 at 37 degrees C was 0.057 min-1; the dissociation constant, Kd = 300 microM. The activation energy for the inactivation process was 149 kJ/mol. ATP and the uncleavable adenosine 5'-[beta, gamma-methylene]triphosphate competed with Co(NH3)4PO4 for its binding site with Ks = 0.41 mM and 5 mM, respectively. MgPO4 competed with Co(NH3)4PO4 linearly, with Ks = 50 microM, as did phosphate (Ks = 16 mM) and Mg2+ (Ks = 160 microM). It is concluded that the MgPO4 analogue binds to the MgPO4-binding subsite of the low-affinity ATP-binding site (of the E2 conformation). Also, Na+ (Ks = 860 microM) protected the enzyme against inactivation in a competitive manner. From the intersecting (slope and intercept linear) noncompetitive effect of Na+ against the inactivation by Co(NH3)4PO4, apparent affinities of K+ for the free enzyme of 41 microM, and for the E.Co(NH3)4PO4 complex of 720 microM, were calculated. Binding of Co(NH3)4PO4 to the enzyme inactivated Na+/K(+)-ATPase and K(+)-activated phosphatase, and, moreover, prevented the occlusion of 86Rb+; however, the activity of the Na(+)-ATPase, the phosphorylation capacity of the high-affinity ATP-binding site and the ATP/ADP-exchange reaction remained unchanged. With Co(NH3)432PO4 a binding capacity of 135 pmol unit enzyme was found. Phosphorylation and complete inactivation of the enzyme with Co(NH3)432PO4 or the 32P-labelled tetramminecobalt ATP ([gamma-32P]Co(NH3)4ATP) at the low-affinity ATP-binding site, allowed (independent of the purity of the Na+/K(+)-ATPase preparation) a further incorporation of radioactivity from 32P-labelled tetraaquachromium(III) ATP ([gamma-32P]CrATP) to the high-affinity ATP-binding site with unchanged phosphorylation capacity. However, inactivation and phosphorylation of Na+/K(+)-ATPase by [gamma-32P]CrATP prevented the binding of Co(NH3)4 32PO4 or [gamma-32P]Co(NH3)4ATP to the enzyme. [gamma-32P]CO(NH3)4ATP and Co(NH3)432PO4 are mutually exclusive. The data are consistent with the assumption of a cooperation of catalytic subunits within an (alpha,beta)2-diprotomer, which change their interactions during the Na+/K(+)-pumping process. Our findings seem not to support a symmetrical Repke and Stein model of enzyme action.  相似文献   

5.
The chromium(III) complex of ATP, an MgATP complex analogue, inactivates (Na+ + K+)-ATPase by forming a stable chromo-phosphointermediate. The rate constant k2 of inactivation at 37 degrees C of the beta, gamma-bidentate of CrATP is enhanced by Na+ (K0.5 = 1.08 mM), imidazole (K0.5 = 15 mM) and Mg2+ (K0.5 = 0.7 mM). These cations did not affect the dissociation constant of the enzyme-chromium-ATP complex. The inactive chromophosphoenzyme is reactivated slowly by high concentrations of Na+ at 37 degrees C. The half-maximal effect on the reactivation was reached at 40 mM NaCl, when the maximally observable reactivation was studied. However, 126 mM NaCl was necessary to see the half-maximal effect on the apparent reactivation velocity constant. K+ ions hindered the reactivation with a Ki of 70 microM. Formation of the chromophosphoenzyme led to a reduction of the Rb+ binding sites and of the capacity to occlude Rb+. The beta, gamma-bidentate of chromium(III)ATP (Kd = 8 microM) had a higher than the alpha, beta, gamma-tridentate of chromium(III)ATP (Kd = 44 microM) or the cobalt tetramine complex of ATP (Kd = 500 microM). The beta, gamma-bidentate of the chromium(III) complex of adenosine 5'-[beta, gamma-methylene]triphosphate also inactivated (Na+ + K+)ATPase. Although CrATP could not support Na+, K+ exchange in everted vesicles prepared from human red blood cells, it supported the Na+-Na+ and Rb+-Rb+ exchange. It is concluded that CrATP opens up Na+ and K+ channels by forming a relatively stable modified enzyme-CrATP complex. This stable complex is also formed in the presence of the chromium complex of adenosine 5'-[beta, gamma-methylene]triphosphate. Because the beta, gamma-bidentate of chromium ATP is recognized better than the alpha, beta, gamma-tridentate, it is concluded that the triphosphate site recognizes MgATP with a straight polyphosphate chain and that the Mg2+ resides between the beta- and the gamma-phosphorus. The enhancement of inactivation by Mg2+ and Na+ may be caused by conformational changes at the triphosphate site.  相似文献   

6.
The classical E2-P intermediate of (Na+ + K+)-ATPase dephosphorylates readily in the presence of K+ and is not affected by the addition of ADP. To determine the significance in the reaction cycle of (Na+ + K+)-ATPase of kinetically atypical phosphorylations of rat brain (Na+ + K+)-ATPase we compared these phosphorylated components with the classical E2-P intermediate of this enzyme by gel electrophoresis. When rat brain (Na+ + K+)-ATPase was phosphorylated in the presence of high concentrations of Na+ a proportion of the phosphorylated material formed was sensitive to ADP but resistant to K+. Similarly, if phosphorylation was carried out in the presence of Na+ and Ca-2+ up to 300 pmol/mg protein of a K+ -resistant, ADP-sensitive material were formed. If phosphorylation was from [gamma-32-P]CTP up to 800 pmol-32-P/mg protein of an ADP-resistant, K+ -sensitive phosphorylated material were formed. On gel electrophoresis these phosphorylated materials co-migrated with authentic Na+ -stimulated, K+ -sensitive, E2-P-phosphorylated intermediate of (Na+ + K+)-ATPase, supporting suggestions that they represent phosphorylated intermediates in the reaction sequence of this enzyme.  相似文献   

7.
The beta, gamma-bidentate chromium(III) complex of ATP (CrATP) was used as a substrate analog to stabilize a form of the Ca(2+)-ATPase of the sarcoplasmic reticulum containing both of the bound calcium ions in an occluded state without enzyme phosphorylation. The kinetics of dissociation of Ca2+ from the occlusion sites in the CrATP-enzyme complex were consistent with the existence of two nonequivalent and interdependent Ca2+ occlusion sites, both in the membranous Ca(2+)-ATPase and in a detergent-solubilized monomeric Ca(2+)-ATPase preparation. The rate constant for release of the first calcium ion was k1 = 0.99 h-1, whereas the second calcium ion was released with a rate constant of k2 = 0.25 h-1 when the first site was empty and with a rate constant of k3 = 0.13 h-1 when the first site was occupied by Ca2+. Ca2+ binding at the first site occurred with a rate constant of k-1 = 0.96 microM-1 h-1 (apparent Kd = 1.0 microM). The Ca(2+)-occluded state was further stabilized by ADP, binding in exchange with ATP with an apparent Kd of 8.6 microM. Two kinetic classes of CrATP-binding sites were observed, each with a stoichiometry of 3-4 nmol/mg of protein; but only the fast phase of CrATP binding was associated with Ca2+ occlusion. Derivatization of the Ca(2+)-ATPase with N-cyclohexyl-N'-(4-dimethylamino-1-naphthyl)carbodimide resulted in inactivation of phosphorylation of the enzyme from MgATP, whereas the ability to occlude Ca2+ in the presence of CrATP was retained, albeit with a reduced apparent affinity for Ca2+.  相似文献   

8.
In order to study whether Pb2+ and imidazole increase the ATP phosphorylation level of (Na+ + K+)-ATPase by the same mechanism, the effects of both compounds on phosphorylation and dephosphorylation reactions of the enzyme have been studied. Imidazole in the presence of Mg2+ increases steady-state phosphorylation of (Na+ + K+)-ATPase by decreasing, in a competitive way, the K+-sensitivity of the formed phospho-enzyme (E-P . Mg). If Pb2+ is present during phosphorylation, the rate of phosphorylation increases and a K+- and ADP-insensitive phosphointermediate (E-P . Pb) is formed. Pb2+ has no effect on the K+-sensitivity of E-P . Mg and EDTA is unable to affect the K+-insensitivity of E-P . Pb. These effects indicate that Pb2+ acts before or during phosphorylation with the enzyme. Binding of Na+ to E-P . Pb does not restore K+-sensitivity either. However, increasing Na+ during phosphorylation in the presence of Pb2+ leads to formation of the K+-sensitive intermediate (E-P . Mg), indicating that E-P . Pb is formed via a side path of the Albers-Post scheme. ATP and ADP decrease the dephosphorylation rate of both E-P . Mg and E-P . Pb. Above optimal concentration, Pb2+ also decreases the steady-state phosphorylation level both in the absence and in the presence of Na+. This inhibitory effect of Pb2+ is antagonized by Mg2+.  相似文献   

9.
Purified Na+, K(+)-ATPase was phosphorylated by [gamma-32P]ATP in a medium containing dimethylsulfoxide and 5 mM Mg2+ in the absence of Na+ and K+. Addition of K+ increased the phosphorylation levels from 0.4 nmol phosphoenzyme/mg of protein in the absence of K+ to 1.0 nmol phosphoenzyme/mg of protein in the presence of 0.5 mM K+. Higher velocities of enzyme phosphorylation were observed in the presence of 0.5 mM K+. Increasing K+ concentrations up to 100 mM lead to a progressive decrease in the phosphoenzyme (EP) levels. Control experiments, that were performed to determine the contribution to EP formation from the Pi inevitably present in the assays, showed that this contribution was of minor importance except at high (20-100 mM) KCl concentrations. The pattern of EP formation and its KCl dependence is thus characteristic for the phosphorylation of the enzyme by ATP. In the absence of Na+ and with 0.5 mM K+, optimal levels (1.0 nmol EP/mg of protein) were observed at 20-40% dimethylsulfoxide and pH 6.0 to 7.5. Addition of Na+ up to 5 mM has no effect on the phosphoenzyme level under these conditions. At 100 mM Na+ or higher the full capacity of enzyme phosphorylation (2.2 nmol EP/mg of protein) was reached. Phosphoenzyme formed from ATP in the absence of Na+ is an acylphosphate-type compound as shown by its hydroxylamine sensitivity. The phosphate radioactivity was incorporated into the alpha-subunit of the Na+, K(+)-ATPase as demonstrated by acid polyacrylamide gel electrophoresis followed by autoradiography.  相似文献   

10.
(Na+ + K+)-activated ATPase in beef brain microsomes is inactivated by the disulfide of thionosine tri[gamma-32P]phosphate, an ATP analog. The inactivation of the enzyme, which is accompanied by an incorporation of radioactivity into the membrane protein, is abolished by ATP or dithiothreitol. Since dithiothreitol restores the activity of (Na+ + K+)-ATPase, which had previously been inactivated by this ATP analog, it is concluded that thionosine triphosphate disulfide reacts with a sulfhydryl group in the ATP binding site of (Na+ + K+)-activated ATPase.  相似文献   

11.
The effects of Mg2+ and nucleotides on the dephosphorylation process of the (K+ + H+)-ATPase phosphoenzyme have been studied. Phosphorylation with [gamma-32P]ATP is stopped either by addition of non-radioactive ATP or by complexing of Mg2+ with EDTA. The dephosphorylation process is slow and monoexponential when dephosphorylation is initiated with ATP. When phosphorylation is stopped by complexing of Mg2+ the dephosphorylation process is fast and biexponential. The discrepancy could be explained by a nucleotide mediated inhibition of the dephosphorylation process. The I0.5 for ATP for this inhibition is 0.1 mM and that for ADP is 0.7 mM, suggesting that a low-affinity binding site is involved. When Mg2+ is present in millimolar concentrations in addition to the nucleotides the dephosphorylation process is enhanced. Evidence has been obtained that Mg2+ acts through lowering the affinity for ATP. In contrast to K+, Mg2+ does not stimulate dephosphorylation in the absence of nucleotides. Mg2+ and nucleotides show the same interaction in the dephosphorylation process of a phosphoenzyme generated from inorganic phosphate. These findings suggest the presence of a low-affinity nucleotide binding site on the phosphoenzyme, as is found in the (Na+ + K+)-ATPase phosphoenzyme. This low-affinity binding site may function as a feed-back mechanism in proton transport.  相似文献   

12.
The effects of K+, Na+ and ATP on the gastric (H+ + K+)-ATPase were investigated at various pH. The enzyme was phosphorylated by ATP with a pseudo-first-order rate constant of 3650 min-1 at pH 7.4. This rate constant increased to a maximal value of about 7900 min-1 when pH was decreased to 6.0. Alkalinization decreased the rate constant. At pH 8.0 it was 1290 min-1. Additions of 5 mM K+ or Na+, did not change the rate constant at acidic pH, while at neutral or alkaline pH a decrease was observed. Dephosphorylation of phosphoenzyme in lyophilized vesicles was dependent on K+, but not on Na+. Alkaline pH increased the rate of dephosphorylation. K+ stimulated the ATPase and p-nitrophenylphosphatase activities. At high concentrations K+ was inhibitory. Below pH 7.0 Na+ had little or no effect on the ATPase and p-nitrophenylphosphatase, while at alkaline pH, Na+ inhibited both activities. The effect of extravesicular pH on transport of H+ was investigated. At pH 6.5 the apparent Km for ATP was 2.7 microM and increased little when K+ was added extravesicularly. At pH 7.5, millimolar concentrations of K+ increased the apparent Km for ATP. Extravesicular K+ and Na+ inhibited the transport of H+. The inhibition was strongest at alkaline pH and only slight at neutral or acidic pH, suggesting a competition between the alkali metal ions and hydrogen ions at a common binding site on the cytoplasmic side of the membrane. Two H+-producing reactions as possible candidates as physiological regulators of (H+ + K+)-ATPase were investigated. Firstly, the hydrolysis of ATP per se, and secondly, the hydration of CO2 and the subsequent formation of H+ and HCO3-. The amount of hydrogen ions formed in the ATPase reaction was highest at alkaline pH. The H+/ATP ratio was about 1 at pH 8.0. When CO2 was added to the reaction medium there was no change in the rate of hydrogen ion transport at pH 7.0, but at pH 8.0 the rate increased 4-times upon the addition of 0.4 mM CO2. The results indicate a possible co-operation in the production of acid between the H+ + K+-ATPase and a carbonic anhydrase associated with the vesicular membrane.  相似文献   

13.
The bidentate complex of ATP with Cr(3+), CrATP, is a nucleotide analog that is known to inhibit the sarcoplasmic reticulum Ca(2+)-ATPase and the Na(+),K(+)-ATPase, so that these enzymes accumulate in a conformation with the transported ion (Ca(2+) and Na(+), respectively) occluded from the medium. Here, it is shown that CrATP is also an effective and irreversible inhibitor of the plasma membrane Ca(2+)-ATPase. The complex inhibited with similar efficiency the Ca(2+)-dependent ATPase and the phosphatase activities as well as the enzyme phosphorylation by ATP. The inhibition proceeded slowly (T(1/2)=30 min at 37 degrees C) with a K(i)=28+/-9 microM. The inclusion of ATP, ADP or AMPPNP in the inhibition medium effectively protected the enzyme against the inhibition, whereas ITP, which is not a PMCA substrate, did not. The rate of inhibition was strongly dependent on the presence of Mg(2+) but unaltered when Ca(2+) was replaced by EGTA. In spite of the similarities with the inhibition of other P-ATPases, no apparent Ca(2+) occlusion was detected concurrent with the inhibition by CrATP. In contrast, inhibition by the complex of La(3+) with ATP, LaATP, induced the accumulation of phosphoenzyme with a simultaneous occlusion of Ca(2+) at a ratio close to 1.5 mol/mol of phosphoenzyme. The results suggest that the transport of Ca(2+) promoted by the plasma membrane Ca(2+)-ATPase goes through an enzymatic phospho-intermediate that maintains Ca(2+) ions occluded from the media. This intermediate is stabilized by LaATP but not by CrATP.  相似文献   

14.
In experiments performed at 37 degrees C, Ca2+ reversibly inhibits the Na+-and (Na+ + K+)-ATPase activities and the K+-dependent phosphatase activity of (Na+ + K+)-ATPase. With 3 mM ATP, the Na+-ATPase was less sensitive to CaCl2 than the (Na+ + K+)-ATPase activity. With 0.02 mM ATP, the Na+-ATPase and the (Na+ + K+)-ATPase activities were similarly inhibited by CaCl2. The K0.5 for Ca2+ as (Na+ + K+)-ATPase inhibitor depended on the total MgCl2 and ATP concentrations. This Ca2+ inhibition could be a consequence of Ca2+-Mg2+ competition, Ca . ATP-Mg . ATP competition or a combination of both mechanisms. In the presence of Na+ and Mg2+, Ca2+ inhibited the K+-dependent dephosphorylation of the phosphoenzyme formed from ATP, had no effect on the dephosphorylation in the absence of K+ and inhibited the rephosphorylation of the enzyme. In addition, the steady-state levels of phosphoenzyme were reduced in the presence both of NaCl and of NaCl plus KCl. With 3 mM ATP, Ca2+ alone sustained no more than 2% of the (Na+ + K+)-ATPase activity and about 23% of the Na+-ATPase activity observed with Mg2+ and no Ca2+. With 0.003 mM ATP, Ca2+ was able to maintain about 40% of the (Na+ + K+)-ATPase activity and 27% of the Na+-ATPase activity seen in the presence of Mg2+ alone. However, the E2(K)-E1K conformational change did not seem to be affected. Ca2+ inhibition of the K+-dependent rho-nitrophenylphosphatase activity of the (Na+ + K+)-ATPase followed competition kinetics between Ca2+ and Mg2+. In the presence of 10 mM NaCl and 0.75 mM KCl, the fractional inhibition of the K+-dependent rho-nitrophenylphosphatase activity as a function of Ca2+ concentration was the same with and without ATP, suggesting that Ca2+ indeed plays the important role in this process. In the absence of Mg2+, Ca2+ was unable to sustain any detectable ouabain-sensitive phosphatase activity, either with rho-nitrophenylphosphate or with acetyl phosphate as substrate.  相似文献   

15.
In order to determine the role of divalent cations in the reaction mechanism of the H+,K+-ATPase, we have substituted calcium for magnesium, which is required by the H+,K+-ATPase for phosphorylation from ATP and from PO4. Calcium was chosen over other divalent cations assayed (barium and manganese) because in the absence of magnesium, calcium activated ATP hydrolysis, generated sufficiently high levels of phosphoenzyme (573 +/- 51 pmol.mg-1) from [gamma-32P]ATP to study dephosphorylation, and inhibited K+-stimulated ATP hydrolysis. The Ca2+-ATPase activity of the H+,K+-ATPase was 40% of the basal Mg2+-ATPase activity. However, the Ca2+,K+-ATPase activity (minus the Ca2+ basal activity) was only 0.7% of the Mg2+,K+-ATPase, indicating that calcium could partially substitute for Mg2+ in activating ATP hydrolysis but not in K+ stimulation of ATP hydrolysis. Approximately 0.1 mM calcium inhibited 50% of the Mg2+-ATPase or Mg2+,K+-ATPase activities. Inhibition of Mg2+,K+-ATPase activity was not competitive with respect to K+. Inhibition by calcium of Mg2+,K+ activity p-nitrophenyl phosphatase activity was competitive with respect to Mg2+ with an apparent Ki of 0.27 mM. Proton transport measured by acridine orange uptake was not detected in the presence of Ca2+ and K+. In the presence of Mg2+ and K+, Ca2+ inhibited proton transport with an apparent affinity similar to the inhibition of the Mg2+, K+-ATPase activity. The site of calcium inhibition was on the exterior of the vesicle. These results suggest that calcium activates basal turnover and inhibits K+ stimulation of the H+,K+-ATPase by binding at a cytosolic divalent cation site. The pseudo-first order rate constant for phosphoenzyme formation from 5 microM [gamma-32P]ATP was at least 22 times slower in the presence of calcium (0.015 s-1) than magnesium (greater than 0.310 s-1). The Ca.EP (phosphoenzyme formed in the presence of Ca2+) formed dephosphorylated four to five times more slowly that the Mg.EP (phosphoenzyme formed in the presence of Mg2+) in the presence of 8 mm trans-1,2-diaminocyclohexane-N,N,N',N'-tetraacetic acid (CDTA) or 250 microM ATP. Approximately 10% of the Ca.EP formed was sensitive to a 100 mM KCl chase compared with greater than 85% of the Mg.EP. By comparing the transient kinetics of the phosphoenzyme formed in the presence of magnesium (Mg.EP) and calcium (Ca.EP), we found two actions of divalent cations on dephosphorylation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
The effect of trypsin on gastric (H+ + K+)-ATPase and K+-phosphatase was studied. Loss of both enzymic activities was biphasic, consisting of a fast and slow phase. Several peptides were produced from the original 105,000-dalton region of the sodium dodecyl sulfate electrophoretic separation, but only two, 87,000 and 47,000 daltons, were labeled following incubation with [gamma-33P]ATP. After a 30-min hydrolysis, 35% of the original peptide remained unaltered and appeared to be a glycoprotein. ATP and ADP abolished the second phase of tryptic inactivation of both activities and only two peptides, of 78,000 and 30,000 daltons, were found on the acrylamide gel in addition to the original 105,000-dalton region, neither of which was labeled by [gamma-33P]ATP. The protection was specific for these nucleotides, AMP, beta, gamma-methylene ATP, TTP, and pNPP being ineffective. Na+ and K+ at high concentrations reduced the rate of loss of activity but no change in the peptides produced was found. The level of phosphoenzyme was increased 2-fold by trypsin treatment, whereas the quantity of K+-sensitive phosphoenzyme remained relatively constant. Thus, the 105,000-dalton region is heterogeneous, consisting of a catalytic subunit (the active site is on a 47,000-dalton fragment), a glycoprotein, and another 105,000-dalton peptide. The action of trypsin is initially to prevent interconversion of a K+-insensitive to a K+-sensitive form of the phosphoenzyme, thus inhibiting hydrolysis.  相似文献   

17.
The ATP/ADP exchange is shown to be a partial reaction of the (H+ +K+)-ATPase by the absence of measurable nucleoside diphosphokinase activity and the insensitivity of the reaction to P1, P5-di(adenosine-5') pentaphosphate, a myokinase inhibitor. The exchange demonstrates an absolute requirement for Mg2+ and is optimal at an ADP/ATP ratio of 2. The high ATP concentration (K0.5=116 microM) required for maximal exchange is interpreted as evidence for the involvement of a low affinity form of nucleotide site. The ATP/ADP exchange is regarded as evidence for an ADP-sensitive form of the phosphoenzyme. In native enzyme, pre-steady state kinetics show that the formation of the phosphoenzyme is partially sensitive to ADP while modification of the enzyme by pretreatment with 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) in the absence of Mg2+ results in a steady-state phosphoenzyme population, a component of which is ADP sensitive. The ATP/ADP exchange reaction can be either stimulated or inhibited by the presence of K+ as a function of pH and Mg2+.  相似文献   

18.
A microsomal fraction rich in (Na+ + K+)ATPase activity has been isolated from the outer medulla of pig kidney. The ability of this preparation to form phosphoenzyme on incubation with [gamma-32P]ATP and to bind [3H]ouabain was studied when its sulfatide was hydrolyzed by arylsulfatase treatment. The K+-dependent hydrolysis of the Na+-dependent phosphorylated intermediate as well as the ouabain binding were inactivated in direct relation to the breakdown of sulfatide. Both characteristics of the (Na+ + K+)ATPase preparation, lost by arylsulfatase treatment, were partially restored by the sole addition of sulfatide. These experiments indicate that sulfatide may play a role in sodium ion transport either in the conformational transition of the K+-insensitive phosphointermediate, E1P, to the K+-sensitive intermediate, E2P, or in the configuration of the high-affinity binding site for K+ of the E2P form. In addition, this glycolipid may have a specific role in the proteolipidic subunit that binds ouabain.  相似文献   

19.
The addition of Mg2+ or ATP to (Na+,K+)-ATPase (EC 3.6.1.3) of pig kidney modified with a sulfhydryl fluorescent reagent N-[p-(2-benzimidazolyl)phenyl]maleimide simply reduced fluorescence in the presence of Na+; however, the addition of both ligands to the enzyme induced a reversible dynamic change. The direction of the change was dependent on the concentration of Na+ present. These dynamic changes in fluorescence intensity both in the presence of low and high concentrations of Na+ can be repeated by the re-addition of ATP but not by ADP. Addition of ouabain under the former condition stabilized the fluorescence at the highest level, but the addition of ouabain under the latter condition increased the fluorescence from the lowest to the highest level. The phosphoenzyme formed under the former condition was sensitive to K+ and insensitive to ADP while the phosphoenzyme formed under the latter condition was sensitive to ADP and insensitive to K+. The data indicate that the positive and negative fluorescence changes were induced by the formation of K+-sensitive phosphoenzyme and ADP-sensitive phosphoenzyme, respectively. N-Ethylmaleimide treatment partially inhibited the positive change without affecting the negative change. These data also indicate that the transition of ADP-sensitive phosphoenzyme to K+-sensitive phosphoenzyme accompanied the largest fluorescence intensity change which was examined during the hydrolysis of ATP. The data obtained from the tryptophan fluorescence of both the native and the modified enzyme suggest that the micro-environments of the tryptophan and the sulfhydryl residues are similar in the state of K+-sensitive phosphoenzyme but different in the state of ADP-sensitive phosphoenzyme.  相似文献   

20.
Spermine and spermidine inhibit the (Na+ + K+)-ATPase (ATP phosphohydrolase, EC 3.6.1.3) reaction so that the effect increases as the ionic content due to Na+ and K+ in the reaction is reduced. Several other amines inhibit (Na+ + K+)-ATPase to varying degress and methylglyoxal-bis-(guanylhydrazone) was the most potent inhibitor among those tested. The inhibition by polyamines of the ATPase is uncompetitive with respect to Mg2+ and ATP activation of the reaction. Various naturally occurring polyamines and other amines inhibited Na+ activation of (Na+ + K+)-ATPase as well as Na+-dependent phosphoenzyme formation in an apparently competitive manner with respect to Na+. Likewise, K+-activation of (Na+ + K+)-ATPase as well as K+-p-nitrophenyl phosphatase was inhibited in an apparently competitive manner with respect to K+. Both the cation charge and structure (e.g., aliphatic chain length) may contribute to the inhibitory effects of the amines; however, Na+ sites appear to be more sensitive to cation charge than the aliphatic chain length of the amine, whereas the opposite appears to be true for K+ sites. The results do not indicate a specific effect of polyamines on (Na+ + K+)-ATPase or its partial reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号