首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Current methods for measuring cerebral blood volume (CBV) in newborn infants are unsatisfactory. A new method is described in which the effect of a small change (5-10%) in arterial oxygen saturation (SaO2) on cerebral oxyhemoglobin [HbO2] and deoxyhemoglobin [Hb] concentration is observed by near-infrared (NIR) spectroscopy. Previous experiments in which the NIR absorption characteristics of HbO2 and Hb and the pathlength of NIR light through the brain were defined allowed changes in [HbO2] and [Hb] to be quantified from the Beer-Lambert law. It is shown here that CBV can then be derived from the expression CBV = (delta[HbO2] - delta[Hb])/(2. delta SaO2.H.R.), where H is the large vessel total hemoglobin concentration and R to the cerebral-to-large vessel hematocrit ratio. Observations on 12 newborn infants with normal brains, born at 25-40 wk of gestation and aged 10-240 h, gave a mean value for CBV of 2.22 +/- 0.40 (SD) ml/100 g, whereas mean CBV was significantly higher 3.00 +/- 1.04 ml/100 g in 10 infants with brain injury born at 24 to 42 wk of gestation and aged 4-168 h (P less than 0.05).  相似文献   

2.
To noninvasively determine absolute concentrations of hemoglobin (Hb) plus myoglobin (Mb) in cardiac tissue by means of regular near infrared (NIR) light diffuse reflectance measurements, a first derivative approach was applied. The method was developed to separately calculate oxygenated and deoxygenated [Hb + Mb] as well as an effective pathlength, which NIR light passes through in the tissue between optodes. Applying a cotton wool-based phantom, which mimics muscle tissue, it was shown that the intensity of the pseudo-optical density first derivative depends linearly on both oxygenated and deoxygenated Hb concentration, thereby validating the Lambert-Beer law in the range of 0 to 0.25 mM tetrameric Hb. A high correlation (R = 0.995) was found between concentrations of Hb loaded onto the phantom and those determined spectrophotometrically, thereby verifying the first derivative method validity. The efficiency of the method was tested using in vivo pig hearts prior to and after ischemia initiated experimentally by left anterior descending artery branches occlusion. The results showed that the total [Hb + Mb] was 0.9-1.2 mM heme, the average tissue oxygen saturation was approximately 70% (which reduced to nearly 0% after occlusion), and the NIR (700-965 nm) light pathlength was 2.3 mm (differential pathlength factor [DPF] = 2.7-2.8) in a living heart tissue.  相似文献   

3.
The bovine eye-lens protein, alpha L-crystallin, has been studied with photon correlation spectroscopy to obtain the mutual diffusion coefficient, Dm, with fluorescence correlation spectroscopy to determine the tracer diffusion coefficient, DT, and with light scattering to get the isothermal osmotic compressibility (delta pi/delta c) P,T. The concentration dependence of Dm, DT, and (delta pi/delta c) P,T up to a volume fraction phi of the protein of 2.5 x 10(-2) has been interpreted on the basis of four different interaction potentials: (a) an extended hard-sphere potential; (b) a shielded Coulomb potential; (c) a shielded Coulomb interaction where the effect of counterions is included; (d) a simple mixed potential. The three parameters Dm, DT, and (delta pi/delta c) P,T have also been combined in the generalized Stokes-Einstein equation, Dm = [(delta pi/delta c)P,T . (1--phi) . (DT)]/(kappa B . T). Our results indicate that, in the case that photon correlation spectroscopy gives the mutual diffusion coefficient Dm, the applicability of the Stokes-Einstein equation can be questioned; or that, when one assumes the Stokes-Einstein equation to be valid, there is significant discrepancy between the result of photon correlation spectroscopy and Dm.  相似文献   

4.
Breast cancer causes the death of more than 150,000 women in the United States each year. Pregnant women cannot undergo mammography due to its dangerous side effects and, for younger women, a mammogram does not differentiate tumor from their dense breast tissue. Breast tumors usually become a localized absorber in the near infrared (NIR) wavelength region, because of the increased hemoglobin concentration around the area of the tumor. Therefore, NIR has a high potential to detect breast cancer without side effects. A computer simulation solving the photon transfer equation was used to study the detectability of various tumor sizes embedded in the breast model at various depths, for both reflectance and transmittance. Previous reflectance studies demonstrated that increasing the S-D separation does not necessarily allow the photons to penetrate deeper in the medium. The optimum S-D separation for breast tissue was found to be 3.0 cm, where the light penetrates up to 1.7 cm. Studies on the photon path in transmittance demonstrate that, at high modulation frequencies, (e.g. 1.0 GHz), the photon path becomes more coherent. Therefore, for transmittance measurements, high modulation frequencies can be useful to localize deep tumors. Multi frequency, multi- S-D separation reflectance can be used to provide information on tumor depth.  相似文献   

5.
A method that provides maps of absolute concentrations of oxygenated and deoxygenated myoglobin (Mb), its oxygenation, and its near-infrared (NIR) optical pathlength in cardiac tissue was developed. These parameters are available simultaneously. The method is based on NIR diffuse reflectance spectroscopic imaging and specific processing of the NIR images, which included a first derivative of the diffuse reflectance spectrum. Mb oxygenation, total Mb concentration, and NIR light pathlength were found to be in the range of 92%, 0.3 mM, and 12.5 mm, respectively, in beating isolated buffer-perfused and arrested pig hearts. The charge-coupled device camera enables sub-millimeter spatial resolution and spectroscopic imaging in 1.5 to 2.0 min. The technique is noninvasive and nondestructive. The equipment has no mechanical contact with the tissue of interest, leaving it undisturbed.  相似文献   

6.
The cyanobacterium Acaryochloris marina is the only known phototroph harboring chlorophyll (Chl) d. It is easy to cultivate it in a planktonic growth mode, and A. marina cultures have been subject to detailed biochemical and biophysical characterization. In natural situations, A. marina is mainly found associated with surfaces, but this growth mode has not been studied yet. Here, we show that the A. marina type strain MBIC11017 inoculated into alginate beads forms dense biofilm-like cell clusters, as in natural A. marina biofilms, characterized by strong O(2) concentration gradients that change with irradiance. Biofilm growth under both visible radiation (VIS, 400 to 700 nm) and near-infrared radiation (NIR, ~700 to 730 nm) yielded maximal cell-specific growth rates of 0.38 per day and 0.64 per day, respectively. The population doubling times were 1.09 and 1.82 days for NIR and visible light, respectively. The photosynthesis versus irradiance curves showed saturation at a photon irradiance of E(k) (saturating irradiance) >250 μmol photons m(-2) s(-1) for blue light but no clear saturation at 365 μmol photons m(-2) s(-1) for NIR. The maximal gross photosynthesis rates in the aggregates were ~1,272 μmol O(2) mg Chl d(-1) h(-1) (NIR) and ~1,128 μmol O(2) mg Chl d(-1) h(-1) (VIS). The photosynthetic efficiency (α) values were higher in NIR-irradiated cells [(268 ± 0.29) × 10(-6) m(2) mg Chl d(-1) (mean ± standard deviation)] than under blue light [(231 ± 0.22) × 10(-6) m(2) mg Chl d(-1)]. A. marina is well adapted to a biofilm growth mode under both visible and NIR irradiance and under O(2) conditions ranging from anoxia to hyperoxia, explaining its presence in natural niches with similar environmental conditions.  相似文献   

7.

Background  

Near infrared (NIR) light has been used widely to monitor important hemodynamic parameters in tissue non-invasively. Pulse oximetry, near infrared spectroscopy, and diffuse optical tomography are examples of such NIR light-based applications. These and other similar applications employ either lasers or light emitting diodes (LED) as the source of the NIR light. Although the hazards of laser sources have been addressed in regulations, the risk of LED sources in such applications is still unknown.  相似文献   

8.
Understanding near infrared light propagation in tissue is vital for designing next generation optical brain imaging devices. Monte Carlo (MC) simulations provide a controlled mechanism to characterize and evaluate contributions of diverse near infrared spectroscopy (NIRS) sensor configurations and parameters. In this study, we developed a multilayer adult digital head model under both healthy and clinical settings and assessed light‐tissue interaction through MC simulations in terms of partial differential pathlength, mean total optical pathlength, diffuse reflectance, detector light intensity and spatial sensitivity profile of optical measurements. The model incorporated four layers: scalp, skull, cerebrospinal‐fluid and cerebral cortex with and without a customizable lesion for modeling hematoma of different sizes and depths. The effect of source‐detector separation (SDS) on optical measurements' sensitivity to brain tissue was investigated. Results from 1330 separate simulations [(4 lesion volumes × 4 lesion depths for clinical +3 healthy settings) × 7 SDS × 10 simulation = 1330)] each with 100 million photons indicated that selection of SDS is critical to acquire optimal measurements from the brain and recommended SDS to be 25 to 35 mm depending on the wavelengths to obtain optical monitoring of the adult brain function. The findings here can guide the design of future NIRS probes for functional neuroimaging and clinical diagnostic systems.   相似文献   

9.
The recent development of near-infrared time- and frequency-resolved tissue spectroscopy techniques to probe tissue oxygenation and tissue oxygenation kinetics has led to the need for further quantitation of spectroscopic signals. In this paper, we briefly review the theory of light transport in strongly scattering media as monitored in the time and frequency domains, and use this theory to develop algorithms for quantitation of hemoglobin saturation from the photon decay rate (delta log R/delta t) obtained using time-resolved spectroscopy, and from the phase-shift (theta) obtained from frequency-resolved, phase-modulated spectroscopy. To test the relationship of these optical parameters, we studied the behavior of delta log R/delta t and theta as a function of oxygenation in model systems which mimicked the optical properties of tissue. Our results show that deoxygenation at varying hemoglobin concentrations can be monitored with the change in the photon decay kinetics, delta delta log R/delta t in the time-resolved measurements, and with the change in phase-shift, delta theta, in the frequency-resolved technique. Optical spectra of the adult human brain obtained with these two techniques show similar characteristics identified from the model systems.  相似文献   

10.
We have numerically solved the photon diffusion equation to predict the distribution of light in a tissue model system with a uniform concentration of fluorophore. Our results show that time-dependent measurements of light propagation can be used to monitor the fluorescent lifetimes of a uniformly distributed fluorophore in tissues. With proper referencing, frequency-domain measurements of phase-shift, theta, may allow quantitation of fluorescent lifetimes, tau, independent of changes in the local absorption and scattering properties. These results point to a new approach for noninvasive diagnostic monitoring through quantitation of fluorescent lifetime, tau, when the lifetime of the fluorophore is comparable with photon migration times.  相似文献   

11.
本文对三种银杏-农作物复合模式下植物种群对光合有效辐射的削弱和截获进行了模型化分析,并探讨了不同模式下光照强度的时空分布规律。结果表明:银杏果用-叶用-豆类作物复合模式具有最好的复合光效益,光能截获率可达92%;PAR在植冠层的削弱遵循Beer-Lambert定律;植物种群的叶面积、地上部分生物量、光吸收的关系可以用Y=axb数学模型描述。同时,果用、材用银杏冠层有较大的透光性和光强变异系数,可以作为银杏-农作物初期经营的上层树种,但要注意冠形的调控;光强的时间变化受冠层条件和太阳高度角的双重影响。  相似文献   

12.
While colloidal quantum dot photovoltaic devices (CQDPVs) can achieve a power conversion efficiency (PCE) of ≈12%, their insufficient optical absorption in the near‐infrared (NIR) regime impairs efficient utilization of the full spectrum of visible light. Here, high‐efficiency, solution‐processed, hybrid series, tandem photovoltaic devices are developed featuring CQDs and organic bulk heterojunction (BHJ) photoactive materials for front‐ and back‐cells, respectively. The organic BHJ back‐cell efficiently harvests the transmitted NIR photons from the CQD front‐cell, which reinforces the photon‐to‐current conversion at 350–1000 nm wavelengths. Optimizing the short‐circuit current density balance of each sub‐cell and creating a near ideal series connection using an intermediate layer achieve a PCE (12.82%) that is superior to that of each single‐junction device (11.17% and 11.02% for the CQD and organic BHJ device, respectively). Notably, the PCE of the hybrid tandem device is the highest among the reported CQDPVs, including single‐junction devices and tandem devices. The hybrid tandem device also exhibits almost negligible degradation after air storage for 3 months. This study suggests a potential route to improve the performance of CQDPVs by proper hybridization with NIR‐absorbing photoactive materials.  相似文献   

13.
Photon correlation spectroscopy is shown to be a practical technique for the accurate determination of translational speeds of bacteria. Though other attempts have been made to use light scattering as a probe of various aspects of bacterial motility, no other comprehensive studies to establish firmly the basic capabilities and limitations of the technique have been published. The intrinsic accuracy of the assay of translational speeds by photon correlation spectroscopy is investigated by analysis of synthetic autocorrelation data; consistently accurate estimates of the mean and second moment of the speed distribution can be calculated. Extensive analyses of experimental preparations of Salmonella typhimurium examine the possible sources of experimental difficulty with the assay. Cinematography confirms the bacterial speed estimates obtained by photon correlation techniques.  相似文献   

14.
An understanding of the optical properties of biological media and cells is essential to the development of noninvasive optical studies of tissues. Unicellular organisms offer a unique opportunity to investigate the factors affecting light propagation, since they can be manipulated in ways impossible for more complex biological samples. In this study, we examined optical absorption and scattering properties of strongly multiple scattering yeast suspensions by means of near-infrared (NIR) time-resolved spectroscopy (TRS) and a sample substitution method. We determined the critical parameters for photon migration by varying the cell organelle content, the cell ploidy, the cell size, and the concentration of suspended cells. The results indicate that the photon absorption is insensitive to cell differentiation and that the cell volume is the primary factor determining light-scattering property.  相似文献   

15.
Interestingly, only the D-form of firefly luciferin produces light by luciferin–luciferase (L–L) reaction. Certain firefly luciferin analogues with modified structures maintain bioluminescence (BL) activity; however, all L-form luciferin analogues show no BL activity. To this date, our group has developed luciferin analogues with moderate BL activity that produce light of various wavelengths. For in vivo bioluminescence imaging, one of the important factors for detection sensitivity is tissue permeability of the number of photons emitted by L–L reaction, and the wavelengths of light in the near-infrared (NIR) range (700–900 nm) are most appropriate for the purpose. Some NIR luciferin analogues by us had performance for in vivo experiments to make it possible to detect photons from deep target tissues in mice with high sensitivity, whereas only a few of them can produce NIR light by the L–L reactions with wild-type luciferase and/or mutant luciferase. Based on the structure–activity relationships, we designed and synthesized here a luciferin analogue with the 5-allyl-6-dimethylamino-2-naphthylethenyl moiety. This analogue exhibited NIR BL emissions with wild-type luciferase (λmax = 705 nm) and mutant luciferase AlaLuc (λmax = 655 nm).  相似文献   

16.
The light utilization efficiency and relative photon requirement of photosynthesis in pulsed and continuous light from light emitting diodes (LEDs) has been measured. First, we chacterized the photon requirement of photosynthesis from light of LEDs that differ in spectral quality. A photon requirement of 10.3±0.4 was measured using light from a 658 nm peak wavelength (22 nm half band width) LED over the range of 0–50 mol photons m–2 s–1 in 2 kPa O2 in leaves of tomato (Lycopersicon esculentum Mill., cv. VF36). Because the conversion of electrical power to photons increased with wavelength, LED lamps with peak photon output of 668 nm were most efficient for converting electricity to photosynthetically fixed carbon. The effect of pulsed irradiation on photosynthesis was then measured. When all of the light to make the equivalent of 50 mol photons m–2 s–1 was provided during 1.5 s pulses of 5000 mol photons m–2 s–1 followed by 148.5 s dark periods, photosynthesis was the same as in continuous 50 mol photons m–2 s–1. When the pulse light and dark periods were lengthened to 200 s and 19.8 ms, respectively, photosynthesis was reduced, although the averaged photon flux density was unchanged. Under these conditions, the light pulses delivered 1017 photons m–2, which we calculate to be equivalent to the capacitance of PS I or PS II. Data support the theory that photons in pulses of 100 s or shorter are absorbed and stored in the reaction centers to be used in electron transport during the dark period. When light/dark pulses were lengthened to 2 ms light and 198 ms dark, net photosynthesis was reduced to half of that measured in continuous light. Pigments of the xanthophyll cycle were not affected by any of these pulsed light treatments even though zeaxanthin formation occurred when leaves were forced to dissipate an equal amount of continuous light.Abbreviations CWF cool white fluorescent - EPS xanthophyll epoxidation state - LED light emitting diode - LUE light utilization efficiency - PFD photon flux density - PR photon requirement (for CO2 fixation) - PS II primary donor in Photosystem II - RPR relative photon requirement  相似文献   

17.
The time course of the rate of oxygen consumption (QO2) after a single flash of light has been measured in 300-micrometers slices of drone retina at 22 degrees C. To measure delta QO2(t), the change in QO2 from its level in darkness, the transients of the partial pressure of O2 (PO2) were recorded with O2 microelectrodes simultaneously in two sites in the slice and delta QO2 was calculated by a computer using Fourier transforms. After a 40-ms flash of intense light, delta QO2, reached a peak of 40 microliters O2/g.min and then declined exponentially to the baseline with a time constant tau 1 = 4.96 +/- 0.49 s (SD, n = 10). The rising phase was characterized by a time constant tau 2 = 1.90 +/- 0.35 s (SD, n = 10). The peak amplitude of delta QO2 increased linearly with the log of the light intensity. Replacement of Na+ by choline, known to decrease greatly the light-induced transmembrane current, caused a 63% decrease of delta QO2. With these changes, however, the kinetics of delta QO2 (t) were unchanged. This suggest that the recovery phase is rate-limited by a single reaction with apparent first-order kinetics. Evidence is provided that suggests that this reaction may be the working of the sodium pump. Exposure of the retina to high concentrations of ouabain or strophanthidin (inhibitors of the sodium pump) reduced the peak amplitude of delta QO2 by approximately 80% and increased tau 1. The increase of tau 1 was an exponential function of the time of exposure to the cardioactive steroids. Hence, it seems likely that the greatest part of delta QO2 is used for the working of the pump, whose activity is the mechanism underlying the rate constant of the descending limb of delta QO2 (t).  相似文献   

18.
Pigments absorbing 350–1,050 nm radiation have had an important role on the Earth for at least 3.5 billion years. The ion pumping rhodopsins absorb blue and green photons using retinal and pump ions across cell membranes. Bacteriochlorophylls (BChl), absorbing in the violet/blue and near infra red (NIR), power anoxygenic photosynthesis, with one photoreaction centre; and chlorophylls (Chl), absorbing in the violet/blue and red (occasionally NIR) power oxygenic photosynthesis, with two photoreaction centres. The accessory (bacterio)chlorophylls add to the spectral range (bandwidth) of photon absorption, e.g., in algae living at depth in clear oceanic water and in algae and photosynthetic (PS) bacteria in microbial mats. Organism size, via the package effect, determines the photon absorption benefit of the costs of synthesis of the pigment–protein complexes. There are unresolved issues as to the evolution of Chls vs. BChls and the role of violet/blue and NIR radiation in PS bacteria.  相似文献   

19.
Alkon DL 《Biophysical journal》2001,80(5):2056-2061
In quantum theory, nothing that is observable, be it physical, chemical, or biological, is separable from the observer. Furthermore, ". all possible knowledge concerning that object is given by its wave function" (Wigner, E. 1967. Symmetries and Reflections. Indiana University Press, Bloomington, IN), which can only describe probabilities of future events. In physical systems, quantum mechanical probabilistic events that are microscopic must, in turn, account for macroscopic events that are associated with a greater degree of certainty. In biological systems, probabilistic statistical mechanical events, such as secretion of microscopic synaptic vesicles, must account for macroscopic postsynaptic potentials; probabilistic single-channel events sum to produce a macroscopic ionic current across a cell membrane; and bleaching of rhodopsin molecules (responsible for quantal potential "bumps") produces a photoreceptor generator potential. Among physical systems, a paradigmatic example of how quantum theory applies to the observation of events concerns the interactions of particles (e.g., photons, electrons) with the two-slit apparatus to generate an interference pattern from a single common light source. For two-slit systems that use two independent laser sources with brief (<1 ms) intervals of mutual coherence (Paul, H. 1986. Rev. Modern Phys. 58:209-231), each photon has been considered to arise from both beams and has a probability amplitude to pass through each of the two slits. Here, a single laser source two-slit interference system was constructed so that each photon has a probability amplitude to pass through only one or the other, but not both slits. Furthermore, all photons passing through one slit could be distinguished from all photons passing through the other slit before their passage. This "either-or" system produced a stable interference pattern indistinguishable from the interference produced when both slits were accessible to each photon. Because this system excludes the interaction of one photon with both slits, phase correlation of photon movements derives from the "entanglement" of all photon wave functions due to their dependence on a common laser source. Because a laser source (as well as Young's original point source) will have stable time-averaged spatial coherence even at low intensities, the "either-or" two-slit interference can result from distinct individual photons passing one at a time through one or the other slit-rather than wave-like behavior of individual photons. In this manner, single, successive photons passing through separate slits will assemble over time in phase-correlated wave distributions that converge in regions of low and high probability.  相似文献   

20.
Some artificial light sources able to emit photons at specific wavelengths, such as LEDs, are useful for studying the effects of light quality on microalgal growth and production of fatty acids; however, they should not be used for outdoor cultivation of microalgae to produce bioenergy. Instead, various light filters capable of selectively transmitting red, blue, and red+blue light regions in solar radiation were used to cover 0.4 L bubble column photobioreactors to cultivate Tetraselmis sp. KCTC12236BP and investigate the influence of light quality on microalgal growth and fatty acid production. Biomass and fatty acid productivities in red light (0.10 ± 0.05 g/L/day and 11.8 ± 0.5 mg/L/day, respectively) were 7 ~ 53% and 9 ~ 61% higher than other colored lights based on the same number of supplied photons, respectively. The composition of fatty acids did not change significantly in response to transmitted light qualities of the filter. The ratio of saturated to unsaturated fatty acids was 3:7, and their contents were 12% in all groups, which corresponds with the results of LEDs. Plotting biomass and fatty acid productivity over the red photon fraction in supplied light revealed that increased productivities were closely correlated with red photon fraction in the filtered light. Overall, the results presented herein indicate that enhanced production of algal fatty acid could be achieved by application of light filters in outdoor settings without artificial lights.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号