首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: Rhizobium meliloti strain GR4 is a highly infective and competitive bacteria which was isolated in 1975 from a field site in Granada (Spain) and which has a high potential as an inoculant. R. meliloti isolates from alfalfa plants grown in this field site were characterized using polymerase chain reaction. Characterization was based on primers derived from insertion sequence elements (IS Rm3 and IS Rm4 ), plasmid origin of replication (pRmeGR4a repC locus) and plasmid pRmeGR4b specific DNA sequences. Soil isolates harbouring plasmid type pRmeGR4b represented the major infective population in this field site. A direct correlation between the presence of pRmeGR4b-like plasmid and the competitiveness of the strains was found. In addition, four different R. meliloti field populations isolated from Spanish soils were analyzed for the presence of pRmeGR4b related plasmids. Our results indicate that this plasmid type is widespread among R. meliloti field populations and that its frequency within the infective isolates depends on the host plant.  相似文献   

2.
Analysis of the DNA regions upstream of the phosphoenolpyruvate carboxykinase gene (pckA) in Rhizobium meliloti and Rhizobium sp. strain NGR234 identified an open reading frame which was highly homologous to the Agrobacterium tumefaciens chromosomal virulence gene product ChvI. A second gene product, 500 bp downstream of the chvI-like gene in R. meliloti, was homologous to the A. tumefaciens ChvG protein. The homology between the R. meliloti and A. tumefaciens genes was confirmed, because the R. meliloti chvI and chvG genes complemented A. tumefaciens chvI and chvG mutants for growth on complex media. We were unable to construct chvI or chvG insertion mutants of R. meliloti, whereas mutants carrying insertions outside of these genes were readily obtained. A 108-bp repeat element characterized by two large palindromes was identified in the chvI and chvG intergenic regions of both Rhizobium species. This element was duplicated in Rhizobium sp. strain NGR234. Another structurally similar element with a size of 109 bp was present in R. meliloti but not in Rhizobium sp. strain NGR234. These elements were named rhizobium-specific intergenic mosaic elements (RIMEs), because their distribution seems to be limited to members of the family Rhizobiaceae. A homology search in GenBank detected six more copies of the first element (RIME1), all in Rhizobium species, and three extra copies of the second element (RIME2), only in R. meliloti. Southern blot analysis with a probe specific to RIME1 showed the presence of several copies of the element in the genome of R. meliloti, Rhizobium sp. strain NGR234, Rhizobium leguminosarum, and Agrobacterium rhizogenes, but none was present in A. tumefaciens and Bradyrhizobium japonicum.  相似文献   

3.
We have previously isolated ineffective (Fix-) mutants of Rhizobium meliloti 104A14 requiring both arginine and uracil, and thus probably defective in carbamoylphosphate synthetase. We describe here the molecular and genetic analysis of the R. meliloti genes coding for carbamoylphosphate synthetase. Plasmids that complement the mutations were isolated from a R. meliloti gene bank. Restriction analysis of these plasmids indicated that complementation involved two unlinked regions of the R. meliloti chromosome, carA and carB. Genetic complementation between the plasmids and mutants demonstrated a single complementation group for carA, but two overlapping complementation groups for carB. The cloned R. meliloti genes hybridize to the corresponding E. coli carA and carB genes which encode the two subunits of carbamoylphosphate synthetase. Transposon Tn5 mutagenesis was used to localize the carA and carB genes on the cloned R. meliloti DNA. The cloned R. meliloti carA and carB genes were unable to complement E. coli carA or carB mutants alone or in combination. We speculate on the mechanism of the unusual pattern of genetic complementation at the R. meliloti carB locus.  相似文献   

4.
The genetic locus glt, encoding glutamate synthase from Rhizobium meliloti 1021, was selected from a pLAFR1 clone bank by complementation of the R. meliloti 41 Glt- mutant AK330. A fragment of cloned DNA complementing this mutant also served to complement the Escherichia coli glt null mutant PA340. Complementation studies using these mutants suggested that glutamate synthase expression requires two complementation groups present at this locus. Genomic Southern analysis using a probe of the R. meliloti 1021 glt region showed a close resemblance between R. meliloti 1021, 41, and 102f34 at glt, whereas R. meliloti 104A14 showed many differences in restriction fragment length polymorphism patterns at this locus. R. meliloti 102f34, but not the other strains, showed an additional region with sequence similarity to glt. Insertion alleles containing transposable kanamycin resistance elements were constructed and used to derive Glt- mutants of R. meliloti 1021 and 102f34. These mutants were unable to assimilate ammonia and were Nod+ Fix+ on alfalfa seedlings. The mutants also showed poor or no growth on nitrogen sources such as glutamate, aspartate, arginine, and histidine, which are utilized by the wild-type parental strains. Strains that remained auxotrophic but grew nearly as well as the wild type on these nitrogen sources were readily isolated from populations of glt insertion mutants, indicating that degradation of these amino acids is negatively regulated in R. meliloti as a result of disruptions of glt.  相似文献   

5.
R Simon  B Htte  B Klauke    B Kosier 《Journal of bacteriology》1991,173(4):1502-1508
On the basis of an RSF1010-derived broad-host-range vector, three different systems which enable positive detection and isolation of insertion sequence (IS) elements from gram-negative bacteria were constructed. Vectors pSUP104-pheS, pSUP104-rpsL, and pSUP104-sac were used successfully in a number of Rhizobium strains and in Xanthomonas campestris. More than 20 different IS elements were isolated and characterized. The 16 IS elements from Rhizobium meliloti were further used to characterize various R. meliloti strains by hybridization. The resulting hybridization patterns were different for every strain and gave a clear and definite IS fingerprint of each strain. These IS fingerprints can be used to identify and characterize R. meliloti strains rapidly and unequivocally, as they proved to be relatively stable. Some of the IS elements were found to be identical when the IS fingerprints from a given strain were compared. This method of IS fingerprinting can also establish whether IS elements are the same, related, or different.  相似文献   

6.
Rhizobium meliloti strains isolated from alfalfa plants grown in a mining recultivation field, in a model ecosystem (microcosm) and in soil core containers were characterized by two new taxonomic methods, fingerprinting and handprinting, using insertion sequence elements (IS) as hybridization probes. The diversity of strains within the field population could first be detected with IS-fingerprinting, whereby nearly three times more groups of Rhizobium meliloti strains could be identified in comparison to the groups according to plasmid profiles. This complexity and diversity of the rhizobial population was also detected in microcosm studies. Strains identified among the field population were also detected in the microcosm studies. The persistence of rhizobia in soil was demonstrated in soil core samples held in a cold room for 2 years. A decrease in the genomic diversity of the R. meliloti population upon soil storage was observed. A novel monitoring method, IS-handprinting, in which the presence of certain endogenous insertion elements within a strain is registered, was successfully employed to characterize genetically the field R. meliloti strains with simplicity and speed. In contrast to IS-fingerprinting, IS-handprinting is based on a simple plus-or-minus detection, which is sufficient for a taxonomic characterization. Both methods, using a non-radioactive detection system, are sensitive enough to detect one copy of an insertion element in a strain's genome. IS-fingerprinting, with its fine resolution, would be suitable for ecological studies of individual strains in any complex ecosystem, whereas IS-handprinting would be suitable for monitoring strains and characterizing large numbers of strains.  相似文献   

7.
We have physically and genetically characterized 20 symbiotic and 20 auxotrophic mutants of Rhizobium meliloti, the nitrogen-fixing symbiont of alfalfa (Medicago sativa), isolated by transposon Tn5 mutagenesis. A "suicide plasmid" mutagenesis procedure was used to generate TN-5-induced mutants, and both auxotrophic and symbiotic mutants were found at a frequency of 0.3% among strains containing random TN5 insertions. Two classes of symbiotic mutants were isolated: 4 of the 20 formed no nodules at all (Nod-), and 16 formed nodules which failed to fix nitrogen (Fix-). We used a combination of physical and genetic criteria to determine that in most cases the auxotrophic and symbiotic phenotypes could be correlated with the insertion of a single Tn5 elements. Once the Tn5 element was inserted into the R. meliloti genome, the frequency of its transposition to a new site was approximately 10-8 and the frequency of precise excision was less than 10-9. In approximately 25% of the mutant strains, phage Mu DNA sequences, which originated from the suicide plasmid used to generate the Tn5 transpositions, were also found in the R. meliloti genome contiguous with Tn5. These later strains exhibited anomalous conjugation properties, and therefore we could not correlate the symbiotic phenotype with a Tn5 insertion. In general, we found that both physical and genetic tests were required to fully characterize transposon-induced mutations.  相似文献   

8.
An internal 0.9 kb segment of Rhizobium meliloti insertion sequence ISRm1 was used as a probe to determine the distribution of ISRm1 in strains of R. meliloti and other Gram-negative bacteria. The insertion sequence was detected in 80% (12/15) of R. meliloti strains from different parts of the world. Its copy number ranged from one to at least eleven. The ISRm1 copies detected showed variation in their internal restriction sites and their degree of homology to the probe. ISRm1 was found in a variety of genomic restriction fragments, and was detected in plasmids, including the nod and exo megaplasmids of R. meliloti. Other rhizobia found to contain ISRm1 were a strain of R. leguminosarum biovar phaseoli and two Rhizobium isolates capable of nodulating both Medicago sativa and Phaseolus vulgaris. It was also found in a diazotrophic soil bacterium isolated from the roots of wetland rice.  相似文献   

9.
Two novel insertion sequences, IS1312 and IS1313, were found in pTiBo542, the Ti plasmid of Agrobacterium tumefaciens strains Bo542 and A281. Nucleotide sequencing and Southern hybridization revealed that IS1312 and IS1313 are homologous to Rhizobium meliloti ISRm1 and ISRm2, respectively. IS1312, ISRm1, and another Agrobacterium insertion sequence, IS426, belong to the same IS3 family of insertion sequences; however, IS1312 is more closely related to the Rhizobium ISRm1 than it is to the Agrobacterium IS426. The distribution patterns of these insertion elements and their sequence similarities suggest that IS1312 and IS1313 were horizontally transferred from R. meliloti to A. tumefaciens.  相似文献   

10.
I. J. Oresnik  T. C. Charles    T. M. Finan 《Genetics》1994,136(4):1233-1243
Rhizobium meliloti mutants carrying ndvF insertion or deletion mutations induce nodules on alfalfa which contain very few infected cells and fail to fix N(2) (Fix(-)). We have characterized five independent second site mutations (designated sfx) which completely suppress the Fix(-) phenotype of ndvF mutants on Medicago sativa but not on another R. meliloti host Melilotus alba. Genetic mapping and phenotypic analysis revealed that the suppressor mutations sfx-1, sfx-4 and sfx-5 mapped to a single locus which was distinct from another locus defined by the sfx-2 and sfx-3 mutations. Tn5-mob-mediated conjugal mapping experiments showed that the sfx-1 locus was located clockwise from trp-33 on the R. meliloti chromosome and a detailed cotransduction map of this region was generated. To clone the sfx-1 locus, we prepared a cosmid library from total DNA obtained from an sfx-1, ndvF deletion strain. From this library, a cosmid pTH56, which converted Fix(-) ndvF mutants to Fix(+), was isolated. Southern blot analysis provided direct physical evidence that the insert DNA in plasmid pTH56 was contiguous with the sfx-1 region. On low osmolarity glutamate-yeast extract-mannitol-salts medium (GYM) agar medium, ndvF insertion and deletion mutants were found to have a mucoid colony phenotype, as opposed to the dry colony phenotype of the wild-type strain. This phenotype was shown to be dependent on the exoB and expE genes required for synthesis of exopolysaccharide II in R. meliloti but not to be dependent on genes required exclusively for the synthesis of the succinoglycan or exopolysaccharide I. Transduction of either sfx-1 or sfx-2 or transfer of the cosmid pTH56 into the ndvF mutants restored them to a wild-type dry colony phenotype. The mucoid phenotype is not responsible for the Fix(-) phenotype of ndvF mutants as the Fix(-), ndvF exp double mutants can be complemented to Fix(+) by introducing plasmids which carry only the wild-type ndvF genes.  相似文献   

11.
We demonstrate for the first time that the broad-host-range stabilization loci from plasmid RK2 cause total retention of plasmids in cells of Rhizobium meliloti during symbiosis with alfalfa. Two derivatives of plasmid RK2, pRK290 and a 7.3-kb mini-RK2 plasmid, were stabilized in R. meliloti cells isolated from root nodules by the insertion of a 3.2-kb DNA fragment or a smaller 0.8-kb DNA fragment derived from the RK2 stabilization region.  相似文献   

12.
Transfer of an IncP plasmid carrying the Rhizobium meliloti nodFE, nodG, and nodH genes to Rhizobium trifolii enabled R. trifolii to nodulate alfalfa (Medicago sativa), the normal host of R. meliloti. Using transposon Tn5-linked mutations and in vitro-constructed deletions of the R. meliloti nodFE, nodG, and nodH genes, we showed that R. meliloti nodH was required for R. trifolii to elicit both root hair curling and nodule initiation on alfalfa and that nodH, nodFE, and nodG were required for R. trifolii to elicit infection threads in alfalfa root hairs. Interestingly, the transfer of the R. meliloti nodFE, nodG, and nodH genes to R. trifolii prevented R. trifolii from infecting and nodulating its normal host, white clover (Trifolium repens). Experiments with the mutated R. meliloti nodH, nodF, nodE, and nodG genes demonstrated that nodH, nodF, nodE, and possibly nodG have an additive effect in blocking infection and nodulation of clover.  相似文献   

13.
Prosopis is a Mimosaceae legume tree indigenous to South America and not naturalized in Europe. In this work 18 rhizobial strains nodulating Prosopis alba roots were isolated from a soil in North Spain that belong to eight different randomly amplified polymorphic DNA groups phylogenetically related to Sinorhizobium medicae, Sinorhizobium meliloti and Rhizobium giardinii according to their intergenic spacer and 16S rRNA gene sequences. The nodC genes of isolates close to S. medicae and S. meliloti were identical to those of S. medicae USDA 1,037(T) and S. meliloti LMG 6,133(T) and accordingly all these strains were able to nodulate both alfalfa and Prosopis. These nodC genes were phylogenetically divergent from those of the isolates close to R. giardinii that were identical to that of R. giardinii H152(T) and therefore all these strains formed nodules in common beans and Prosopis. The nodC genes of the strains isolated in Spain were phylogenetically divergent from that carried by Mesorhizobium chacoense Pr-5(T) and Sinorhizobium arboris LMG 1,4919(T) nodulating Prosopis in America and Africa, respectively. Therefore, Prosopis is a promiscuous host which can establish symbiosis with strains carrying very divergent nodC genes and this promiscuity may be an important advantage for this legume tree to be used in reforestation.  相似文献   

14.
15.
16.
Rhizobium meliloti exists either as a free-living soil organism or as a differentiated endosymbiont bacteroid form within the nodules of its host plant, alfalfa (Medicago sativa), where it fixes atmospheric N2. Differentiation is accompanied by major changes in DNA replication and cell division. In addition, R. meliloti harbors three unique large circular chromosome-like elements whose replication coordination may be complex. As part of a study of DNA replication control in R. meliloti, we isolated a dnaA homolog. The deduced open reading frame predicts a protein of 57 kDa that is 36% identical to the DnaA protein of Escherichia coli, and the predicted protein was confirmed by immunoblot analysis. In a comparison with the other known DnaA proteins, this protein showed the highest similarity to that of Caulobacter crescentus and was divergent in some domains that are highly conserved in other unrelated species. The dnaA genes of a diverse group of bacteria are adjacent to a common set of genes. Surprisingly, analysis of the DNA sequence flanking dnaA revealed none of these genes, except for an rpsT homolog, also found upstream of dnaA in C. crescentus. Instead, upstream of rpsT lie homologs of fpg, encoding a DNA glycosylase, and fadB1, encoding an enoyl-coenzyme A hydratase with a strikingly high (53 to 55%) level of predicted amino acid identity to two mammalian mitochondrial homologs. Downstream of dnaA, there are two open reading frames that are probably expressed but are not highly similar to any genes in the databases. These results show that R. meliloti dnaA is located within a novel gene arrangement.  相似文献   

17.
The genome of Sinorhizobium meliloti type strain Rm1021 consists of three replicons: the chromosome and two megaplasmids, pSymA and pSymB. Additionally, many indigenous S. meliloti strains possess one or more smaller plasmids, which represent the accessory genome of this species. Here we describe the complete nucleotide sequence of an accessory plasmid, designated pSmeSM11a, that was isolated from a dominant indigenous S. meliloti subpopulation in the context of a long-term field release experiment with genetically modified S. meliloti strains. Sequence analysis of plasmid pSmeSM11a revealed that it is 144,170 bp long and has a mean G+C content of 59.5 mol%. Annotation of the sequence resulted in a total of 160 coding sequences. Functional predictions could be made for 43% of the genes, whereas 57% of the genes encode hypothetical or unknown gene products. Two plasmid replication modules, one belonging to the repABC replicon family and the other belonging to the plasmid type A replicator region family, were identified. Plasmid pSmeSM11a contains a mobilization (mob) module composed of the type IV secretion system-related genes traG and traA and a putative mobC gene. A large continuous region that is about 42 kb long is very similar to a corresponding region located on S. meliloti Rm1021 megaplasmid pSymA. Single-base-pair deletions in the homologous regions are responsible for frameshifts that result in nonparalogous coding sequences. Plasmid pSmeSM11a carries additional copies of the nodulation genes nodP and nodQ that are responsible for Nod factor sulfation. Furthermore, a tauD gene encoding a putative taurine dioxygenase was identified on pSmeSM11a. An acdS gene located on pSmeSM11a is the first example of such a gene in S. meliloti. The deduced acdS gene product is able to deaminate 1-aminocyclopropane-1-carboxylate and is proposed to be involved in reducing the phytohormone ethylene, thus influencing nodulation events. The presence of numerous insertion sequences suggests that these elements mediated acquisition of accessory plasmid modules.  相似文献   

18.
19.
20.
Rhizobium meliloti SU47 and Rhizobium sp. strain NGR234 produce distinct exopolysaccharides that have some similarities in structure. R. meliloti has a narrow host range, whereas Rhizobium strain NGR234 has a very broad host range. In cross-species complementation and hybridization experiments, we found that several of the genes required for the production of the two polysaccharides were functionally interchangeable and similar in evolutionary origin. NGR234 exoC and exoY corresponded to R. meliloti exoB and exoF, respectively. NGR234 exoD was found to be an operon that included genes equivalent to exoM, exoA, and exoL in R. meliloti. Complementation of R. meliloti exoP, -N, and -G by NGR234 R'3222 indicated that additional equivalent genes remain to be found on the R-prime. We were not able to complement NGR234 exoB with R. meliloti DNA. In addition to functional and evolutionary equivalence of individual genes, the general organization of the exo regions was similar between the two species. It is likely that the same ancestral genes were used in the evolution of both exopolysaccharide biosynthetic pathways and probably of pathways in other species as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号