首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.

Objectives

Arterial stiffness and wave reflection parameters assessed from both invasive and non-invasive pressure and flow readings are used as surrogates for ventricular and vascular load. They have been reported to predict adverse cardiovascular events, but clinical assessment is laborious and may limit widespread use. This study aims to investigate measures of arterial stiffness and central hemodynamics provided by arterial tonometry alone and in combination with aortic root flows derived by echocardiography against surrogates derived by a mathematical pressure and flow model in a healthy middle-aged cohort.

Methods

Measurements of carotid artery tonometry and echocardiography were performed on 2226 ASKLEPIOS study participants and parameters of systemic hemodynamics, arterial stiffness and wave reflection based on pressure and flow were measured. In a second step, the analysis was repeated but echocardiography derived flows were substituted by flows provided by a novel mathematical model. This was followed by a quantitative method comparison.

Results

All investigated parameters showed a significant association between the methods. Overall agreement was acceptable for all parameters (mean differences: -0.0102 (0.033 SD) mmHg*s/ml for characteristic impedance, 0.36 (4.21 SD) mmHg for forward pressure amplitude, 2.26 (3.51 SD) mmHg for backward pressure amplitude and 0.717 (1.25 SD) m/s for pulse wave velocity).

Conclusion

The results indicate that the use of model-based surrogates in a healthy middle aged cohort is feasible and deserves further attention.  相似文献   

2.
Summary It is generally agreed that solute transport across theChara plasma membrane is energized by a proton electrochemical gradient maintained by an H+-extruding ATPase. Nonetheless, as deduced from steady-state current-voltage (I-V) measurements, the kinetic and thermodynamic constraints on H+-ATPase function remain in dispute. Uncertainties necessarily surround long-term effects of the relatively nonspecific antagonists used in the past; but a second, and potentially more serious problem has sprung from the custom of subtracting, across the voltage spectrum, currents recorded following pump inhibition from currents measured in the control. This practice must fail to yield the trueI-V profile for the pump when treatments alter the thermodynamic pressure on transport.We have reviewed these issues, using rapid metabolic blockade with cyanide and fitting the resultant whole-cellI-V and difference-current-voltage (dI-V) relations to a reaction kinetic model for the pump and parallel, ensemble leak. Measurements were carried out after blocking excitation with LaCl3, so that steady-state currents could be recorded under voltage clamp between –400 and +100 mV. Exposures to 1mm NaCN (CN) and 0.4mm salicylhydroxamic acid (SHAM) depolarized (positive-going)Chara membrane potentials by 44–112 mV with a mean half time of 5.4±0.8 sec (n=13). ATP contents, which were followed in parallel experiments, decayed coincidently with a mean half time of 5.3±0.9 sec ([ATP] t=0, 0.74±0.3mm; [ATP] t=x , 0.23±0.02mm). Current-voltage response to metabolic blockade was described quantitatively in context of these changes in ATP content and the consequent reduction in pump turnover rate accompanied by variable declines in ensemble leak conductance. Analyses ofdI-V curves (±CN+SHAM) as well as of families ofI-V curves taken at times during CN+SHAM exposures indicated a stoichiometry for the pump of one charge (H+) transported per ATP hydrolyzed and an equilibrium potential near –420 mV at neutral external pH; under these conditions, the pump accounted for approximately 60–75% of the total membrane conductance nearV m. Complementary results were obtained also in fitting previously publishedI-V data gathered over the external pH range 4.5–7.5 Kinetic features deduced for the pump were dominated by a slow step preceding H+ unloading outside, and by recycling and loading steps on the inside which were in rapid equilibrium. These characteristics predict, in marked contrast to the situation forNeurospora, that cytoplasmic acid loads inChara should shift the pumpI-V curve negative-going along the voltage axis with little change in maximum current output at positive voltages.  相似文献   

3.
31P-Nmr relaxation parameters (spin-lattice relaxation time, linewidth, and nuclear Overhauser effect) were obtained at three different frequencies for poly(U) and a well-defined (145 ± 3 base-pair) fragment of DNA in solution. Data sets for the two samples were analyzed by theories which included relaxation by the mechanisms of 31P chemical shift anisotropy as well as by 1H-31P dipole–dipole interaction. Neither data set could be satisfactorily described by a single correlation time. A model of a rigid rotor most nearly fits the data for the DNA molecule. Parameters obtained from the least-square fit indicate (1) that the DNA undergoes anisotropic reorientation with a correlation time τ0 = 6.5 × 10?7 sec for the end-to-end motion, (2) the ratio of diffusion constants D/D is 91, and (3) that the linewidth is due to chemical shift dispersion to the extent of 0.5 ppm. Some deviations of the calculated from the observed values suggested that significant torsional and bending motions may also take place for this DNA. Another model which contains isotropic motion but with a broad distribution of correlation times was required to fit the data for poly(U). A log ? χ2 distribution function of correlation times [Scheafer, J. (1973) Macromolecules 6 , 881–888] described well the motion of poly(U) with the average correlation time τ = 3.3 × 10?9 sec and a distribution parameter p = 14.  相似文献   

4.
The enzymatic basis for the Ca2+ pump in human red cells is an ATPase with hysteretic properties. The Ca2+-ATPase shifts slowly between a ground state deficient in calmodulin and an active state saturated with calmodulin, and rate constants for the reversible shifts of state were recently determined at different Ca2+ concentrations (Scharff, O. and Foder, B. (1982) Biochim. Biophys. Acta 691, 133–143). In order to study whether the Ca2+ pump in intact red cells also exhibits hysteretic properties we have analysed transient increases of intracellular calcium concentrations (Cai), induced by the divalent cation ionophore A23187. The time-dependent changes of Cai were measured by use of radioactive calcium (45Ca2+) and analysed with the aid of a mathematical model, based partly on the Ca2+-dependent parameters obtained from Ca2+-ATPase experiments, partly on the A23187-induced Ca2+ fluxes determined in experiments with intact red cells. According to the model a delay in the activation of the Ca2+ pump is a prerequisite for the occurrence of A23187-induced calcium transients in the red cells, and we conclude that the Ca2+ pump in human red cells responds hysteretically. It is suggested that Ca2+ pumps in other types of cell also have hysteretic properties.  相似文献   

5.
Thermal stability of plasma membrane Ca2+ pump was systematically studied in three micellar systems of different composition, and related with the interactions amphiphile-protein measured by fluorescence resonance energy transfer. Thermal denaturation was characterized as an irreversible process that is well described by a first order kinetic with an activation energy of 222 ± 12 kJ/mol in the range 33–45°C. Upon increasing the mole fraction of phospholipid in the mixed micelles where the Ca2+ pump was reconstituted, the kinetic coefficient for the inactivation process diminished until it reached a constant value, different for each phospholipid species. We propose a model in which thermal stability of the pump depends on the composition of the amphiphile monolayer directly in contact with the transmembrane protein surface. Application of this model shows that the maximal pump stability is attained when 80% of this surface is covered by phospholipids. This analysis provides an indirect measure of the relative affinity phospholipid/detergent for the hydrophobic transmembrane surface of the protein (K LD ) showing that those phospholipids with higher affinity provide greater stability to the Ca2+ pump. We developed a method for directly measure K LD by using fluorescence resonance energy transfer from the membrane protein tryptophan residues to a pyrene-labeled phospholipid. K LD values obtained by this procedure agree with those obtained from the model, providing a strong evidence to support its validity. Received: 5 August 1999/Revised: 20 October 1999  相似文献   

6.
Summary The current-voltage curve of theChara membrane was obtained by applying a slow ramp depo- and hyperpolarization by use of voltage clamp. With the progress of poisoning by DCCD (dicyclohexylcarbodiimide) theI–V curve moved by about 50 mV (depolarization) along the voltage axis, reducing its slope, and finally converged to thei d -V curve of the passive diffusion channel. Changes ofi p -V curve of the electrogenic pump channel could be obtained by subtracting the latter from the former.The sigmoidali p -V curve could be simulated satisfactorily by adopting a simple reaction kinetic model. Kinetic parameters of the successive changes of state of the H+ ATPase could be evaluated. Changes of these kinetic parameters during inhibition gave useful information about the molecular mechanism of the electrogenic pump.Depolarization of the membrane potential, decrease of membrane conductance, and decrease of pump current during inhibition of the pump with DCCD are caused mainly by the decrease of conductance of the pump channel. The decrease of this pump conductance is caused principally by a marked decrease of the rate constant for releasing H+ to the outside.  相似文献   

7.
Summary In cells of the freshwater algaHydrodictyon africanum, in solutions where [K+]0=0.1mm and pH0>7.0, the membrane in the light is hyperpolarized. The membrane potential difference {ie179-1} has values from –180 to –275 mV, more negative than any ion diffusion potential difference, and is predominantly a function of pH0, and independent of [K+]0. The hyperpolarization of the membrane appears to arise from an electrogenic efflux of H+, estimated from voltage-clamp data to be about 8 nmol m–2 sec–1 when pH0=8.5. In the light the membrane conductanceg m is about 0.084 S m–2. At light-off, {ie179-2} becomes less negative, with a halftime for change of 15 to 30 sec andg m decreases by about 0.052 S m–2. After dark periods of up to 300 sec, {ie179-3} is largely independent of pH0 for values greater than 6.0 and usually behaves as a combined K+ and Na+ diffusion potential with permeability ratioP Na/P K=0.05 to 0.2. The membrane potassium conductanceg K has either a low value of 2–6×10–2 Sm–2, or a high value of up to 18×10–2 S m–2 depending on [K+]0, the transition from low to high values occurring when {ie179-4} moves over a threshold value that is more negative than {ie179-5}, the electrochemical equilibrium potential for K+. The time for half-change of the transition is about 30 sec. The results are consistent with a model of the membrane in which the pump electromotive force and conductance are in parallel with diffusive electromotive forces and conductances. When the pump is operating its properties determine membrane properties, and when it is inoperative, or running at a diminished rate, the membrane properties are determined more by the diffusive pathways. Changes in both pump rate andg K can account for a variety of characteristic changes in membrane PD and conductance occurring in response to ligh-dark changes, changes in light intensity, pasage of externally applied electric current across the membrane and changes in ionic constituents of the external medium.  相似文献   

8.
Morphology and recordings of electrical activity of Kuruma shrimp (Penaeus japonicus) giant medullated nerve fibers were carried out. A pair of giant fibers with external diameter of about 120 μ and 10 μ in myelin thickness were found in the ventral nerve cord. The diameter of the axon is about 10 μ. Thus there is a wide gap between the axon and the external myelin sheath. Each axon is doubly coated directly by Schwann cells and indirectly by the myelin sheath layer which is produced by those Schwann cells. Impulse conduction velocities of these giant fibers showed a range between 90–210 m/sec at about 22°C. Large action potentials (up to 113 mV, rise time of 0.16–0.3 msec, maximum rate of rise of 650–1250 V/sec, half decay time of 0.2–0.3 msec, maximum rate of fall of 250–450 V/sec and total duration of less than 1.5 msec) could be obtained by inserting microelectrodes or by longitudinal insertion of 25 μ diameter capillary electrodes into the gap but no DC-potential difference was observed across the myelin sheath. Transmyelin electrical parameters were very favorable for fast impulse conduction: myelin resistance of 3 × 104 Ω cm2; time constant of 0.38 msec; myelin capacitance of 1.35 × 10?8 F/cm2; gap fluid resistivity of 23 Ω cm. The existence of nodes of Ranvier could not be demonstrated morphologically, but electrophysiological evidence suggests that a type of saltatory conduction occurs in these giant fibers.  相似文献   

9.
A method is presented for an evaluation of the hemodynamic significance of a stenotic lesion in the arterial tree.Twenty-three patients were examined with arteriosclerosis obliterans and intermittent claudication of the same severity. Flow velocity data obtained by angiodensitometry and viscosity values calculated from the hematocrit were inserted into the Poiseuille''s flow formula to obtain the pressure drop across a stenotic lesion in the left external iliac artery. By the same way, the pressure gradient was calculated in 33 “normal” subjects.The normal pressure gradient along the external iliac artery varied between 23 to 110 dynes/cm2 (52 ± 24 dynes/cm2 for mean and S.d), and the normal resistance to flow was 6.08 ± 4.1 dyne sec/cm5).Stenotic lesions of similar dimensions gave widely varying pressure drops (114-4,736 dynes/cm2) (mean and S.d 1,309 ± 1,224 dynes/cm2) indicating a difference in the hemodynamic significance of the various lesions. These values were significantly different (p(t) < 0.001) from the normal values. The resistance across these stenotic lesions ranged between 21 to 768 dyne sec/cm5 (196 ± 192 dyne sec/cm5) for the mean and S.d and this was significantly different from the normal group; p(t) < 0.001.Direct measurement of blood viscosity coupled with angiocinedensitometry at rest and after forced vasodilatation should provide an accurate means of determining the relative significance of a stenotic lesion and distal vessel disease in a given patient on blood flow to the leg.  相似文献   

10.
Summary The permeability of isolated muscle fibers of the giant barnacleMegabalanus psittacus to water and nonelectrolytes was studied by determining their reflection and permeability coefficients. Reflection coefficients were obtained by comparing the osmotic fluxes produced by a test molecule to that produced by the impermeant sucrose molecule. Permeability coefficients were determined for measurements of tracer uptake.The results indicate that, in these fibers, nonelectrolyte permeability is closely related to lipid solubility and molecular size.A value of 2.16×10–12 cm3/sec dyne for the hydraulic conductivity and a value of 10.45×10–4 cm/sec for3HHO permeability coefficient were obtained.The effect of membrane surface invaginations and clefts on the determination of permeability coefficients is discussed.  相似文献   

11.
The ability to predict isoprene emissions from plants is important for predicting atmospheric chemistry. To improve the basis for prediction capability, data obtained from continuous field measurements of isoprene and monoterpene emissions from three Amazonian tree species were related to observed environmental and leaf physiological parameters using a new neural network approach. The environmental parameters included leaf temperature, light, relative humidity, water vapour pressure deficit, and the history of ambient temperature and ozone concentration, whereas the physiological parameters included stomatal conductance, assimilation and intercellular CO2 concentration. The neural approach with 24 different combinations of these parameters was applied to predict the emission variability observed during short time periods (2–3 d) with individual tree branches and, on a longer-term scale, in aggregated data sets from different seasons, leaf developmental stage, and light environment. The results were compared to the quasi standard emission algorithm for isoprene. On the short-term scale, good agreement (r2≈ 0.9) was obtained between observations and predictions of the standard algorithm as well as predictions of the neural network using the same input parameters (leaf temperature and light). When these predictors were used to model the long-term emission variability, r2 was reduced to < 0.5 for both approaches. Remarkably, for the neural technique, more than 50% of the unexplained variance could be explained by the mean temperature of the preceding 36 h. An even better network performance was obtained with physiological parameter combinations (r2 > 0.9) suggesting a strong and applicable link between isoprenoid emission and leaf primary metabolism.  相似文献   

12.
Previous unpublished experimental results of fractional factorial experiments showed that significant external factors affecting high-pressure processing (HPP) inactivation were pressure, temperature, and pressure holding time. Based on these results, response surface methodology (RSM) was employed in the present work, and a quadratic equation for HPP inactivation was built with RSM. By analyzing response surface plots and their corresponding contour plots and by solving the quadratic equation, experimental values were shown to be significantly in good agreement with predicted values, since the adjusted determination coefficient (R Adj 2) was 0.9812 and the level of significance was P<0.0001. Optimum process parameters for a 6-log cycle reduction of Listeria monocytogenes were obtained: pressure, 448.0 MPa; temperature, 41°C; and pressure holding time, 11 min. The adequacy of the model equation in predicting optimum response values was verified effectively by validation data.  相似文献   

13.
K L Wun  W Prins 《Biopolymers》1975,14(1):111-117
Quasi-elastic light scattering as measured by intensity fluctuation (self-beat) spectroscopy in the time domain can be profitably used to follow both the translational diffusion D and the dominant internal flexing mode τint of DNA and its complexes with various histones in aqueous salt solutions. Without histones, DNA is found to have D = 1.6 × 10?8 cm2/sec and τint ? 5 × 10?4 sec in 0.8 M NaCl, 2 M urea at 20°C. Total histone as well as fraction F2A induce supercoiling (D = 2.6 × 10?8 cm2/sec, τint ? 2.8 × 10?4 sec) whereas fraction F1 induces uncoiling (D = 1.0 × 10?8 cm2/sec, τint ? 9.4 × 10?4 sec). Upon increasing the salt concentration to 1.5 M the DNA–histone complex dissociates (D = 1.8 × 10?8 cm2/sec). Upon decreasing the salt concentration to far below 0.8 M, the DNA–histone complex eventually precipitates as a chromatin gel.  相似文献   

14.
Summary The current-voltage relationship of carrier-mediated, passive and active ion transport systems with one charge-carrying pathway can exactly be described by a simple reaction kinetic model. This model consists of two carrier states (one inside, one outside) and two pairs (forwards and backwards) of rate constants: a voltage-dependent one, describing the transport of charge and a voltage-insensitive one, summarizing all the other (voltage-independent) reactions. For the electrogenic Cl pump inAcetabularia these four rate constants have been determined from electrical measurements of the current-voltage relationship of the pump (Gradmann, Hansen & Slayman, 1981;in: Electrogenic Ion Pumps, Academic Press, New York). The unidirectional Cl efflux through the pump can also be calculated by the availiable reaction kinetic parameters.36Cl efflux experiments on singleAcetabularia cells with simultaneous electrical stimulation (action potentials) and recording, demonstrate the unidirectional Cl efflux to depend on the membrane potential. After subtraction of an efflux portion which bypasses the pump, agreement is found between the measured flux-voltage relationship and the theoretical one as obtained from the reaction kinetic model and its parameters from the electrical data.  相似文献   

15.
Modification of the main parameters of cholinergic reactions in rabbits, i.e., of the specific sensitivity to agonists (EC 50), maximal reaction values (P m ) of arterial pressure in the hind limb vessels and small intestine in situ, and systemic arterial pressure after adaptation to cold for 1, 5, 10, and 30 days has been investigated. The depressor reaction to acetylcholine (muscarinic cholinergic receptors agonist) was established to correspond to the model p = (P m A n )/(EC 50 n + A n ) with n =1. In the control EC 50 was equal to 0.85, 1.01, and 1.21 nmol/kg, while P m equaled 100, 32.6, and 61.2 mm Hg for the hind limb vessels, small intestine in situ, and systemic arterial pressure, respectively.  相似文献   

16.
We have used two different approaches to determine hydrodynamic parameters for mucins secreted by guinea-pig tracheal epithelial cells in primary culture. Cells were cultured under conditions that promote mucous cell differentiation. Secreted mucins were isolated as the excluded fraction from a Sepharose CL-4B gel filtration column run under strongly dissociating conditions. Biochemical analysis confirmed the identity of the high molecular weight material as mucins. Analytical ultracentrifugation was used to study the physical properties of the purified mucins. The weight average molecular mass (M w ) for three different preparations ranged from 3.3×106 to 4.7×106 g/mol (corresponding to an average structure of 1 – 2 subunits), and the sedimentation coefficient from 25.5 to 35 S. Diffusion coefficients ranging from 4.5×10–8 to 6.4×10–8 cm2/s were calculated using the Svedberg equation. A polydispersity index (M z /M w ) of ∼1.4 was obtained. Diffusivity values were also determined by image analysis of mucin granule exocytosis captured by videomicroscopy. The time course of hydration and dissolution of mucin was measured and a relationship is presented which models both phases, each with first order kinetics, in terms of a maximum radius and rate constants for hydration and dissolution. A median diffusivity value of 8.05×10–8 cm2/s (inter-quartile range = 1.11×10–7 to 6.08×10–8 cm2/sec) was determined for the hydration phase. For the dissolution phase, a median diffusivity value of 6.98×10–9 cm2/s (inter-quartile range = 1.47×10–8 to 3.25×10–9 cm2/sec) was determined. These values were compared with the macromolecular diffusion coefficients (D 20,w ) obtained by analytical ultracentrifugation. When differences in temperature and viscosity were taken into account, the resulting D 37,g was within the range of diffusivity values for dissolution. Our findings show that the physicochemical properties of mucins secreted by cultured guinea-pig tracheal epithelial cells are similar to those of mucins of the single or double subunit type purified from respiratory mucus or sputum. These data also suggest that measurement of the diffusivity of dissolution may be a useful means to estimate the diffusion coefficient of mucins in mucus gel at the time of exocytosis from a secretory cell. Received: 10 March 1998 / Accepted: 27 March 1998  相似文献   

17.
Pulmonary arterial hypertension (PAH) is a form of obstructive vascular disease. Chronic hypoxic exposure leads to excessive proliferation of pulmonary arterial smooth muscle cells and pulmonary arterial endothelial cells. This condition can potentially be aggravated by [Ca2+] i mobilization. In the present study, hypoxia exposure of rat's model was established. Two-pore segment channels (TPCs) silencing was achieved in rats' models by injecting Lsh-TPC1 or Lsh-TPC2. The effects of TPC1/2 silencing on PAH were evaluated by H&E staining detecting pulmonary artery wall thickness and ELISA assay kit detecting NAADP concentrations in lung tissues. TPC1/2 silencing was achieved in PASMCs and PAECs, and cell proliferation was detected by MTT and BrdU incorporation assays. As the results shown, NAADP-activated [Ca2+]i shows to be mediated via two-pore segment channels (TPCs) in PASMCs, with TPC1 being the dominant subtype. NAADP generation and TPC1/2 mRNA and protein levels were elevated in the hypoxia-induced rat PAH model; NAADP was positively correlated with TPC1 and TPC2 expression, respectively. In vivo, Lsh-TPC1 or Lsh-TPC2 infection significantly improved the mean pulmonary artery pressure and PAH morphology. In vitro, TPC1 silencing inhibited NAADP-AM-induced PASMC proliferation and [Ca2+]i in PASMCs, whereas TPC2 silencing had minor effects during this process; TPC2 silencing attenuated NAADP-AM- induced [Ca2+]i and ECM in endothelial cells, whereas TPC1 silencing barely ensued any physiological changes. In conclusion, TPC1/2 might provide a unifying mechanism within pulmonary arterial hypertension, which can potentially be regarded as a therapeutic target.  相似文献   

18.
This work evaluates the influences of five parameters (pH, PEG molecular mass, PEG concentration, concentration of buffer K2HPO4–KH2PO4 and NaCl concentration) on xylanolitic complex partitioning produced by P. janthinellum in aqueous two-phase systems, using a 25 factorial experimental design. A mathematical model to quantify the influence of these parameters was attained and statistically tested. The optimum point for total protein extraction was obtained under the following conditions: pH 7.0, PEG 10 000, 3.67% PEG, 10% potassium phosphate and 12.4% NaCl. The partition coefficient (K) value experimentally obtained was 5.25 and that predicted by the model was 5.89.  相似文献   

19.
Recent experimentation with metabolic changes in rats exposed to thermally isoconductive environments has involved the use of inert gas-oxygen mixtures with different total pressures (PT) and inspired oxygen fractions (F1O2). To determine the FIO2 for each mixture that would result in similar arterial oxygen pressures (P a O2) and saturations (OS), arterial blood of dogs breathing the mixtures through a mask was analyzed for pH,PO2,PCO2, and OS. Using PIO2's calculated from the alveolar gas equation as a theoretical basis, the oxygen partial pressure for the helium mixture had to be increased by 5.6% while that in argon decreased by 10.2% below the computed values to obtain P a O2's acceptably similar to those resulting from air exposure. No consistent variation in pH, P a CO2, and OS were apparent. Based on the data presented, which were obtained under highly specialized conditions, it appears that the use of helium and argon as diluent gases may significantly affect arterial oxygen tension.  相似文献   

20.
The Role of MIP in Lens Fiber Cell Membrane Transport   总被引:1,自引:1,他引:0  
MIP has been hypothesized to be a gap junction protein, a membrane ion channel, a membrane water channel and a facilitator of glycerol transport and metabolism. These possible roles have been indirectly suggested by the localization of MIP in lens gap junctional plaques and the properties of MIP when reconstituted into artificial membranes or exogenously expressed in oocytes. We have examined lens fiber cells to see if these functions are present and whether they are affected by a mutation of MIP found in Cat Fr mouse lens. Of these five hypothesized functions, only one, the role of water channel, appears to be true of fiber cells in situ. Based on the rate of volume change of vesicles placed in a hypertonic solution, fiber cell membrane lipids have a low water permeability (p H2O ) on the order of 1 μm/sec whereas normal fiber cell membrane p H2O was 17 μm/sec frog, 32 μm/sec rabbit and 43 μm/sec mouse. Cat Fr mouse lens fiber cell p H2O was reduced by 13 μm/sec for heterozygous and 30 μm/sec for homozygous mutants when compared to wild type. Lastly, when expressed in oocytes, the p H2O conferred by MIP is not sensitive to Hg2+ whereas that of CHIP28 (AQP1) is blocked by Hg2+. The fiber cell membrane p H2O was also not sensitive to Hg2+ whereas lens epithelial cell p H2O (136 μm/sec in rabbit) was blocked by Hg2+. With regard to the other hypothesized roles, fiber cell membrane or lipid vesicles had a glycerol permeability on the order of 1 nm/sec, an order of magnitude less than that conferred by MIP when expressed in oocytes. Impedance studies were employed to determine gap junctional coupling and fiber cell membrane conductance in wild-type and heterozygous Cat Fr mouse lenses. There was no detectable difference in either coupling or conductance between the wild-type and the mutant lenses. Received: 17 February 1999/Revised: 16 April 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号