首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Syndecan-2 induced filopodia before spinogenesis; therefore, filopodia formation was used here as a model to study the early downstream signaling of syndecan-2 that leads to spinogenesis. Screening using kinase inhibitors indicated that protein kinase A (PKA) is required for syndecan-2-induced filopodia formation in both human embryonic kidney cells and hippocampal neurons. Because neurofibromin, a syndecan-2-binding partner, activates the cyclic adenosine monophosphate pathway, the role of neurofibromin in syndecan-2-induced filopodia formation was investigated by deletion mutant analysis, RNA interference, and dominant-negative mutant. The results showed that neurofibromin mediates the syndecan-2 signal to PKA. Among actin-associated proteins, Enabled (Ena)/vasodilator-stimulated phosphoprotein (VASP) were predicted as PKA effectors downstream of syndecan-2, as Ena/VASP, which is activated by PKA, induces actin polymerization. Indeed, when the activities of Ena/VASP were blocked, syndecan-2 no longer induced filopodia formation. Finally, in addition to filopodia formation, neurofibromin and Ena/VASP contributed to spinogenesis. This study reveals a novel signaling pathway in which syndecan-2 activates PKA via neurofibromin and PKA consequently phosphorylates Ena/VASP, promoting filopodia and spine formation.  相似文献   

2.
BACKGROUND: The Rho GTPases Rho, Rac, and Cdc42 regulate the organization of the actin cytoskeleton by interacting with multiple, distinct downstream effector proteins. Cdc42 controls the formation of actin bundle-containing filopodia at the cellular periphery. The molecular mechanism for this remains as yet unclear. RESULTS: We report here that Cdc42 interacts with IRSp53/BAP2 alpha, an SH3 domain-containing scaffold protein, at a partial CRIB motif and that an N-terminal fragment of IRSp53 binds, via an intramolecular interaction, to the CRIB motif-containing central region. Overexpression of IRSp53 in fibroblasts leads to the formation of filopodia, and both this and Cdc42-induced filopodia are inhibited by expression of the N-terminal IRSp53 fragment. Using affinity chromatography, we have identified Mena, an Ena/VASP family member, as interacting with the SH3 domain of IRSp53. Mena and IRSp53 act synergistically to promote filopodia formation. CONCLUSION: We conclude that the interaction of Cdc42 with the partial CRIB motif of IRSp53 relieves an intramolecular, autoinhibitory interaction with the N terminus, allowing the recruitment of Mena to the IRSp53 SH3 domain. This IRSp53:Mena complex initiates actin filament assembly into filopodia.  相似文献   

3.
n-Chimaerin is a GTPase-activating protein (GAP) mainly for Rac1 and less so for Cdc42Hs in vitro. The GAP activity of n-chimaerin is regulated by phospholipids and phorbol esters. Microinjection of Rac1 and Cdc42Hs into mammalian cells induces formation of the actin-based structures lamellipodia and filopodia, respectively, with the former being prevented by coinjection of the chimaerin GAP domain. Strikingly, microinjection of the full-length n-chimaerin into fibroblasts and neuroblastoma cells induces the simultaneous formation of lamellipodia and filopodia. These structures undergo cycles of dissolution and formation, resembling natural morphological events occurring at the leading edge of fibroblasts and neuronal growth cones. The effects of n-chimaerin on formation of lamellipodia and filopodia were inhibited by dominant negative Rac1(T17N) and Cdc42Hs(T17N), respectively. n-Chimaerin's effects were also inhibited by coinjection with Rho GDP dissociation inhibitor or by treatment with phorbol ester. A mutant n-chimaerin with no GAP activity and impaired p21 binding was ineffective in inducing morphological changes, while a mutant lacking GAP activity alone was effective. Microinjected n-chimaerin colocalized in situ with F-actin. Taken together, these results suggest that n-chimaerin acts synergistically with Rac1 and Cdc42Hs to induce actin-based morphological changes and that this action involves Rac1 and Cdc42Hs binding but not GAP activity. Thus, GAPs may have morphological functions in addition to downregulation of GTPases.  相似文献   

4.
The acidic (A) region of WASp family proteins is thought to represent a high-affinity binding site for Arp2/3 complex without activating properties. Here we show that GST-fused WASp-A and N-WASP-A, but not a WASP-A/W500S mutant, several truncated WASp-A constructs or WAVE1-A can pull down Arp2/3 complex from cell lysates. Significantly, WASp-A and N-WASP-A synergistically trigger formation of filopodia or lamellipodia when coinjected with sub-effective concentrations of V12CDC42Hs or V12Rac1, respectively, into macrophages. The ability of WASp family A region constructs to induce this effect is closely correlated with their ability to bind Arp2/3 complex in vitro. These results imply that (i) Arp2/3 complex is critically involved in filopodia and lamellipodia formation in macrophages and (ii) acidic regions of WASp and N-WASP are not simply binding sites for Arp2/3 complex but can prime it for RhoGTPase-triggered signals leading to actin nucleation.  相似文献   

5.
M J Hart  M G Callow  B Souza    P Polakis 《The EMBO journal》1996,15(12):2997-3005
Proteins that associate with the GTP-bound forms of the Ras superfamily of proteins are potential effector targets for these molecular switches. A 195 kDa protein was purified from cell lysates by affinity chromatography on immobilized cdc42Hs-GTP and a corresponding cDNA was isolated. Sequence analysis revealed localized identities to calponin, the WW domain, unconventional myosins and to the rasGAP-related domain (GRD) contained in IRA, NF-1, SAR1 and rasGAP. p195 was found to be identical to IQGAP1, a protein previously reported to bind ras. Purified recombinant p195/IQGAP1 bound to and inhibited the GTPase activity of cdc42Hs and rac whereas no interaction with ras was detected. The C-terminal half of IQGAP1 containing the GRD bound to cdc42 and rac in a GRD-dependent fashion, but a smaller fragment containing only the GRD did not. Cdc42 was also co-immunoprecipitated from cell lysates with antibody specific to p195/IQGAP1. Calmodulin also co-immunoprecipitated with p195/IQGAP1 and was found to associate with fragments containing the IQ domain. Expression of a cDNA fragment encoding the GRD inhibited the CDC24/CDC42 pathway in yeast, but no effect on ras was observed. In mammalian cells, both endogenous and ectopically expressed p195/IQGAP1 were localized to lamellipodia and ruffling cell membranes, where co-localization with actin was apparent. These results suggest that IQGAP1 is an effector target for cdc42Hs and may mediate the effects of this GTPase on cell morphology.  相似文献   

6.
Eukaryotic cells produce a variety of specialized actin-rich surface protrusions. These include filopodia-thin, highly dynamic projections that help cells to sense their external environment. Filopodia consist of parallel filaments of actin, bundled by actin crosslinking proteins. The filaments are oriented with their rapidly growing "barbed" ends at the protruding tip and their slowly growing "pointed" ends at the base. Extension occurs by polymerization at the tip and is controlled by regulation of filament capping. The Rho GTPase Cdc42 is a key mediator of filopodia formation, which it regulates through binding CRIB domain-containing effectors. Cdc42 binds and activates the WASP proteins, which in turn activate the actin-nucleating complex Arp2/3. It also binds and activates IRSp53, which recruits the Ena/WASP family protein Mena to the filopodial tip and protects elongating actin filaments from capping. Previously, we identified another Rho family GTPase, Rif, as a potent stimulator of filopodial protrusion through a mechanism that does not require Cdc42. Here we characterize the differences between filopodia induced by these two small GTPases and show that the Rif effector in this pathway is the Diaphanous-related formin mDia2. Thus, Rif and Cdc42 represent two distinct routes to the induction of filopodia-producing structures with both shared and unique properties.  相似文献   

7.
The Ras-related protein Cdc42 plays a role in yeast cell budding and polarity. Two related proteins, Rac1 and RhoA, promote formation in mammalian cells of membrane ruffles and stress fibers, respectively, which contain actin microfilaments. We now show that microinjection of the related human Cdc42Hs into Swiss 3T3 fibroblasts induced the formation of peripheral actin microspikes, determined by staining with phalloidin. A proportion of these microspikes was found to be components of filopodia, as analyzed by time-lapse phase-contrast microscopy. The formation of filopodia was also found to be promoted by Cdc42Hs microinjection. This was followed by activation of Rac1-mediated membrane ruffling. Treatment with bradykinin also promoted formation of microspikes and filopodia as well as subsequent effects similar to that seen upon Cdc42Hs microinjection. These effects of bradykinin were specifically inhibited by prior microinjection of dominant negative Cdc42HsT17N, suggesting that bradykinin acts by activating cellular Cdc42Hs. Since filopodia have been ascribed an important sensory function in fibroblasts and are required for guidance of neuronal growth cones, these results indicate that Cdc42Hs plays an important role in determining mammalian cell morphology.  相似文献   

8.
Neutrophils contain a soluble guanine-nucleotidebinding protein, made up of two components with molecular masses of 23 and 26 kDa, that mediates stimulation of phospholipase C-beta2 (PLCbeta2). We have identified the two components of the stimulatory heterodimer by amino acid sequencing as a Rho GTPase and the Rho guanine nucleotide dissociation inhibitor LyGDI. Using recombinant Rho GTPases and LyGDI, we demonstrate that PLCbeta2 is stimulated by guanosine 5'-O-(3-thiotriphosphate) (GTP[S])-activated Cdc42HsxLyGDI, but not by RhoAxLyGDI. Stimulation of PLCbeta2, which was also observed for GTP[S]-activated recombinant Rac1, was independent of LyGDI, but required C-terminal processing of Cdc42Hs/Rac1. Cdc42Hs/Rac1 also stimulated PLCbeta2 in a system made up of purified recombinant proteins, suggesting that this function is mediated by direct protein-protein interaction. The Cdc42Hs mutants F37A and Y40C failed to stimulate PLCbeta2, indicating that the Cdc42Hs effector site is involved in this interaction. The results identify PLCbeta2 as a novel effector of the Rho GTPases Cdc42Hs and Rac1, and as the first mammalian effector directly regulated by both heterotrimeric and low-molecular-mass GTP-binding proteins.  相似文献   

9.
Shen W  Wu B  Zhang Z  Dou Y  Rao ZR  Chen YR  Duan S 《Neuron》2006,50(3):401-414
Maturation of presynaptic transmitter secretion machinery is a critical step in synaptogenesis. Here we report that a brief train of presynaptic action potentials rapidly converts early nonfunctional contacts between cultured hippocampal neurons into functional synapses by enhancing presynaptic glutamate release. The enhanced release was confirmed by a marked increase in the number of depolarization-induced FM4-64 puncta in the presynaptic axon. This rapid presynaptic maturation can be abolished by treatments that interfered with presynaptic BDNF and Cdc42 signaling or actin polymerization. Activation of Cdc42 by applying BDNF or bradykinin mimicked the effect of electrical activity in promoting synaptic maturation. Furthermore, activity-induced increase in presynaptic actin polymerization, as revealed by increased concentration of actin-YFP at axon boutons, was abolished by inhibiting BDNF and Cdc42 signaling. Thus, rapid presynaptic maturation induced by neuronal activity is mediated by presynaptic activation of the Cdc42 signaling pathway.  相似文献   

10.
Selective control of basolateral membrane protein polarity by cdc42   总被引:3,自引:0,他引:3  
The rho GTPase cdc42 is implicated in several aspects of cell polarity. A recent study (Kroschewski R, Hall A, Mellman I. Nat Cell Biol 1999;1:8–13) demonstrated that a dominant negative mutant of cdc42 abolishes the polarity of basolateral membrane proteins in MDCK cells, but did not elucidate whether this effect was selective for basolateral proteins or nonselective for all secreted proteins. To answer this question, we analyzed the polarity of newly synthesized membrane and soluble proteins in MDCK cell lines previously induced to overexpress mutant forms of cdc42. GTPase-deficient and dominant negative cdc42 did not affect the apical targeting of a newly synthesized apical membrane protein, but reversed to apical the distribution of two exogenous basolateral membrane proteins. In striking contrast, GTPase-deficient cdc42 did not affect polarized exocytosis of endogenous soluble proteins, either apical or basolateral. The exquisitely selective regulation of polarized protein targeting by cdc42 may allow cells to fine-tune their membrane composition in response to extracellular signals during development, migration and in response to injury.  相似文献   

11.
Syndecan-2     
The members of the Syndecan family of heparan sulfate proteoglycans play diverse roles in cell adhesion and cell communication by serving as co-receptors for both cell-signaling and extracellular matrix molecules. Syndecan-2 has been implicated in the formation of specialized membrane domains and functions as a direct link between the extracellular environment and the organization of the cortical cytoplasm. Recent studies have shown that syndecan-2 is required for angiogenesis, possibly by serving as a co-receptor for vascular endothelial growth factor, and cell-to-cell signaling during development of left-right asymmetry. This unique combination of activities suggests that syndecan-2 can function as a potential drug target for the development of multi-functional, anti-cancer therapeutics.  相似文献   

12.
The c-Mos proto-oncogene product plays an essential role during meiotic divisions in vertebrate eggs. In Xenopus, it is required for progression of oocyte maturation and meiotic arrest of unfertilized eggs. Its degradation after fertilization is essential to early embryogenesis. In this study we investigated the mechanisms involved in c-Mos degradation. We present in vivo evidence for ubiquitin-dependent degradation of c-Mos in activated eggs. We found that c-Mos degradation is not directly dependent on the anaphase-promoting factor activator Fizzy/cdc20 but requires cyclin degradation. We demonstrate that cyclin B/cdc2 controls in vivo c-Mos phosphorylation and stabilization. Moreover, we show that cyclin B/cdc2 is capable of directly phosphorylating c-Mos in vitro, inducing a similar mobility shift to the one observed in vivo. Tryptic phosphopeptide analysis revealed a practically identical in vivo and in vitro phosphopeptide map and allowed identification of serine-3 as the largely preferential phosphorylation site as previously described (Freeman et al., 1992). Altogether, these results demonstrate that, in vivo, stability of c-Mos is directly regulated by cyclin B/cdc2 kinase activity.  相似文献   

13.
The rho family of small G proteins has been shown to be involved in controlling actin filament dynamics in cells. To evaluate the functional overlap between human and Dictyostelium G proteins, we conditionally expressed constitutively active human cdc42 (V12-cdc42) in Dictyostelium cells. Upon induction, cells adopted a unique morphology: a flattened shape with wrinkles running from the cell edge toward the center. The appearance of these wrinkles is highly dynamic so that the cells cycle between the wrinkled and relatively normal morphologies. Phalloidin staining indicates that the stellate wrinkles contain dense actin structures and also that numerous filopods project vertically from the center of these cells. Consistent with the hypothesis that cdc42 induces actin polymerization in vivo, cells expressing V12-cdc42 show an increase in the amount of F-actin associated with the cytoskeleton. This is accompanied by an increase in the association of the actin-binding proteins 34-kDa bundler, ABP-120 and alpha-actinin with the cytoskeleton. In conclusion, human cdc42 has various effects on the Dictyostelium actin cytoskeleton consistent with a conserved role of small GTPases in control of the cytoskeleton.  相似文献   

14.
Adams PD  Oswald RE 《Biochemistry》2006,45(8):2577-2583
Cdc42Hs(F28L) is a single-point mutant of Cdc42Hs, a member of the Ras superfamily of GTP-binding proteins, that facilitates cellular transformation brought about by an increased rate of cycling between GTP and GDP [Lin, R., et al. (1997) Curr. Biol. 7, 794-797]. Dynamics studies of Cdc42Hs(F28L)-GDP have shown increased flexibility for several residues at the nucleotide-binding site [Adams, P. D., et al. (2004) Biochemistry 43, 9968-9977]. The solution structure of Cdc42Hs-GDP (wild type) has previously been determined by NMR spectroscopy [Feltham, J. L., et al. (1997) Biochemistry 36, 8755-8766]. Here, we describe the solution structure of Cdc42Hs(F28L)-GDP, which provides insight into the structural basis for the change in affinity for GDP. Heteronuclear NMR experiments were performed to assign resonances in the protein, and distance, hydrogen bonding, residual dipolar coupling, and dihedral angle constraints were used to calculate a set of low-energy structures using distance geometry and simulated annealing refinement protocols. The overall structure of Cdc42Hs(F28L)-GDP is very similar to that of wild-type Cdc42Hs, consisting of a centrally located six-stranded beta-sheet structure surrounding the C-terminal alpha-helix [Feltham, J. L., et al. (1997) Biochemistry 36, 8755-8766]. In addition, the same three regions in wild-type Cdc42Hs that show structural disorder (Switch I, Switch II, and the Insert region) are disordered in F28L as well. Although the structure of Cdc42Hs(F28L)-GDP is very similar to that of the wild type, interactions with the nucleotide and hydrogen bonding within the nucleotide binding site are altered, and the region surrounding L28 is substantially more disordered.  相似文献   

15.
A Abo  J Qu  M S Cammarano  C Dan  A Fritsch  V Baud  B Belisle    A Minden 《The EMBO journal》1998,17(22):6527-6540
The GTPases Rac and Cdc42Hs control diverse cellular functions. In addition to being mediators of intracellular signaling cascades, they have important roles in cell morphogenesis and mitogenesis. We have identified a novel PAK-related kinase, PAK4, as a new effector molecule for Cdc42Hs. PAK4 interacts only with the activated form of Cdc42Hs through its GTPase-binding domain (GBD). Co-expression of PAK4 and the constitutively active Cdc42HsV12 causes the redistribution of PAK4 to the brefeldin A-sensitive compartment of the Golgi membrane and the subsequent induction of filopodia and actin polymerization. Importantly, the reorganization of the actin cytoskeleton is dependent on PAK4 kinase activity and on its interaction with Cdc42Hs. Thus, unlike other members of the PAK family, PAK4 provides a novel link between Cdc42Hs and the actin cytoskeleton. The cellular locations of PAK4 and Cdc42Hs suggest a role for the Golgi in cell morphogenesis.  相似文献   

16.
The Cdc42 effector IRSp53 is a strong inducer of filopodia formation and consists of an Src homology domain 3 (SH3), a potential WW-binding motif, a partial-Cdc42/Rac interacting binding region motif, and an Inverse-Bin-Amphiphysins-Rvs (I-BAR) domain.We show that IRSp53 interacts directly with neuronal Wiskott-Aldrich syndrome protein (N-WASP) via its SH3 domain and furthermore that N-WASP is required for filopodia formation as IRSp53 failed to induce filopodia formation in N-WASP knock-out (KO) fibroblasts. IRSp53-induced filopodia formation can be reconstituted in N-WASP KO fibroblasts by full-length N-WASP, by N-WASPDeltaWA (a mutant unable to activate the Arp2/3 complex), and by N-WASPH208D (a mutant unable to bind Cdc42). IRSp53 failed to induce filopodia in mammalian enabled (Mena)/VASP KO cells, and N-WASP failed to induce filopodia when IRSp53 was knocked down with RNA interference. The IRSp53 I-BAR domain alone induces dynamic membrane protrusions that lack actin and are smaller than normal filopodia ("partial-filopodia") in both wild-type N-WASP and N-WASP KO cells. We propose that IRSp53 generates filopodia by coupling membrane protrusion through its I-BAR domain with actin dynamics through SH3 domain binding partners, including N-WASP and Mena.  相似文献   

17.
A major function of Rac2 in neutrophils is the regulation of oxidant production important in bacterial killing. Rac and the related GTPase Cdc42 also regulate the dynamics of the actin cytoskeleton, necessary for leukocyte chemotaxis and phagocytosis of microorganisms. Although these GTPases appear to be critical downstream components of chemoattractant receptor signaling in human neutrophils, the pathways involved in direct control of Rac/Cdc42 activation remain to be determined. We describe an assay that measures the formation of Rac-GTP and Cdc42-GTP based on their specific binding to the p21-binding domain of p21-activated kinase 1. A p21-binding domain glutathione S-transferase fusion protein specifically binds Rac and Cdc42 in their GTP-bound forms both in vitro and in cell samples. Binding is selective for Rac and Cdc42 versus RhoA. Using this assay, we investigated Rac and Cdc42 activation in neutrophils and differentiated HL-60 cells. The chemoattractant fMet-Leu-Phe and the phorbol ester phorbol myristate acetate stimulate formation of Rac-GTP and Cdc42-GTP with distinct time courses that parallel cell activation. We also show that the signaling pathways leading to Rac and Cdc42 activation in HL-60 cells involve G proteins sensitive to pertussis toxin, as well as tyrosine kinase and phosphatidylinositol 3-kinase activities.  相似文献   

18.
19.
Phosphorylation of caldesmon by cdc2 kinase   总被引:6,自引:0,他引:6  
A recent report that mitosis-specific phosphorylation causes the nonmuscle caldesmon to dissociate from microfilaments (Yamashiro, S., Yamakita, Y., Ishikawa, R., and Matsumura, F. (1990) Nature 344, 675-678) suggests that this process may contribute to the major structural reorganization of the eukaryotic cell at mitosis. In this study we have demonstrated that smooth muscle caldesmon is phosphorylated in vitro by cdc2 kinase from mitotic phase HeLa cells to 1.2 mol of phosphate/mol of caldesmon. Tryptic maps showed three major phosphorylated spots and approximately equal amounts of phosphorylated Ser and Thr were identified. F-actin or calmodulin in the presence of Ca2+ blocks the phosphorylation of caldesmon. Phosphorylation of caldesmon greatly reduced its binding to F-actin. The phosphorylation sites were located in a 10,000-Da CnBr fragment at the COOH-terminal end of the caldesmon molecule known to house the binding sites for actin and calmodulin (Bartegi A., Fattoum, A., Derancourt, J., and Kassab, R. (1990) J. Biol. Chem. 265, 15231-15238). Our finding supports the model that phosphorylation of caldesmon by cdc2 kinase at mitosis may contribute to the disassembly of the microfilament bundles during prophase.  相似文献   

20.
The ability of filamentous fungi to form hyphae requires the establishment and maintenance of a stable polarity axis. Based on studies in yeasts and animals, the GTPases Cdc42 and Rac1 are presumed to play a central role in organizing the morphogenetic machinery to enable axis formation and stabilization. Here, we report that Cdc42 (ModA) and Rac1 (RacA) share an overlapping function required for polarity establishment in Aspergillus nidulans. Nevertheless, Cdc42 appears to have a more important role in hyphal morphogenesis in that it alone is required for the timely formation of lateral branches. In addition, we provide genetic evidence suggesting that the polarisome components SepA and SpaA function downstream of Cdc42 in a pathway that may regulate microfilament formation. Finally, we show that microtubules become essential for the establishment of hyphal polarity when the function of either Cdc42 or SepA is compromised. Our results are consistent with the action of parallel Cdc42 and microtubule-based pathways in regulating the formation of a stable axis of hyphal polarity in A. nidulans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号