首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Two different full-length cDNAs for cinnamate 4-hydroxylase (C4H1 and C4H2) were isolated from Citrus sinensis Osbeck cv. Valencia libraries. C4H1 (1708 bp) and C4H2 (1871 bp) share only 65% identity on nucleotide and 66% identity on the amino acid level, respectively. C4H1 is most homologous to a cinnamate 4-hydroxylase sequence from French bean (Phaseolus vulgaris), but codes for a unique N-terminus. C4H2 shows highest similarity to a poplar (Populus kitakamiensis) sequence, but also shows a unique N-terminus. The two genes are expressed differentially in orange flavedo, C4H2 is constitutive, C4H1 is wound-induced. In competitive RT-PCR, the mRNA for both genes in wounded and untreated tissue was quantified. C4H1 is strongly wound-inducible from `not detectable' to about 35 fg mRNA per 50 ng total RNA 8 h after wounding. The first detectable C4H1 mRNA was found 4 h after wounding. After reaching peak levels 4 h later the levels slightly declined, but stayed elevated until the end of the experiment (48 h). C4H2 is expressed 3–10 times higher than wound-induced C4H1 even in the control sample; wounding transiently increases the level of expression another 2–3 times. The existence of different N-termini and their effects on the possible role of both genes in phenylpropanoid pathways is discussed.  相似文献   

2.
Understanding regulation of phenolic metabolism underpins attempts to engineer plants for diverse properties such as increased levels of antioxidant flavonoids for dietary improvements or reduction of lignin for improvements to fibre resources for industrial use. Previous attempts to alter phenolic metabolism at the level of the second enzyme of the pathway, cinnamate 4-hydroxylase have employed antisense expression of heterologous sequences in tobacco. The present study describes the consequences of homologous sense expression of tomato CYP73A24 on the lignin content of stems and the flavonoid content of fruits. An extensive number of lines were produced and displayed four developmental variants besides a normal phenotype. These aberrant phenotypes were classified as dwarf plants, plants with distorted (curly) leaves, plants with long internodes and plants with thickened waxy leaves. Nevertheless, some of the lines showed the desired increase in the level of rutin and naringenin in fruit in a normal phenotype background. However this could not be correlated directly to increased levels of PAL and C4H expression as other lines showed less accumulation, although all lines tested showed increases in leaf chlorogenic acid which is typical of Solanaceous plants when engineered in the phenylpropanoid pathway. Almost all transgenic lines analysed showed a considerable reduction in stem lignin and in the lines that were specifically examined, this was correlated with partial sense suppression of C4H. Although not the primary purpose of the study, these reductions in lignin were amongst the greatest seen in plants modified for lignin by manipulation of structural genes. The lignin showed higher syringyl to coniferyl monomeric content contrary to that previously seen in tobacco engineered for downregulation of cinnamate 4-hydroxylase. These outcomes are consistent with placing CYP73A24 more in the lignin pathway and having a role in flux control, while more complex regulatory processes are likely to be involved in flavonoid and chlorogenic acid accumulation.  相似文献   

3.
A cDNA showing high sequence similarity (>70%) to plant protein phosphatase 1 catalytic subunit variants from other species has been isolated from a cDNA library derived from mRNAs expressed in elicitor-treated suspension-cultured cells. The clone appears to be a near full-length 1431 bp with a 172 bp 5-untranslated region and a 317 bp 3-untranslated region. The open reading frame, determined by sequence similarity, codes for a protein with predicted M r of 35552. Alternatively an ATG situated to the 5 end of the putative start site would increase the protein size by 6 amino acids.The mRNA for Pvpp1 was shown to be rapidly induced by elicitor treatment of suspension-cultured cells of French bean. The cloned cDNA represents one of the few examples of a gene product that is probably involved in dephosphorylation events arising after the initial responses to biotic stress.Abbreviations PAL phenylalanine ammonia-lyase - PP1 protein phosphatase 1 - Pvpp1 Phaseolus vulgaris protein phosphatase 1  相似文献   

4.
Abstract The changes in the levels of two different isozymes of cellulase (EC 3.2.1.4) have been followed during the abscission of the primary leaves of bean (Phaseolus vulgaris c.v. Red Kidney), using antibodies raised against the 9.5 form of the enzyme. Data from both radioimmune and direct assay show that the 9.5 form of cellulase is undetectable prior to the induction of abscission. After a 12 h lag this isozyme increases in activity, the increase preceding a decrease in integrity of the abscission zone cell walls. The results are consistent not only with the view that this specific isozyme is involved in wall hydrolysis but also with previous data which showed that cellulase is synthesized ‘de novo’. The 4.5 isozyme of cellulase is more widely spread throughout the plant, being most active in young tissues. During abscission the activity of this isozyme in the abscission layer falls and consequently it is not thought to be involved directly in the abscission process.  相似文献   

5.
Abstract: The aim of the present work was to determine the effect of abiotic stress, such as nitrogen (N) deficiency, on phenol and oxidative metabolism. In addition, we analyzed whether the response of the two metabolic processes is a good bioindicator of N deficiency in French bean plants. The N was applied to the nutrient solution in the form of NH4NO3 at 1.35 mM (N1), 2.7 mM (N2) and 5.4 mM (N3), this latter dosage being considered optimal. The results indicated that application of 1.35 and 2.70 mM of N can be defined as suboptimal or deficient, as it depressed foliar biomass of the French bean plants in our experiment. In addition, abiotic stress from the application of these N dosages stimulated the enzymes PPO, POD and CAT, and inhibited PAL and SOD activities, resulting in the lowest foliar accumulation of phenolic compounds and H2O2.  相似文献   

6.
青杨脊虎天牛CYP4G2基因片段的克隆、序列分析与表达   总被引:2,自引:0,他引:2  
根据报道的十几种昆虫CYP4家族基因的氨基酸序列保守区域设计一对引物,利用RT-PCR技术扩增编码青杨脊虎天牛Xylotechus rusticus中肠细胞色素氧化酶CYP4G2蛋白的cDNA片段,构建原核表达载体pET-CYP4G2,将其转化入大肠杆菌Escherichia coli JM109中表达。序列分析结果表明,该基因(CYP4G2,GenBank登录号为EF429250)保守区域阅读框全长387 bp,编码129个氨基酸残基,预测分子量和等电点分别为16.9 kD和5.75;推导的氨基酸序列与已报道的昆虫CYP4家族氨基酸序列一致性较高(63%~86%),且具有细胞色素氧化酶的典型特征。IPTG诱导后,SDS-PAGE电泳检测到一条22 kD大小的外源蛋白,与预测融合蛋白的分子量大小相应。CO差光谱分析证明重组菌表达了有活性的pET-CYP4G2。  相似文献   

7.
8.
Stressed plant cells often show increased oxygen uptake which can manifest itself in the transient production of active oxygen species, the oxidative burst. There is a lack of information on the redox status of cells during the early stages of biotic stress. In this paper we measure oxygen uptake and the levels of redox intermediates NAD/NADH and ATP and show the transient induction of the marker enzyme for redox stress, alcohol dehydrogenase. Rapid changes in the redox potential of elicitor-treated suspension cultures of French bean cells indicate that, paradoxically, during the period of maximum oxygen uptake the levels of ATP and the NADH/NAD ratio fall in a way that indicates the occurrence of stress in oxidative metabolism. This period coincides with the maximum production of active oxygen species particularly H2O2. The cells recover and start producing ATP immediately upon the cessation of H2O2 production. This indicates that the increased O2 uptake is primarily incorporated into active O2 species. A second consequence of these changes is probably a transient compromising of the respiratory status of the cells as indicated in expression of alcohol dehydrogenase. Elicitor-induced bean ADH was purified to homogeneity and the Mr 40 000 polypeptide was subjected to amino acid sequencing. 15% of the whole protein was sequenced from three peptides and was found to have nearly 100% sequence similarity to the amino acid sequence for pea ADH1 (PSADH1). The cDNA coding for the pea enzyme was used to demonstrate the transient induction of ADH mRNA in elicitor-treated bean cells. Enzyme activity levels also increased transiently subsequently. Increased oxygen uptake has previously been thought to be associated with provision of energy for the changes in biosynthesis that occur rapidly after perception of the stress signal. However the present work shows that this rapid increase in oxygen uptake as a consequence of elicitor action is not wholly associated with respiration.  相似文献   

9.
Inositol hexakisphosphate kinase (IP6K) is an important mammalian enzyme involved in various biological processes such as insulin signalling and blood clotting. Recent analyses on drug metabolism and pharmacokinetic properties on TNP (N2-(m-trifluorobenzyl), N6-(p-nitrobenzyl)purine), a pan-IP6K inhibitor, have suggested that it may inhibit cytochrome P450 (CYP450) enzymes and induce unwanted drug-drug interactions in the liver. In this study, we confirmed that TNP inhibits CYP3A4 in type I binding mode more selectively than the other CYP450 isoforms. In an effort to find novel purine-based IP6K inhibitors with minimal CYP3A4 inhibition, we designed and synthesised 15 TNP analogs. Structure-activity relationship and biochemical studies, including ADP-Glo kinase assay and quantification of cell-based IP7 production, showed that compound 9 dramatically reduced CYP3A4 inhibition while retaining IP6K-inhibitory activity. Compound 9 can be a tool molecule for structural optimisation of purine-based IP6K inhibitors.  相似文献   

10.
从桔小实蝇Bactrocera dorsalis(Hendel)成虫体内提取总RNA,利用RT-PCR和cDNA末端快速扩增技术获得了一个新的细胞色素P450基因cDNA序列全长.该基因经细胞色素P450基因命名委员会命名为CYP4D46(Gen-Bank登录号:GU292422),其cDNA全长为1717 bp,包含1530 bp的完整开放阅读框(ORF),编码510个氨基酸,理论分子量约为58.40 kD,等电点为8.82.系统发育分析表明该基因与昆虫第4家族P450基因具有较高的同源性.实时定量PCR分析发现,CYP4D46基因在脂肪体中的相对表达量较高,分别是马氏管和中肠内的756倍和60倍,说明CYP4D46可能与脂肪体的重要生理功能相关.  相似文献   

11.
Cytochromes P450 from the white-rot basidiomycete Phanerochaete chrysosporium, CYP5136A1 and CYP5136A3, are capable of catalyzing oxygenation reactions of a wide variety of exogenous compounds, implying their significant roles in the metabolism of xenobiotics by the fungus. It is therefore interesting to explore their biochemistry to better understand fungal biology and to enable the use of fungal enzymes in the biotechnology sector. In the present study, we developed heterologous expression systems for CYP5136A1 and CYP5136A3 using the T7 RNA polymerase/promoter system in Escherichia coli. Expression levels of recombinant P450s were dramatically improved by modifications and optimization of their N-terminal amino acid sequences. A CYP5136A1 reaction system was reconstructed in E. coli whole cells by coexpression of CYP5136A1 and a redox partner, NADPH-dependent P450 reductase (CPR). The catalytic activity of CYP5136A1 was significantly increased when cytochrome b5 (Cyt-b5) was further coexpressed with CPR, indicating that Cyt-b5 supports electron transfer reactions from NAD(P)H to CYP5136A1. Notably, P450 reaction occurred in E. coli cells that harbored CYP5136A1 and Cyt-b5 but not CPR, implying that the reducing equivalents required for the P450 catalytic cycle were transferred via a CPR-independent pathway. Such an “alternative” electron transfer system in CYP5136A1 reaction was also demonstrated using purified enzymes in vitro. The fungal P450 reaction system may be associated with sophisticated electron transfer pathways.  相似文献   

12.
13.
14.
A number of plant species contain the class II of genes encoding the cytochrome P450, CYP73, the cognate protein of which cinnamic acid 4-hydroxylase, is the second enzyme of the phenylpropanoid pathway. In order to begin to determine possible functionality, tobacco has been transformed with a truncated French bean class II cinnamate hydroxylase (CYP73A15) in the sense and antisense orientations. Signals for C4H protein could be detected in vascular tissue from wild-type plants using heterologous probes. The transformed plants showed a normal phenotype, even though detectable C4H protein was much reduced in tissue prints. Young propagated transformants displayed a range of reduced C4H activities, as well as either reduced or no phloroglucinol-stainable lignin. However, all mature tobacco plants showed the accumulation of lignin, even though its deposition was apparently delayed. This was not due to induction of tyrosine ammonia-lyase activity, which was not detected, but instead it is presumed due to sufficient C4H residual activity. Analysis of the lignin content of the plants showed reductions of up to 30% with a slightly reduced syringyl to guaiacyl ratio as compared to wild type. This reduction level was favourable in comparison with some other targets in the lignification pathway that have been manipulated including that of class I cinnamate 4-hydroxylase. It is proposed that the class II cinnamate 4-hydroxylase might also function in lignification in a number of species including French bean and tobacco, based on these data.  相似文献   

15.
Cinnamate 4-hydroxylase (C4H, EC 1.14.13.11) complete cDNA was cloned from the leaves of Ruta graveolens, a psoralen producing plant. The recombinant enzyme (classified CYP73A32) was expressed in Saccharomyces cerevisiae. Mechanism-based inactivation was investigated using various psoralen derivatives. Only psoralen and 8-methoxypsoralen were found to inactivate C4H. The inactivation was dependent on the presence of NADPH, time of pre-incubation, and inhibitor concentration. Inactivation stoichiometry was 0.9 (+/-0.2) for CYP73A1 and 1.1 (+/-0.2) for CYP73A32. SDS-PAGE analysis demonstrated that [3H]psoralen was irreversibly bound to the C4H apoprotein. K(i) and k(inact) for psoralen and 8-methoxypsoralen inactivation on the two C4H revealed a lower sensitivity for CYP73A32 compared to CYP73A1. Inactivation kinetics were also determined for CYP73A10, a C4H from another furocoumarin-producing plant, Petroselinum crispum. This enzyme was found to behave like CYP73A32, with a weak sensitivity to psoralen and 8-MOP inactivation. Cinnamic acid hydroxylation is a key step in the biosynthesis of phenylpropanoid compounds, psoralen derivatives included. Our results suggest a possible evolution of R. graveolens and P. crispum C4H that might tolerate substantial levels of psoralen derivatives in the cytoplasmic compartment without a depletive effect on C4H and the general phenylpropanoid metabolism.  相似文献   

16.
17.
A structural gene encoding nitrate reductase (NR) in the legume Phaseolus vulgaris cv. Saxonia has been cloned and sequenced. The NR gene encodes a protein of 881 amino acids with a MW of 99.2 kDa. The coding sequence is interrupted by three introns, which are located in the molybdopterin cofactor binding domain. In the flanking regions the signals of a functional eukaryotic gene are present. The gene is the smallest NR gene so far identified in higher plants. Comparison to other NRs shows homology ranging from 65 to 74% at the amino acid level. The similarity is highest for the three functional domains, and lowest in the N-terminal end of the protein. mRNA studies demonstrate that the gene is nitrate inducible and expressed exclusively in the roots of bean. Southern blot analysis indicates the presence of a second NR gene in bean. This gene may encode a NR enzyme expressed in leaves.  相似文献   

18.
The current article aims to summarize all possible spectrum of protein–protein interactions for thromboxane A synthase (CYP5A1) and prostacyclin synthase (CYP8A1). These enzymes metabolize the same substrate (prostaglandin H2) and can participate in cardiovascular, inflammatory, immune processes, and apoptosis modulation, as well as significantly influence the risk of cancers. Binary protein–protein and multiprotein complexes are of great importance in enzyme-regulating and signal-transduction pathways. However, protein partners of CYP5A1 and CYP8A1 are not yet fully identified, although both synthases are considered as prospective drug targets. At least 36 novel protein partners of CYP5A1 and CYP8A1 were revealed from different tissue types using an approach based on affinity isolation and mass spectrometry. Enrichment analysis showed that these proteins have different molecular functions: folding (refolding), unfolded protein and chaperon binding, protein transport (export/import), posttranslational modification, protein domain-specific binding, antioxidant activity, and glutathione homeostasis. A significant part of them, belonging to molecular chaperones, were common partners for CYP5A1 and CYP8A1, while other proteins were unique with the tissue-dependent distribution. New aspects of CYP5A1 and CYP8A1 interactomics and hetero-complex formation with different protein partners, including cytochrome P450s are discussed.  相似文献   

19.
Fifteen populations of wild bean (Phaseolus vulgaris), located in three provinces in Argentina, were analysed for their polymorphism for a complex resistance gene candidate (RGC) family clustered on the genome and for resistance phenotypes to strains of Colletotrichum lindemuthianum. Results indicate that RGC polymorphism is high. Population structure obtained for markers related to resistance was compared to population structure obtained for RAPD markers in order to infer the evolutionary forces driving polymorphism for resistance in wild populations at both molecular and phenotypic levels. Hierarchical analysis of differentiation showed that, within provinces, populations were differentiated for RAPD as well as for molecular and phenotypic markers of resistance. In contrast, provinces were differentiated only for RAPD and RGC markers and not for resistance phenotypes. The discrepancies found between diversity structures for molecular markers (RAPD and RGCs) and for resistance phenotypes suggest an effect of selection and indicate that diversity for resistance may not be driven by the same selective forces at the molecular and phenotypic levels. We further discuss whether specific selective forces are exerted on RGC markers and underline the importance of spatial scale of analysis for demonstrating an impact of selection.  相似文献   

20.
The regulation of the human liver-specific cytochrome P450 4F3B (CYP4F3B) isoform, a splice variant of the CYP4F3 gene with strong substrate specificity for long chain fatty acids, is yet an unsolved question. This report provides the first evidence that CYP4F3B is uniquely induced by prostaglandin A(1) (PGA(1)) in human hepatocyte-like HepaRG cells and leads to the synthesis of 20-hydroxy-eicosatetraenoic acids (HETEs). Real time PCR, immunoblot analysis with a specific antipeptide antibody, and determination of fatty acid omega-hydroxylase activity demonstrate that PGA(1) treatment strongly increases expression of CYP4F3B. This induction drives the production of 20-HETE (19-fold increase). SiRNA-mediated-silencing of CYP4F3 suppresses both 20-HETE synthesis and PGA(1) induced 20-HETE production. Taken together, these results provide evidence that CYP4F3B is the key enzyme to produce 20-HETE by omega-hydroxylation of arachidonic acid in liver cells. Since 20-HETE is a potent activator of PPARalpha and an important inflammatory mediator, CYP4F3B may exert important functions in lipid homeostasis and in inflammatory diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号